FUNDAMENTALS OF
FLUID MECHANICS

Chapter 9 External Flow
Past Bodies
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** Drag
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Introduction

**» Objects are completely surrounded by the fluid and the
flows are termed external flows.

¢ Examples include the flow of air around airplane,
automobiles, and falling snowflakes, or the flow of water
around submarines and fish.

*» External flows involving air are often termed
acrodynamics 1n response to the important external flows
produced when an object such as an airplane flies through

the atmosphere.




cation

Appl

**» Design of cars and trucks — to decrease the fuel
consumption and improve the handling characteristics.

s Improve ships, whether they are surface vessels
(surrounded by air and water) or submersible vessels.

*»» Design of building — consider the various wind effects




Approaches to External Flows 12

¢ Two approaches are used to obtain information of external flows:

= Theoretical (analytical and numerical) approaches: Because of
the complexities of the governing equations and the complexities
of the geometry of the objects involved, the amount of
information obtained from purely theoretical methods is limited.
With current and anticipated advancements in the area of
computational fluid mechanics, computer predication of forces
and complicated flow patterns will become more readily
available.

= Experimental approaches: Much information is obtained.




Approaches to External Flows 22

Flow visualization

(a) Flow past a full-sized streamlined
vehicle in the GM aerodynamics
laboratory wind tunnel, and 18-ft
by 34-ft test section facility driven
by a 4000-hp, 43-ft-diameter fan.

(b) Surface flow on a model vehicle as
indicated by tufts attached to the
surface.
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General Characteristics

¢ A body immersed in a moving fluid experiences a resultant force
due to the interacting between the body and the fluid surrounding:

= The body is stationary and the fluid flows past the body with
velocity U.

= The fluid far from the body is stationary and the body moves
through the fluid with velocity U.
ve c<haned f\]’\1 ect the characte nf the flow de nd
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very strongly on various parameters s uch as size, orientation, speed,
and fluid properties.



Categories of Bodies

¢ The structure of an external flow and the ease with which the flow
can be described and analyzed often depend on the nature of the
body in the flow.

¢ Three general categories of bodies include (a) two-dimensional
objects, (b) axisymmetric bodies, and (¢) three-dimensional bodies.

(@) b) @

¢ Another classification of body shape can be made depending on
whether the body 1s streamlined or blunt.




Lift and Drag Concepts '3

¢ The interaction between the body and the
fluid:

= Stresses-wall shear stresses,t,, ,due to )
viscous effects. ’ T
Pressure

= Normal stresses, due to the pressure p.

“ Both 1 and p vary in magnitude and
direction along the surface. _U>

¢ The detailed distribution of T, and p is
difficult to obtain.

*» However, only the integrated or resultant —
effects of these distributions are needed.




Forces Acting on Element /2

¢ The forces acting on a fluid element may be classified as body
forces and surface forces; surface forces include normal forces and

tangential (shear) forces. , ,
Surface forces acting on a fluid

F— SE E lement can be described in t
OF = SFS + SFB element can be described in terms
of normal and shear stresses.
— 1 1 SF,
= oF, 1+ oF J + oF k .

+8F,,i +8F, j+8F, k

Arbitrary
surface
et oF Y OF, O,
o, = l1m 7, =llm—— 7, =lim—
a8—-0 SHA a—0 SHA a-0 SA

n
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Forces Acting on Element %2
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Lift and Drag Concepts %3
¢ The resultant force on the object in the downstream direction (by the fluid) is

termed the DRAG, and the resultant force normal to the upstream velocity is
termed the LIFT, both of which are surface forces. L
‘ D

Drag=D=¢, -jg(n)dAng j(— D+7, )6, +7,,€,0A

= J-(— p+7,, \—cos@)+1,,sin A — ’
Lit=L=¢,-[odA=g,- [(- P+, e, +7,p8,0A
= j (- p+17,, (sin@)+7,, cos A | ﬂﬂﬁx’ "
[ 1A “/

€, =cos(r—0)=—-cosb,e, e, =c05(%—9)=sin9 S / \
\".
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Lift and Drag Concepts °°

+* Without detailed information concerning the P
shear stress and pressure distributions on a : 8 T
body, the drag and the lift are difficult to S i
obtain by integration. J

< A widely used alternative is to define vl

dimensionless lift and drag coefficients and

determine their approximate values by means

of either a simplified analysis, some 7%&
numerical technique, or an appropriate o
experiment.

C ﬂ____,_|

A=cl

D

. . L
Lift coefficient Cp = Drag coefficient Cp= 1
2PUA
13
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¢ For a given-shaped object, the characteristics of the flow depend
very strongly on various parameters such as size, orientation, speed,
and fluid properties.

¢ According to dimensional analysis arguments, the character of flow
should depend on the various dimensionless parameters. For typical
external flows the most important of these parameters are the
Reynolds number, the Mach number, and for the flow with a free
surface, the Froude number.

14
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¢ For the present, we consider how the external flow and its
associated lift and drag vary as a function of Reynolds number.

¢ For most external flows, the characteristic length of objects are on
the order of 0.10m~10m. Typical upstream velocities are on the
order of 0.01m/s~100m/s. The resulting Reynolds number range 1s
approximately 10~10°.

= Re>100. The flows are dominated by inertial effects.
= Re<1. The flows are dominated by viscous effects.

15



Flow Past an Flat Plate 14

*» With Re = 0.1, the viscous effects are relatively strong and the
plate affects the uniform upstream flow far ahead, above, below, and
behind the plate. In low Reynolds number flows, the viscous effects
are felt far from the object in all directions.

Viscous effects
important >

Within the boundary layer, the viscous o e =TT T T
. . . e=Utlv=0. __—

force is comparable to the inertial P —
forces. e - 4 < 0.99U

/ ! ¢ 7

l X

\\ o~ b

‘ N \*\)—
e
_,, 7/\ _

— _— — -
U Streamlines deflected It e I
considerably
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Flow Past an Flat Plat

s With Re = 10, the region in which
viscous effects are important become
smaller in all directions except
downstream. One does not need to
travel very far ahead, above, or below
the plate to reach areas in which the

viscous effects of the plate are not felt.

The streamlines are displaced from
their original uniform upstream
conditions, but the displacement 1s not
as great as for the Re=0.1 situation.

e 2/4

Viscous effects

Wake
region

. 5

- Re= 10 important
Viscosity not R
" important S
> A < 0.99U 5
N 4 .
.
> ¥ L
= Streamlines deflected
somewhat
e
u
4
(&)
y f
- Re= 10’
> ) ) Boundary layer
Viscosity not
> important Viscous effects
important
5 << ( I AT =
= = | \‘; :
. Streamlines deflection p—t=
very slight
[ -
L{
s
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Flow Past an Flat Plat

L)

L)

» With Re = 107, the flow is dominated by inertial effects and the viscous
effects are negligible everywhere “except in a region very close to the
plate and in the relatively thin wake region behind the plate.”

s Since the fluid must stick to the solid surface, there 1s a thin boundary layer
region of thickness 0<< / next to the plate in which the fluid velocity changes
from U to zero on the plate.

% The thickness of boundary layer increases in the direction of flow, starting
from zero at the forward or leading edge of the plate.




Flow Past an Flat Plate 44

¢ The flow within the boundary layer may be laminar or turbulent
depending on various parameters involved.

¢ The streamline of the flow outside of the boundary layer is nearly
parallel to the plate. -> no viscous effects.

¢ The existence of the plate has very little effect on the streamline
outside of the boundary layer — either ahead, above, and below the
plate.

19



Flow Past an Circular Cylinder "4

s When Re= 0.1, the viscous effects are important several diameters in
any direction from the cylinder. A somewhat surprising characteristic
of this flow i1s that the streamlines are essentially symmetric about the
center of the cylinder-the streamline pattern is the same in front of the
cylinder as it 1s behind the cylinder.

A — /?\ h
Yiscous forces \4’/
impartant throughout
Re — Ly — Q.1

()

X
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Flow Past an Circular Cylinder %4

¢ As Reynolds number is increased (Re =50), the region ahead of the cylinder in
which viscous effect are important becomes smaller, with the viscous region
extending only a short distance ahead of the cylinder.

» The flow separates from the body at the separation point.

¢ With the increase in Reynolds number, the fluid inertia becomes more important
and at the some on the body, denoted the separation location, the fluid’s inertia is
such that it cannot follow the curved path around to the rear of the body.

Some of the fluid is actually flowing upstream,
against the direction of the upstream flow.
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Flow Past an Circular Cylinder 44

% With larger Reynolds numbers (Re=10), the area affected by the viscous forces
is forced farther downstream until it involve only a boundary layer (60<<D) on the
front portion of the cylinder and an irregular, unsteady wake region that extends
far downstream of the cylinder.

s The velocity gradients within the boundary layer and wake regions are much
larger than those in the remainder of the flow field. -> Shear stress is a product of
fluid viscosity and the velocity gradient, so viscosity effects are confined to the
boundary layer and wake regions.

Viscosity not .
impartant . Fnundaq.r layar separation Viscous
:/;f JQ, c:'m
Boundary layar o fiakn
u ; Ecﬂ ﬁﬁ region
3 x

* = i
Re = 10° \</ ™ Soparated region
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Prior to Prandtl

¢ Theoretical hydrodynamics evolved from Euler’s equation of

motion for a inviscid (nonviscous) fluid. (published by Leonhard
Euler in 1755)

= Contradicted many experimental observations. (NO DRAG in
the equation) Practicing engineers developed their own empirical
art of hydraulics.

_ N op oW oW OW oW
-Vp=p| —+V VNV ——=p| —+U—+V—+ W—
TP ,0( ot V-v) j P p( ot ox oy oz

¢ Mathematical description of a viscous fluid by Navier-Stokes
equations, developed by Navier,1827, and independently (extended)
by Stokes, 1845.

= Mathematical difficulties in solving these equations.

23



Boundary Layer Concepts

¢ Introduced by Ludwig Prandtl, a German aerodynamicist, in 1904.

=>Many viscous flows can be analyzed by dividing the flow into
two regions, one close to solid boundaries, the other covering the
rest of flow.

= Only 1n the thin region adjacent to a solid boundary (the
boundary layer) is the effect of viscosity important.

1imdary laver the Q'F-ant

I:>Tn the reacinn nitecide nf th n
111 Uil 1Cg L vuildaly iayvci, uiC C1ilu

is negligible and the fluid may be treated as inviscid.

¢ The boundary layer concept permitted the solution of viscous flow
problems that would have been impossible through application of
the Navier-Stokes to the complete flow field.

24



Boundary Layer Characteristics

¢ The flow past an object can be treated as a combination of viscous
flow in the boundary layer and inviscid flow elsewhere.

= Inside the boundary layer the friction is significant and across the
width of which the velocity increases rapidly from zero (at the
surface) to the value inviscid flow theory predicts.

= Qutside the boundary layer the velocity gradients normal to the flow
are relatively small, and the fluids acts as i1f it were nviscid, even
though the viscosity is not zero.

25



Boundary Layer on Solid Surface

¢ Inviscid flow (1% order eq.) -> No drag -> Unrealistic
¢ By Pradtl in 1904:

= The no-slip condition requires that the velocity everywhere on
the surface of the object be zero.

= There will always be a thin boundary layer, in which friction is
significant and across the width of the layer the velocity

increases rapidly from zero (at the surface) to the value

flow theory predicts.

C
ek
-

i

<

|
0]
@)
ek

= Outside of the boundary layer, the velocity gradients normal to
the flow are relative small, and the fluid acts as if it were 1nviscid,
even though the viscosity 1s not zero.
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Boundary Layer on Solid Surface

¢ Consider the flow over a flat plate as shown, the boundary layer is
laminar for a short distance downstream from the leading edge;
transition occurs over a region of the plate rather than at a single line
across the plate.
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Boundary Layer on Solid Surface

¢ The transition region extends downstream to the location where the
boundary layer flow becomes completely turbulent.

¢ For a finite length plate, it is clear that the plate length, /, can be
used as the characteristic length, with the Reynolds number as
Re=U /7 /v.

¢ For the infinitely long flat plate we use x, the coordinate distance
along the plate from the leading edge, as the characteristic length

Qﬂf] Aﬂ'ﬁﬂp fl’\ﬂ DQ‘TY\[\]I’]C‘ 1"\111"\"\]’\Q1" N Q DQ :T TV/\?
AaAliu Uvilllilv uUlwv L\U)’ 11VU1UOD 11Uliilivvil Ao L\UX J AN Ve

¢ For any fluid or upstream velocity the Reynolds number will be
sufficiently large for boundary layer type flow if the plate 1s long
enough.

28



=) darv Laver Thick
Boundary La i n

hickness
¢ Standard Boundary layer thickness

¢ Boundary layer displacement thickness
“* Boundary layer momentum thickness

: u=0
| u=099 U a/ u=U b/
U\ 17 v |/ 1 v

- R . .

‘ — I g Equal /I u#0

s 7| > areas | u = u(y)
| PR S—— —
| 5* > IU u
! =

T a b

(a) (b)
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Standard Boundary Layer Thickness

¢ The standard boundary layer thickness is the distance from the plate
at which the fluid velocity is within some arbitrary value of the
upstream velocity.

0 where u=0.99 U

vV =
J

boundary layer thickness

L)

30



Boundary Layer Displacement
Thickness

¢ The boundary layer retards the fluid, so that the mass flux and
momentum flux are both less than they would be in the absence of

the boundary layer.

¢ The displacement distance is the distance the plate would be moved
so that the loss of mass flux (due to reduction in uniform flow area)
1s equivalent to the loss the boundary layer causes.

0 2]

B
u [

(|

The loss of mass flow rate due to the 1 1
boundary layer T— / -
‘ . -

pS*Uw = [ p(U —uwdy i _
- (1 ; ijdy e Ve

Y
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Boundary Layer Momentum
Thickness

¢ The momentum thickness is the distance the plate would
be moved so that the loss of momentum flux is equivalent
to the loss the boundary layer actually causes.

The loss of momentum due to the boundary layer

32



How to Solve Boundary Layer

How To Solve Boundary Layer

“* By Blasius (called Blasius solution)

Limited to laminar boundary layer only, and for a flat
plate only (without a pressure gradient).

** Momentum integral equation

Used to obtain approximate information on boundary
layer growth for the general case ( laminar or turbulent

boundary layers, with or without a pressure gradient).

33



Prandtl/Blasius Solution

Prandtle used boundary layer concept and imposed
approximation (valid for large Reynolds number flows)
to simplify the governing Navier-Stokes equations. H.
Blasius (1883-1970), one of Prandtl’s students, solved

these simplified equations.

34



Prandtl/Blasius Solution /10

¢ The details of viscous incompressible flow past any object can be
obtained by solving the governing Navier-Stokes equation.

¢ For steady, two dimensional laminar flow with negligible
gravitational effects, these equations reduce to the following

ou ou 1 Op o°’u  0O’u
U—+V—=———"+V| —+—

O0x oy p OX 0x~ 0y

v ov  lop (&v dv)
U—+V—=—-——"+V| —5+—

O0x oy p Oy L@X oy J

% In addition, the conservation of mass 7 No analytical solution

ou oOv
—+—=0
8X 8y — 35



Prandti/Blasius Solutio n 210

S

% Assumptions for simplification

1. Since the boundary layer is thin, it is expected that the component of velocity (v)
normal to the plate is much smaller than stream-wise velocity component and that the

rate of change of any parameter across the boundary layer should be much greater than
that along the flow direction.

u>>Vv, 9 >> 9
2. Zero pressure gradient. (Note potential flow and constant velocity)

OX
3. Within the boundary layer, the viscous force is comparable to the inertial forces
Nondimensionalization

_ U . VvV _ X _ Yy
U=—V=—X=—,y == )

U % L ) u ou y ou " o°u
Ua]au N _y .o u5):1, Vo9 ox oy oy
VL )X &Y L

ou ov
us?\.oo _oo| (ms*\ep ((6) o0 o Us> sY 1 » +—=0
Ll [t LU (20,00 () (o) L T oy
)X dULJox (L) ax* oy m

oo P
(gjz 0V OV Y,
L a)~(2 8y2
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Prandtl/Blasius Solution 31°

Second order partial

Goveming equations . differential equations
ou  ou o°u ou oV
U—+V—=0— +—=0
X y oy oX oy
Boundary conditions
y =0, u=0, v=_0
y = o0, u="U, u =0
%
Solution? ...... are extremely difficult to obtain.

37



Prai

ndtl/Blasius Solution n 410

¢ Blasius reduced the partial differential equations to an

ordinary differential equation...

The velocity profile, u/U, should be similar for all values of x. Thus the
velocity profile is of the dimensionless form

U

U

=g()

_ Is an unknown function to be determined.

where U:l:L
o |
U

The boundary layer thickness grows as the square root of x and inversely
proportional to the square root of U. That is

()
U

38



Prandtl/Blasius Solution 19

Set a dimensionless similarity variable

_Y_ Y
Ji S "
U

The velocity component
S\ U , WX U
t'(7)=—=,u=Uf"(n).dy = .| =d7,dn = ———dx
(n)=1 u=t )y = [Zan.dy=-"

ou (O _ 77
= _Uf _Uf"
> (7)== > '(n )

= f-Boy=furty ( o =2 [ - o)
——([f = 1) = 2V L1l )] where 10)=0



Prandtl/Blasius Solution ¢1¢

8” " 877 14 77 au " 877 14 U
MUt ()T = Ui ()L M Ut ()T — U () |2
(n) (77)2)(, 5 (n) o (7) ~

Ut v:lg[f (- 1(n)] where £(0)=0

2X | 2V X UX
— £ ()t +[ () — £ ()] F"(7)=21"(7)
28"(n)+ f(n)f"(n)=0

uf ’(77)[— Ut ”(77)1} +L B0t — 1 ()t "(n)\g — Ut ()
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Prandtl/Blasius Solution 71?

d’f d’f . . Nonlinear, third-order
d 77 d 772 =21""+1"=0 ordinary differential equation
With boundary conditions
f="=0 at n=0 F(n)=—
f>—1 at 1 —o U

Solution ? No analytical solution !
Easy to integrate to obtain numerical solution

Blasius solved 1t using a power series expansion about
n =0 ...Blasius solution

41



Prandtl/Blasius Solution #1°

B TABLE 9.1

Laminar Flow along a Flat Plate Numerical solution of

A

(the Blasius Solution) 2d3f L d?f o f g
_ 12 boon ) dn’ dn’
n = y(U/vx) S =u/U ] S ()
0 0 3.6 0.9233
0.4 0.1328 4.0 0.9555
0.8 0.2647 4.4 0.9759
1.2 0.3938 4.8 0.9878
1.6 0.5168 5.0 09916 «—
2.0 0.6298 5.2 0.9943
2.4 0.7290 5.6 0.9975
2.8 0.8115 6.0 0.9990
3.2 0.8761 o 1.0000 4




Prandti/Blasius Soluti

C)

Numerical solution of

d®f d?f
+ f
d#n’ d#n’

5
%:0.99atn:5
4

2 =2f""+ff"

0 0.2 0.4 0.6 0.8 1.0

u

IMUES
W (b)
Blasius boundary layer profile: (a) boundary layer profile in dimensionless
form using the similarity variable 1. (b) similar boundary layer profiles at

different locations along the flat plate. 43
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Prandtl/Blasius Solution 10/10

** From Table 9.1. We see that at n= 5.0, u/U=0.992, {=3.283.

5 5 5__50 _ 50 s* 1.721

X U/ JU /v 4/Re X Re,

® 0.064 j——d I )= ]
X \/@ Re =Ux/v . 0(1 jy " \/7 \/7

[ox
\/ [5-3.283=1.72] —_172\/—

ou

Shear stress 7, = lu8_|0_0_332U% PH _ 0.332pU
y X

JRe.

HW: derive momentum thickness and shear stress formulas. 44




HW Solution

+* Revised Table 9.1.

LT S N N R U7 GG R R

0 0.3321 |0 0

1 0.3230 | 0.3298 | 0.1656 PI (o)1= £'(7))dn = \F[ (7)1 £( +jffdn}

s o1 Josse0 |rases | Vo'~ "-[2] =@f<n><1—f'<n>xo—zf"wzl

4 L N R | - UUX[f(S)(l—f'(s))—z(f"(s)—f"(0))]= 2 [3.2833(1-0.9915)- 2(0.0159-0.3321)]
5 0.0159 |0.9915 | 3.2833 -

6 0.0024 |09990 |4.2796 |~y 0

Infinity | 0 1000 | Infinity

Shear stress 7, = ,Ug_u | = 0.332U %
y

= pUt"(n) \P
UX

p,u 0. 332,0U i

= 11Ut "(0) 1/ ~0.332,0 |- 4
- UX

n( O
. (77) o

n=0



Momentum Integral Equation

Used to obtain approximate
information on boundary layer growth

How To Solve Boundary Layer
1. By Blasius (called Blasius solution)
Limited to laminar boundary layer only, and for a flat plate only (without a pressure gradient).

2. Momentum integral equation

Used to obtain approximate information on boundary layer growth for the general case ( laminar or
turbulent boundary layers, with or without a pressure gradient).

46



Momentum Integral Equation /12

¢ Consider incompressible, steady, two-dimensional flow
over a solid surface.

y 5( X )f) U ——— Control

surface

e ————— e ——
— — J—

|
|
— . |
< n _,_,.a-""’#‘q\ Boundary layer edge i I U
- ;'l:__!

47



Momentum Integral Equation 2/12

¢ Assume that the pressure is constant throughout the flow field.

¢ X-component of the momentum equation to the steady flow of fluid
within this control volume

Zﬁ:MVﬁAﬁNN}jA

S'F =0jW-ﬁdA+o VV -fidA
) @)

For a plate of width b

Z FX - _D - _Iplate TWdA - _b.[plate TWdy
where D 1s the drag that the fluid exerts on the object.
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Momentum Integral Equation 312

¢ Since the plate is solid and the upper surface of the control volume
1s a streamline, there 1s no flow through these area. Thus

V.i=0
-D=p| U(-U)A+ JwdA
N : h 227
= D =pU’bh - pbjo u’d
¢ The conservation of mass Drag on a flat plate is related to
s momentum deficit within the
Uh = J-O udy boundary layer
IIA

UhpUb = pb ' Uudy

49



Momentum Integral Equation 412

0 A balance between shear drag and a
D =pb I u(U—-u)d g
} P 0 ( ) Y decrease in the momentum of the fluid

* As x increases, 0 increases and the drag
increases.

+»* The thickening of the boundary layer is 5
necessary to overcome the drag of the viscous
shear stress on the plate. (This 1s contrary to :
horizontal fully developed pipe flow in which
the momentum of the fluid remains constant
and the shear force is overcome by the
pressure gradient along the pipe.)

> -

=

ﬁ-—
ﬁ
#
—
U-u

il

=

u(U — u)
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Momentum Integral Equation /12
9

*» By T. von Karman (1881-1963)

D= pbru(U—u)dy )
- D =pbU’®
O= I (1 - —)dy -~ Valid for laminar or turbulent flows

dD
D _ b0299  dD =1 bdx = S =br,

dx dx dx

» d®  Momentum integral equation for the

» 7, = pU dx boundary layer flow on a flat plate

51



Momentum Integral Equation /1

If we knew the detailed velocity profile in the boundary layer (i.e.,
the Blasius solution), we could evaluate either the drag force or the
shear stress.

What if we don’t know u=u(x)??? With an assumed velocity
profile in the boundary layer to obtain reasonable, approximate
boundary layer result. The accuracy of the result depends on
how closely the shape of the assumed velocity profile
approximates the actual profile.

at u=0

y=0
u
U:g(\() OSYSIY:% B.C.{at y=5, u=U
u 1 at y=0, ouloy=0
U

¥ 2(0)=0 and g(1)=1

=1 Y >1



Momentum Integral Equation 712

g(Y) ? g(Y)=Y (Example 9.4)
For a given g(Y), the drag can be determined
D =pb j: u(U-u)dy = pbUZ5 jol g(Y J1-g(Y)]dY =pbU?s C,

If g(Y)=Y,D =pbU% _EY[I ~Y|dY = pbusz_ﬂ

C, =[ gMli-gM)]dy

du ©U dg U
Tw :/ud_y|y:(): S dy |Y=():7C2
o _da(v)

2y -0 )



Momentum Integral Equa

D _ b2 ¢ 2br,, =b4c,
} dx dx

Mo = Ko dx
pUC,

Integrating... from 0=0 at x=0 to give

5 _ /2vcx35 \/2C /C,
) T /CC 2 1732 /pu

C, and C, must be determined

do
—>pU&

On 8/12

y7i
Cl chz
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Momentum Integral Equation °/12

¢ Several assumed velocity profiles and the resulting value

of O

1.0

0.5

O’J|‘-1

Blasius

Cubic

Sine wave

1.0

Typical approximate boundary layer profiles
used in the momentum integral equation.

B TABLE 9.2

~~Flat Plate Momentum Integral Results for Various Assumed

Laminar E‘luw Velocity Profiles

g
. .
. .
----------

Profile Character 6Re!?/x ¢/Re/? CpRey/?
a. Blasius solution 5.00 0.064 1.328
b. Linear

u/U = v/d 3.46 0.578 1.156
¢. Parabolic

u/U = 2y/6 — (}‘/6)2 548 0.730 1.460
d. Cubic

u/U = 3(y/8)/2 — (_\'/6)3/2 4.064 0.640 1.292
e. Sine wave

u/U = sin[7(y/8)/2] 4.79 0.655 1.310
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Momentum Integral Equation 10/12

¢ The more closely the assumed shape approximates the actual (i.e.,
Blasius) profile, the more accurate the final results.

¢ For any assumed profile shape, the functional dependence of 6 and
T, on the physical parameters p,p, U, and x 1s the same. Only the
constants are different. That is,

1/2 s
Ub:s U3 ORe. '~
0 ~ (_j Ty ~ [p ”X J X __ = constant
X
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Momentum Integral Equation 1112

¢ Defining dimensionless local friction coefficient

oo T ~42CC,

lpU I L Re_

’CC U3/2 /pﬂ

Tw O 644

(Blasius solution)

—pU eX
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Momentum Integral Equation 1%/12

¢ For a flat plate of length ¢ and width b, the net friction drag D;and
frictional drag coefficient C are defined as

! ! D 1 (L 8C,C
Df:CDf.—pU2bg:bj TWdX Cpr = 1 f :z Cfdx:m
: O EpUzbE OI JRe,
D | oL | 328 ¢ =4/2C,Con/pUx  Reg=UL/v
CDf = 1 £ :_J‘Cde: i
EpUzbE V 0 JRe,

~0.644
Csr = K (Blasius solution)

58



Tnnnn ‘ N I ‘an I ’'> Y 2aadl e Xs N o ‘A Tl I“kl IIA“‘ 1_!5
1 1AlIOILIVIT T1TVIT Aalllilidl tV TUIvuIclit

¢ Above analytical results agree quite well with experimental results
up to a point where the boundary layer flow becomes turbulent,
which will occur for any free stream velocity and any fluid provided
the plate 1s long enough.

¢ The parameter that governs the transition to turbulent flow is the
Reynolds numbers — in this case, the Reynolds number based on the
distance from the leading edge of the plate, Re =Ux/v.

¢ The value of the Reynolds number at the transition location is a
rather complex function of various parameters involved, including
the roughness of the surface, the curvature of the surface, and some
measure of the disturbances in the flow outside the boundary layer.
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¢ On a flat plate with a sharp leading edge in a typical air-stream, the
transition takes place at a distance x from the leading edge given by
Re,  =2x10° to 3x10°. Re ., =5x107 is used.

¢ The actual transition from laminar to turbulent boundary layer flow
may occur over a region of the plate, not a specific single location.

¢ Typical, the transition begins at random location on the plate in the
vicinity of Re = Re_,

¢ The complex process of transition from laminar to turbulent flow
involves the instability of the flow filed.
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+* Small disturbances imposed on the boundary layer will either grow
or decay, depending on where the disturbance 1s introduced into the
flow.

¢ If the disturbances occur at a location with Re, <Re, ., they will die
out, and the boundary layer will return to laminar flow at that
location.

¢ If the disturbances occur at a location with Re >Re, ., they will
erow and transform the boundary layer flow downstream of this
location into turbulence.

The boundary layer on a flat plate will become turbulent
if the plate is long enough -> large Reynolds number .
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Transition process

———— comr——.
-

Turbulent spots and the transition from laminar
to turbulent boundary layer flow on a flat plate.
Flow from left to right
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. o ] 0.06
+* Transition from laminar to turbulent o 1 = 5.25 T
flow involves a noticeable change - fg;g E
in the shape of the boundary layer ™| | _. e oo
velocity profiles. . Flatter
+»* The turbulent profiles are flatter, \ |

have a large velocity gradient at the_
wall, and produce a larger boundary
layer thickness than do the laminar
profiles.

0.03 Transitional j

Turbulent

0.02

boundary layer velocity profiles o

on a flat plate for laminar,
transitional, and turbulent flow. 0




Laminar and Turbulent
¢ For laminar flow o _ 5.48 . 1 U 0.730
x Re. ' 277 [Re,
’ o _ 0.382 o 1 y: 0.0594
¢ For turbulent flow X ReXUS "5 1% ReX1/5

= The turbulent boundary layer develops more rapidly than the
laminar boundary layer.

= Wall shear stress is much higher 1n the turbulent boundary layer
than in the laminar layer.
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Effects of Pressure Gradient
Fox



Effect of Pressure Gradients "4

¢ Use the boundary conditions at the wall u=v=0 at y=0

ot OX OX

which (momentum equation) relates the curvature of the velocity
profile at the surface to the pressure gradient.

66



Effect of Pressure Gradients "4

¢ Favorable pressure gradient: the pressure decreases in the flow
direction

To counteract the slowing the fluid particles in the boundary layer.

op/ox < 0

¢ Adverse pressure gradient: the pressure increases in the flow
direction

To contribute to the slowing of the fluid particles.

op/ox >0

67



YA / A — N
cp/oX =V

¢ The velocity profile is linear near the wall.

¢ In the boundary layer, the velocity gradient becomes smaller and
gradually approaches zero. The decrease in the velocity gradient ———
means that the second derivative of the velocity must be negative.

¢ The second derivative is shown as being zero at the wall, negative
within the boundary layer, and approaching zero at the outer edge of

the boundary layer.

YA YA Yi

the second derivative
approach zero from the
negative side.

<

68
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s / A - N
op/oX <U

¢ A negative pressure gradient is seen to produce a velocity variation
somewhat similar to that of the zero pressure gradient case.

YA YA YA

dpP
—/— <
dx 0
dpP
ar _, G >0
dx ﬁ)>0 *
dx
Uy a’ivx +

Source: Fox et al.
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¢ A positive pressure gradient requires a positive derivative value of
the second derivative of the velocity at the wall.

¢ Since this derivative must approach zero from the negative side, at
some point within the boundary layer the second derivative must
equal to zero. A zero second derivative, it will be recalled, 1s
associated with an inflection point.

Y YA YA

PI=point of inflection

70

Source: Fox et al.



¢ If the adverse pressure gradient is severe enough, the fluid particle
in the boundary layer will actually be brought to rest (the velocity in
the layer of fluid adjacent to the wall must be zero or negative ).

¢ If the adverse pressure gradient is severe enough, the particle will be
forced away from the body surface (called flow separation) as they

make room for following particles, ultimately leading to a wake in

which flow 1s turbulent.

A
Y

a,
~
\
Y

il High pressure

. Separated
region

Low pressure »T
o]
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Source: Fox et al.
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Effect of Pressure Gradients %4

+»* For uniform flow over a flat plate the flow never separates, and
we never develop a wake region, whether the boundary layer is
laminar or turbulent, regardless of plate length.

= 0p/0x=0 : no flow separation.
= 0p/0x<0 : no flow separation.

= op/0x>0 : could have flow separation, not always leads to flow

091‘\01‘01'1 A ‘If‘)]fﬂ 81’\/6V§ 10 5] “ﬂﬁf‘
IJCLL ublUll Olllu Cl AA ¢ %\ N N7 a 11V

a |

flow separation to occur.
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Effect of Pressure Gradients /4

Separation occurs.

Outside the boundary layer. The flow decelerates.
The flow accelerates. .
Constant velocity ? How small the adverse
\ / pressure gradient needs to
eliminate flow separation?
Fegion 1 : Fegion 2 . Bagion £
- 1 1
dn e i
E‘I’-‘I- v i -:;]% ) I:‘ ?ri]}l.@/
| o
\I
I
t‘-;t.'fl
}
Bopartion point: -.*fﬂ] - £
) . Source: Fox et al.
Fig. 2.6 Boundarylayer flowe with pressure gradient {(boundarydayer thickness 23

axaggeaiad for claity].



Effect of Pressure Gradients 44

PI=point of inflection ~ . o——
U
U
u
PI
PI
Ve Backflow

(a) Favorable (b) Zero (¢) Weak adverse (d) Critical adverse (&) Excessive adverse

. . radient: radient: radient:
gradient: gradient: gd £ £
U Zero sl Back{l
<0 ero slope ackflow
jU >0 ‘;U =0 dx at the wall: at the wall:
X X
d d ar _ s Separation Separated
P <0 P =0 dx flow region
dx dx No separation,
. . PI in the flow
No separation, No separation, .

PI inside wall PI at wall Source: Fox et al.
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Effects of Pressure Gradient
Munson



Flows Past Circular Cylinder
Inviscid Flow 12

%* For “inviscid” flow past a circular
cylinder, the fluid velocity along the n A F
surface would vary from Ug=0 at the N\/W
very front and rear of the cylinder to a M
maximum of U,=2U at the top and N
bottom of the cylinder. Po%ﬁi 'A\ e

** The pressure on the surface of the " oo U
cylinder would be symmetrical about m-p?| ’\ '

the vertical mid-plane of the cylinder. -2 g 18}\00A r

0 90 90 180
8, degrees 8, degrees

b .
Favorable pressure ” “

gradient

Adverse pressure gradient
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Flows Past Circular Cylinder
Inviscid Flow 2/2

¢ The drag on the cylinder is zero.

No matter how small the viscosity, there will be a boundary layer
that separates from the surface, giving a drag that is independent of
the value of .

This leads to what has been termed
d’Alembert’s paradox, the drag on an
object in an inviscid fluid 1s zero, but
the drag on an object in a fluid with
vanishingly small (but nonzero)
viScosity 1S not zero. -2
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Flows Past Circular Cylinder
Viscous Flow /5

¢ Consider a fluid particle within
the boundary layer. In its attempt
to flow from A to F.

*» Because of the viscous effects
involved, the particle in the
boundary layer experiences a loss
of energy as 1t flow along.

00 Thic lnce meanc that the nartiecle
A 111D 1UDD 11ivalid uluu LuIC paiuvivc

does not have enough energy to
coast all of the way up the ;
pressure hill (from Cto F)andto <> 7=

For profile D, du =0aty=0

reach point F at the rear of the
cylinder.
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Flows Past Circular Cylinder
Viscous Flow 2/

¢ The kinetic energy deficit is seen in the velocity profile detail at
Point C.

= The situation is similar to a bicyclist coasting down a hill and up
the other side of the valley. If there were no friction, the rider
starting with zero speed could reach the same height from which
he started. Clearly friction, making it impossible for a rider to
reach the height from which he started without supplying
additional energy.

+*»* The fluid within the boundary layer does not have such an energy
supply. Thus, the fluid flows against the increasing pressure as far as
it can, at which point the boundary layer separates from (lifts off)
the surface.
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Flows Past Circular Cylinder
Viscous Flow 3/

s At the separation location D, the velocity gradient at the wall and
the wall shear stress are zero.

¢ Beyond that separation location (from D to E) there is reverse flow
in the boundary layer.

*» Because of the boundary layer separation, the average pressure on

the rear half of the cylinder 1s considerably less than on the front
half.

¢ Thus, a large pressure drag is developed, even though the viscous
shear drag may be quite small.

Drag= friction drag + pressure drag
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Flows Past Circular Cylinder
Viscous Flow 4/

¢ The location of separation, the width of the wake region behind the
object, and the pressure distribution on the surface depend on the
nature of the boundary layer flow.

¢ Compared with a laminar boundary layer, the turbulent layer flow
has more kinetic energy and momentum. Thus, the turbulent
boundary layer can flow farther around the cylinder before it
separates than can the laminar boundary layer.
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Flows Past Circular Cylinder
Viscous Flow °P

Separation occurs
when the momentum
of fluid layers near
the surface 1s reduced
to zero by the
combined action of
pressure and viscous
forces.

Drag= friction drag + pressure drag

2.0

1.0

0.0

-2.0

-3.0

Inviscid
theory

c-1-4sin2g 7]
’ /
/
/
1
| A
oo T
\ /
\\{/

0 45°

The momentum flux within
the turbulent boundary layer is
greater than within the laminar
layer.

The turbulent layer 1s better
able to resist separation in an
adverse pressure gradient.
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Flow Past an airfoill

Flow visualization
photographs of flow
past an airfoil: (a)
zero angle of attack,
no separation, (b) 5°
angle of attack, flow
separation.
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*DRAG
= Friction Drag
= Pressure Drag

= Drag Coefficient Data and Examples
*LIFT
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Lift and Drag Concepts %3

¢ The resultant force in the downstream direction (by the fluid) is termed the DRAG,
and the resultant force normal to the upstream velocity is termed the LIFT, both
of which are surface forces.

L
Drag=D=¢, -jg(n)dAng j(— D+7, )8, +7,,€,0A ‘
D

v

:j(— p+7,, J—cos@)+7,,sin QA —
Lit=L=¢,-[odA=g,- [(- P+, e, +7,p8,0A
- j(_ p+17,, (sin@)+z,, cos A HA g

€, =cos(r—0)=—-cosb,e, e, =c05(%—9)=sin9 — / \_\

4 : 5
‘€, =COS£——(9]=SID(9,ey -€, =cosd 67\
e ) €, € /

| D

| D
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DRAG

¢ Drag F is the stream wise component of surface force exerted by a
fluid on a body.

Drag=D = deX = jpcosOdA + jrw sin 0dA

Drag=D=e¢, -j;(n)dA:gX J.(— p+7, )8, +7,,€,dA

= H(— p+7, (—cosd)+1z,,sin OdA = _“( pcos)+7,,sin OdA
:I pcos6UA+Irr9 sin GdA

¢ The drag coefficient Cy

Cp = D

1

2
—pU A where A is the cross sectional area.

2

s The drag coefficient is a function of object shape, Reynolds
number,Re, Mach number, Ma, Froude number, Fr, and relative
roughness of the surface, ¢/ ¢

C, = f(shape,Re,Fr,Ma,c/ /)
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Friction Drag

¢ Friction drag is due to the shear stress on the object

1

Cbor=f (shear stress, orientation of the surface on which it acts)
Cpyp = D
DF T 1s the friction drag coefficient.

»C. =1(Re ,elr) RegszUf
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Pressure Drag (Form Drag)

¢ Pressure drag is due to the pressure difference on the object.

D, = j pcosOdA
The pressure drag coefficient CDp

j pcosOdA IC cosOdA

CDp:1

—pU A

(o Po)

¥ Cpp =f(Rey,e/0)

Dynamic pressure
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Drag Coefficient Data and
Example



Co — Shape Dependenc

¢ The drag coefficient for an
object depends on the shape
of the object, with shapes
ranging from those that are
streamlined to those that are
blunt.

¢ Drag coefficient for an
ellipse with the characteristic
area either the frontal area,

A=bD, or the planform area,
A=b/.

D

normal to flow

Re = L2 _ 10

b = length

Flat plate
parallel to flow
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Co — Shape Dependence

s Two objects of considerably different size that have the same drag
force: (a) circular cylinder Co=1.2, (b) streamlined strut Co=0.12

N
_— T e — “~—
—h—/\—d — D SN T
Up—=—==0 2 == v, p-“:’”-~-
N w

Diameter = D

(a) (D)

91



¢ Drag coefficient for
flow past a variety of
objects.

“* Re>1000

(2 W oW o

Co — Shape Dependei

Fox

C-section (open side
facing downstream)

Object Diagram Cp(Re = 10°%)
Square prism N blh = o 2.05
%/ bih = 1 1.05
e
Ring - 1200
Hemisphere (open end / @ 1.42
facing flow) /
Hemisphere (open end @ 0.38
facing downstream) /
C-section (open side : 2.30
facing flow) \
1.20

Source: Fox et al.
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Co — Shape Dependence Fox

NACA: National Advisory Committee for Aeronautics

** For conventional section

NACAO0015, the pressure T |
gradient becomes adverse at 06: o o 015
x/c=0.13, near the point of L c ]
maximum thickness. The drag <%
coefficient Cp=0.0061. P,

¢ For laminar-flow section F 02
NACA 66:-015, the pressure £ os —
gradient becomes adverse at o5 - :
x/c=0.63. Thus the bulk of the 08 Re= =610 1
flow 1s laminar; Cp=0.0035. ™% 52 Djmiziion.essdistani‘lf, s o

Fig. 9.15 Theoretical pressure distributions at zero angle of attack for two symmet-
ric airfoil sections of 15 percent thickness ratio. (Data from [21}].)

Source: Fox et al. 93



Co — Shape Dependence Fox

¢ The variation of drag
coefficient as a function of
angle of attack for an airfoil.

¢ The angle of attack i1s small, the
boundary layer remain attached

0.02

0.015

& 0.01 Bk,
to the airfoil, and the drag is
. 10°
relatively small. 0.005
¢ For angles larger than critical

flow as 1f 1t were a blunt body,
and the drag increases greatly.

angle the body appears to the % / - ; 5 10

Critical angle of attack
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Co — Shape Dependence F°x

¢ The variation of drag coefficient as a function of aspect ratio for a
flat plate normal to the upstream flow and a circular cylinder.

2.0

1.5

Flat plate

)]
5

N Circular cynnder\

20 25 30
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Co — Reynolds Number Dependence

¢ The main categories of Reynolds number dependence are (1) very
low Reynolds number flow, (2) Moderate Reynolds number flow,
and (3) very large Reynolds number flow.

* For Low Reynolds number flows (Re<1) D =f(U,/,pu)

Dimensional analysis » D=C MU .

D B 2CulyU B 2C For a sphere D = 67zaU or D = -671aU

CD:

%pUz 02 B pU2 02 " Re where U is a velocity of a sphere,

U is a free stream velocity,
¢ For moderate Reynolds number

Cp, ~Re!’?

and a is a radius.
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Co — Reynolds Number Dependence

» Drag coefficient for low Reynolds number flow past a variety of

objects.

m TABLE 9.4

Low Reynolds Number Drag Coefficients (Ref. 7) (Re = pUD/m, A = wD?/4)
Cp = B/ (pUA/2)
Object (forRe = 1) Object Cp

a. Circular disk normal 20.4/Re c. Sphere 24.0/Re

to flow

f C D 37uDU 24

U D U D p =7 21 .2 1 21 2

b. Circular disk parallel 13.6/Re d. Hemisphere 22.2/Re

to flow

U-»@

. (DT
a
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Co — Reynolds Number Dependence

¢ Character of the drag coefficient as a function of Reynolds number for a smooth

circular cylinder and a smooth sphere.
The turbulent boundary layer travels

further along the surface into the
100 adverse pressure gradient on the rear
portion of the cylinder before
separation occurs. This results a
thinner wake ,small pressure drag ,and
sudden decrease in

Kg)

Smooth sphere

o0 © oo
O = N RO~ N RO O

0

ot 10° 10! 102

The drag coefficient decreases when the .- e »

boundary layer becomes turbulent. w
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Flow Patterns for Various Reynolds
Numbers

@ The structure of the flow field ﬂ
at selected Reynolds number. < )
v \/

No separation Steady separation bubble
400
200 (4) (B)
100
60 /
40
. ,/_—\’_E /\/
10
: s \_9
2 \
D_é Oscillating Karman vortex street wake
0.4
0.2 (C)
0.1
0.06
10 /—" /\
- Al
SN N
Laminar boundary layer, Turbulent boundary layer,
wide turbulent wake narrow turbulent wake
(D) (E)

(b) %9



Co — Reynolds Number Dependence

¢ Character of the drag Fa e H
coefficient as a function of . e 7T .
Reynolds number for objects Clipse \/’ O:
with various degrees of | 5
streamlining, from a flat plate
normal to the upstream flow to
a flat plate parallel to the flow. | .

B 1p0? b;
5 P

Flat plate

b = length

“On a flat plate with a sharp leading edge - — e —
in a typical air-stream, Re, . =5x10° -

Re = =22
v

~ For blunt bodies, the drag coefficient decreases when the boundary layer becomes
turbulent. (pressure drag decreases but friction drag increases -> total drag decreases)
For streamlined bodies, the drag coefficient increases when the boundary layer

« becomes turbulent. (friction drag increases)
Drag: 1. friction drag 2. pressure drag
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Co — Surface Roughness 13

¢ Surface roughness protrudes through the laminar sub-layers adjacent
to the surface and alters the wall shear stress.

+ In addition to the increased turbulent shear stress, surface roughness
can alter the Reynolds number at which the boundary layer
becomes turbulent.

¢ A rough flat plate may have a larger portion of its length covered by a
turbulent boundary layer than the corresponding smooth plate.

** For streamlined bodies, the drag increases with increasing surface
roughness because turbulent shear stress 1s much greater than
laminar shear stress.

101



Co—

\/
0’0

\/
0’0

\/
0’0

Surface Roughness 23

For extremely blunt body, such as a flat plate normal to the flow, the
drag is independent of the surface roughness.

For blunt bodies like a circular cylinder or sphere, an increase in
surface roughness can actually cause a decrease in the drag - a

considerable drop in pressure drag with a slight increase in

friction drag, combining to give a smaller overall drag.
The boundary layer can be tripped into turbulence at a smaller

DQ n1r’10 nil ]’\Q 1’\‘7 11(‘11’1(\' (5] 1"[\11(1']’1 Ql11r 'FQ(‘QA C‘ﬂ]’\ﬁ?’ﬁ pf\f‘ AvYIaMTMN ]Q
AN \/-y llULUD llULLLU\JL )’ uo 5 a UUSLL Ul iliAdavivil DIJL wiv. 1 Ul \./A(.«l«lllt}l\/,

the critical Reynolds number for a golf bass 1s approximately
Re=4x10%. In the range of 4x10*<Re<4x10°, the drag on the
standard rough (i.e., dimpled) golf ball is considerably less than for
the smooth ball.
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Co — Surface Roughness 33

(;ritical Reynolds number

0.6
£ = relative roughness The reason for dimples
on golf balls|
a
RIS
=3 ND
(o}
.—||C\|
I
Q
) '5/
£ _ —2
5 =1.25x10 \\/ \ / —B = 0 (smooth)
£ _5y10%
1 D \_/
—B _15x10°7
0 4 5 5 6 6
4%10 10 4 %10 10 4 %10

The boundary layer can be tripped info_tyrbulence at a smaller

Reynolds number by using a rough-surfaced sphere. 103



LIFT 13

¢ Lift is defined as the component of surface force exerted by a fluid
on a body perpendicular to the fluid motion.

Lift=L :j‘dFy = —jpsinGdA+er cos0dA

¢ The lift coefficient, C,, is defined as
L Lit=L=e, [t dA=e, - [(- p+z, ), +7,€,dA

'
A\

L
1 = + + A
UZ A I P+, smH T,, COS H]d

2 :I—ps1néﬂA+jrrecos6dA

C, = f(shape,Re,Fr,Ma,s/ ()
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LIFT 23

¢ Most common lift-generating devices (i.e., airfoils, fans, spoiler on
cars, etc.) operate in the large Reynolds number in which the flow
has a boundary layer character, with viscous effects confined to the
boundary layers and wake regions.

** Most of the lift comes from the surface pressure distribution. The
wall shear stress contributes little to the lift.

¢ The relative importance of shear stress and pressure effects depends
strongly on the Reynolds number. For very low Reynolds number
regimes, viscous effects are important, and the contribution of the
shear stress to the lift may be as important as that of the pressure.
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LIFT 33

¢ For the most part, the pressure distribution on the surface of an
automobile 1s consistent with simple Bernoulli equation analysis.

*» Locations with high-speed flow (i.e., over the roof and hood) have

low pressure, while locations with low-speed flow (i.e., on the
orill and windshield) have high pressure.

¢ It 1s easy to believe that the integrated effect of this pressure
distribution would provide a net upward force.

|:| Denotes p > pg
|:| Denotes p < pg

— Pressure distribution on the
surface of an automobile.

U, po
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Airfoil 1/6

¢ Airfoil is a typical device designed to produce lift.

¢ Lift 1s generated by a pressure distribution that i1s different on the top
and bottom surface.

¢ For large Reynolds number flows, these pressure distribution are

usually directly proportional to the dynamic pressure, pU?/2, with
viscous effects being of secondary importance.
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Airfoil 26

s Symmetrical airfoil cannot produce lift if the angle of attack, a , is
Zero.

s Asymmetry of the nonsymmetrical airfoil could produce lift even
with a =0.
+*»* For certain value of a, the o
pressure distributions on the e S~
upper and lower surfaces are /
different, but their resultant

pressure forces will be equal K\

and opposite. J - : .

Symmetrical

Nonsymmetrical
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Definition — Angle of A

¢ The angle of attack (o) is the angle
between the airfoil chord and the

free stream velocity vector.

¢ The chord length (c) of an airfoil is
the straight line joining the leading

edge and the trailing edge.

¢ The aspect ration (A) is defined as
the ratio of the square of the length

of the airfoil (b = 1) to the planform
area (A, =bc). A=b*/A =b/c.

Planform
area = bc
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Airfoil 36

¢ The lift and drag coefficient is a function of
angle of attack, o, and aspect ratio, A. The
aspect ratio is defined as the ratio of the square
of the wing length (b) to the planform area “
(A,=bc) , A= bz/Ap.

¢ The lift coefficient increases and the drag
coefficient decreases with an increase in
aspect ratio (-> longer wings).

*» Long wings are more efficient because their
wing tip losses are relatively minor than for
short wings.

0
-10 0 10 20



Airfoil 4

¢ The increase in drag due to the finite length (A
<) of the wing is often termed induced drag. It ‘
is due to the interaction of the complex swirling — ©
flow structure near the wing tips and the free ~
stream. (=<3

¢ High performance soaring airplanes and highly
efficient soaring birds (i.e., the albatross and sea
gull) have long, narrow wings (-> large aspect
ratio wings). Such wings, however, have
considerable inertia that inhibits rapid
maneuvers. Thus, highly maneuverable fighter
or acrobatic airplanes and birds (i.e., the falcon)
have small-aspect-ratio wings.
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Airfoil 5/6

¢ Although viscous effects and the wall shear stress contribute little to

the direct generation of lift, they play an important role in the design
and use of lifting devices.

¢ The viscosity-induced boundary layer separation can occur on non-

streamlined bodies such as airfoils that have too large and angle of
attack.

s As the angle of attack is increased, the boundary layer on the upper

crirfacre conarate the flaw nver the nnnn- Adovelang a xxnr]n 1'1114\111@1*\1‘
Sulialv ovpouuu.«o, 1€ 110W OVET TNC WIT 12 UCUVUOIUPDD a WiUCL, tuiuvuliliit

wake region, the lift decreases, and the drag increases.
= Airfoil stall results.
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Airfoil &/6

¢ Such conditions are extremely dangerous if 120
they occur while the airplane 1s flying at a e
low altitude where there is not sufficient
time and altitude to recover from the stall.

*» As the angle of attack is increase, the /\ p
between the upper and lower surfaces ‘-D
increase, causing the lift coefficient to 20
increase smoothly until a maximum is
reached. Further increases in angle of attack
produce a sudden decrease in C,/Cp,.
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C /Cpvs.a,C, vs.Cj,
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Lift Control Devices 1/2

¢ To generate necessary lift

during the relatively low-speed . T
landing and takeoff procedures, e

the airfoil shape is altered by A_qﬁx’

extending special flaps on the gy

front and/or rear portion of the s
wing. 1

+* Use of the flaps considerably
enhances the lift, although it 1s
at the expense of an increase in
the drag

Oy No flaps
1.0

Trailing edge

Lo g,
+ slotted flap

Double slotted

Ee== trailing edge flaps

(Data not Leading -
shown) edgeflap &

0 0.1 0.2 03
Cp
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L)

ift Control Devices 2/2

Application of high-lift boundary
layer control devices to reduce
takeoff speed of a jet transport
aircraft.

In the landing configuration, large
slotted trailing-edge flaps roll out
from under the wing and deflect
downward to increase the lift
coefficient. After touchdown, spoiler
are raised in front of each flap to
decrease lift and ensure that the plane
remains on the ground.

b
=

. spoiler

In the takeoff configuration, large
slotted trailing-edge flaps deflect to
increase the lift coefficient.
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