Using pivots to construct confidence intervals

In Example 41 we used the fact that

$$Q(\bar{X},\mu) = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
 for all μ .

We then said $|Q(\bar{X},\mu)| \leq z_{\alpha/2}$ with probability $1-\alpha$, and converted this into a statement about μ .

Definition 21 Given a data vector X, a random variable $Q(X,\theta)$ is a *pivotal quantity* if the distribution of $Q(X,\theta)$ is independent of all unknown parameters.

Suppose we want a $(1 - \alpha)100\%$ confidence interval for θ . Try to find a function of the data that also depends on θ but whose probability distribution *does not* depend on θ .

Ideally, the random variable $Q(X, \theta)$ will depend on X only through a sufficient statistic.

Let α_1 and α_2 be positive and such that $\alpha_1 + \alpha_2 = \alpha$. Let q_1 and q_2 be the α_1 and $1 - \alpha_2$ quantiles of the distribution of $Q(X, \theta)$. Then

$$P(q_1 < Q(X, \theta) \le q_2) = 1 - \alpha.$$

Now, try to find C(X) such that

$$\theta \in C(X)$$
 iff $q_1 < Q(X, \theta) \le q_2$.

It then follows that C(X) is a $(1 - \alpha)100\%$ confidence set for θ .

Example 42 Let X_1, \ldots, X_n be a random sample from the $U(0,\theta)$ distribution. Would like to construct a $(1-\alpha)100\%$ confidence interval for θ .

What kind of transformation of the data would make the distribution of the transformed data free of θ ?

$$\frac{X_1}{\theta}, \dots, \frac{X_n}{\theta}$$
 are i.i.d. $U(0,1)$.

It follows that $Q(\boldsymbol{X}, \theta) = \max(X_1/\theta, \dots, X_n/\theta)$ has the same distribution as the maximum of a random sample from the U(0,1) distribution. Therefore, $Q(\boldsymbol{X}, \theta)$ is a pivotal quantity. Note that

$$Q(X,\theta) = \frac{X_{(n)}}{\theta},$$

and thus depends on the data through a sufficient statistic.

Choose a and b so that

$$P\left(a < \frac{X_{(n)}}{\theta} < b\right) = 1 - \alpha.$$

$$P\left(a < \frac{X_{(n)}}{\theta} < b\right) = \int_{a}^{b} nt^{n-1} dt = b^{n} - a^{n}.$$

Since

$$P\left(a < \frac{X_{(n)}}{\theta} < b\right) = P\left(\frac{X_{(n)}}{b} < \theta < \frac{X_{(n)}}{a}\right),$$

 $[X_{(n)}/b,X_{(n)}/a]$ is a $(1-\alpha)100\%$ confidence interval for θ so long as 0< a,b<1 and $b^n-a^n=1-\alpha$.

It would be desirable to find an interval of the above form that has the shortest possible length. The length is

$$X_{(n)}\left(\frac{1}{a}-\frac{1}{b}\right).$$

We have no control over $X_{(n)}$, but we could choose a and b to minimize $a^{-1} - b^{-1}$ subject to the constraint $b^n - a^n = 1 - \alpha$.

It is straightforward to show that the solution to the previous problem is

$$b=1$$
 and $a=\alpha^{1/n}$.

Therefore, among $(1-\alpha)100\%$ confidence intervals of the form $[X_{(n)}/b,X_{(n)}/a]$, the shortest one is $[X_{(n)},X_{(n)}/\alpha^{1/n}]$.

Example 43 Let X_1, \ldots, X_n be a random sample from a density of the form

$$\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$$
,

where f is known. The parameter space is

$$\Theta = \{(\mu, \sigma) : -\infty < \mu < \infty, \sigma > 0\}.$$

The family of densities

$$\left\{ \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right) : (\mu, \sigma) \in \Theta \right\}$$

is called a location-scale family.

Define

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

The random variable $(\bar{X} - \mu)/S$ is a pivotal quantity, a fact which leads to a confidence interval for μ .

Proof: Consider

$$X_i = (X_i - \mu) + \mu$$
$$= \sigma(X_i - \mu)/\sigma + \mu$$
$$= \sigma Z_i + \mu$$

We then have $\bar{X} - \mu = \sigma \bar{Z}$, where

$$\bar{Z} = n^{-1} \sum_{i=1}^{n} Z_i.$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\sigma Z_{i} - \sigma \overline{Z})^{2}$$
$$= \sigma^{2} S_{Z}^{2}.$$

It follows that

$$\frac{(\bar{X} - \mu)}{S} = \frac{\bar{Z}}{S_Z}.$$

It is easy to verify that Z_i has density f, which is free of any unknown parameters, and the result follows.

The $N(\mu, \sigma^2)$ family of distributions is an example of a location-scale family, with

$$f(y) = \frac{1}{\sqrt{2\pi}}e^{-y^2/2}.$$

In this case

$$T = \frac{(\bar{X} - \mu)}{S/\sqrt{n}}$$

is a pivotal quantity having the Student's t-distribution with n-1 degrees of freedom.

Let $t_{p,n-1}$ be the (1-p) quantile of Student's t-distribution with n-1 degrees of freedom. A $(1-\alpha)100\%$ confidence interval for μ is

$$\left[\bar{X} - t_{\alpha_2, n-1} \frac{S}{\sqrt{n}}, \bar{X} - t_{1-\alpha_1, n-1} \frac{S}{\sqrt{n}}\right],$$

where $\alpha_1 + \alpha_2 = \alpha$.

For any location-scale or scale family, S^2/σ^2 is a pivotal quantity. This fact leads to confidence intervals for σ^2 (or σ).

When X_1, \ldots, X_n are i.i.d. $N(\mu, \sigma^2)$,

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
.

Let a and b be such that $P(a < \chi_{n-1}^2 < b) = 1 - \alpha$. Then

$$\left[\frac{(n-1)S^2}{b}, \frac{(n-1)S^2}{a}\right]$$

is a $(1-\alpha)100\%$ confidence interval for σ^2 .

Shortest length confidence intervals

Subject to the confidence coefficient being $1 - \alpha$, we would like our confidence interval to be of shortest length.

Example 43 (continued) X_1, \ldots, X_n i.i.d. $N(\mu, \sigma^2)$. The length of the previously derived confidence interval for μ is

$$\frac{S}{\sqrt{n}}(-t_{1-\alpha_1,n-1}+t_{\alpha_2,n-1}).$$

Subject to the constraint $\alpha_1 + \alpha_2 = \alpha$, choose α_1 and α_2 to minimize

$$t_{\alpha_2,n-1} - t_{1-\alpha_1,n-1}$$
.

Theorem 12 Let f be a unimodal pdf. If the interval [a,b] satisfies

(i)
$$\int_a^b f(x) \, dx = 1 - \alpha$$

(ii)
$$f(a) = f(b) > 0$$

(iii) $a \le x^* \le b$ where x^* is the mode of f,

then [a,b] is the shortest of all intervals that satisfy (i).

Proof: See Casella and Berger, p. 442.

Continuing Example 43, since the t-distribution is unimodal, we may apply Theorem 13. Now, the t-distribution is symmetric, so $t_{\alpha_2,n-1}-t_{1-\alpha_1,n-1}$ is minimized subject to $\alpha_1+\alpha_2=\alpha$ when $\alpha_1=\alpha_2=\alpha/2$.

The shortest interval has the form

$$\left[\bar{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right].$$

In some situations we can minimize length directly.

Example 44 In Example 42 we had X_1, \ldots, X_n i.i.d. $U(0,\theta)$, and found that $[X_{(n)}/b, X_{(n)}/a]$ is a $(1-\alpha)100\%$ confidence interval for θ for each (a,b) such that $b^n-a^n=1-\alpha$. Here, we can't apply Theorem 12, but we could minimize the length directly.