Using pivots to construct confidence intervals

In Example 41 we used the fact that

$$
Q(\bar{X}, \mu)=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \quad \text { for all } \mu
$$

We then said $|Q(\bar{X}, \mu)| \leq z_{\alpha / 2}$ with probability $1-\alpha$, and converted this into a statement about μ.

Definition 21 Given a data vector \boldsymbol{X}, a random variable $Q(\boldsymbol{X}, \theta)$ is a pivotal quantity if the distribution of $Q(\boldsymbol{X}, \theta)$ is independent of all unknown parameters.

Suppose we want a $(1-\alpha) 100 \%$ confidence interval for θ. Try to find a function of the data that also depends on θ but whose probability distribution does not depend on θ.

Ideally, the random variable $Q(\boldsymbol{X}, \theta)$ will depend on \boldsymbol{X} only through a sufficient statistic.

Let α_{1} and α_{2} be positive and such that $\alpha_{1}+$ $\alpha_{2}=\alpha$. Let q_{1} and q_{2} be the α_{1} and $1-\alpha_{2}$ quantiles of the distribution of $Q(\boldsymbol{X}, \theta)$. Then

$$
P\left(q_{1}<Q(\boldsymbol{X}, \theta) \leq q_{2}\right)=1-\alpha .
$$

Now, try to find $C(\boldsymbol{X})$ such that

$$
\theta \in C(\boldsymbol{X}) \quad \text { iff } \quad q_{1}<Q(\boldsymbol{X}, \theta) \leq q_{2} .
$$

It then follows that $C(\boldsymbol{X})$ is a $(1-\alpha) 100 \%$ confidence set for θ.

Example 42 Let X_{1}, \ldots, X_{n} be a random sample from the $U(0, \theta)$ distribution. Would like to construct a $(1-\alpha) 100 \%$ confidence interval for θ.

What kind of transformation of the data would make the distribution of the transformed data free of θ ?

$$
\frac{X_{1}}{\theta}, \ldots, \frac{X_{n}}{\theta} \quad \text { are i.i.d. } U(0,1)
$$

It follows that $Q(\boldsymbol{X}, \theta)=\max \left(X_{1} / \theta, \ldots, X_{n} / \theta\right)$ has the same distribution as the maximum of a random sample from the $U(0,1)$ distribution. Therefore, $Q(\boldsymbol{X}, \theta)$ is a pivotal quantity. Note that

$$
Q(\boldsymbol{X}, \theta)=\frac{X_{(n)}}{\theta}
$$

and thus depends on the data through a sufficient statistic.

Choose a and b so that

$$
P\left(a<\frac{X_{(n)}}{\theta}<b\right)=1-\alpha
$$

$$
P\left(a<\frac{X_{(n)}}{\theta}<b\right)=\int_{a}^{b} n t^{n-1} d t=b^{n}-a^{n}
$$

Since

$$
P\left(a<\frac{X_{(n)}}{\theta}<b\right)=P\left(\frac{X_{(n)}}{b}<\theta<\frac{X_{(n)}}{a}\right)
$$

$\left[X_{(n)} / b, X_{(n)} / a\right]$ is a $(1-\alpha) 100 \%$ confidence interval for θ so long as $0<a, b<1$ and $b^{n}-$ $a^{n}=1-\alpha$.

It would be desirable to find an interval of the above form that has the shortest possible length. The length is

$$
X_{(n)}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

We have no control over $X_{(n)}$, but we could choose a and b to minimize $a^{-1}-b^{-1}$ subject to the constraint $b^{n}-a^{n}=1-\alpha$.

It is straightforward to show that the solution to the previous problem is

$$
b=1 \quad \text { and } \quad a=\alpha^{1 / n}
$$

Therefore, among $(1-\alpha) 100 \%$ confidence intervals of the form $\left[X_{(n)} / b, X_{(n)} / a\right]$, the shortest one is $\left[X_{(n)}, X_{(n)} / \alpha^{1 / n}\right]$.

Example 43 Let X_{1}, \ldots, X_{n} be a random sample from a density of the form

$$
\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)
$$

where f is known. The parameter space is

$$
\Theta=\{(\mu, \sigma):-\infty<\mu<\infty, \sigma>0\}
$$

The family of densities

$$
\left\{\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right):(\mu, \sigma) \in \Theta\right\}
$$

is called a location-scale family.

Define

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

The random variable $(\bar{X}-\mu) / S$ is a pivotal quantity, a fact which leads to a confidence interval for μ.

Proof: Consider

$$
\begin{aligned}
X_{i} & =\left(X_{i}-\mu\right)+\mu \\
& =\sigma\left(X_{i}-\mu\right) / \sigma+\mu \\
& =\sigma Z_{i}+\mu
\end{aligned}
$$

We then have $\bar{X}-\mu=\sigma \bar{Z}$, where

$$
\bar{Z}=n^{-1} \sum_{i=1}^{n} Z_{i} .
$$

$$
\begin{aligned}
S^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(\sigma Z_{i}-\sigma \bar{Z}\right)^{2} \\
& =\sigma^{2} S_{Z}^{2}
\end{aligned}
$$

It follows that

$$
\frac{(\bar{X}-\mu)}{S}=\frac{\bar{Z}}{S_{Z}} .
$$

It is easy to verify that Z_{i} has density f, which is free of any unknown parameters, and the result follows.

The $N\left(\mu, \sigma^{2}\right)$ family of distributions is an example of a location-scale family, with

$$
f(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} .
$$

In this case

$$
T=\frac{(\bar{X}-\mu)}{S / \sqrt{n}}
$$

is a pivotal quantity having the Student's t distribution with $n-1$ degrees of freedom.

Let $t_{p, n-1}$ be the $(1-p)$ quantile of Student's t-distribution with $n-1$ degrees of freedom. A $(1-\alpha) 100 \%$ confidence interval for μ is

$$
\left[\bar{X}-t_{\alpha_{2}, n-1} \frac{S}{\sqrt{n}}, \bar{X}-t_{1-\alpha_{1}, n-1} \frac{S}{\sqrt{n}}\right]
$$

where $\alpha_{1}+\alpha_{2}=\alpha$.

For any location-scale or scale family, S^{2} / σ^{2} is a pivotal quantity. This fact leads to confidence intervals for σ^{2} (or σ).

When X_{1}, \ldots, X_{n} are i.i.d. $N\left(\mu, \sigma^{2}\right)$,

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

Let a and b be such that $P\left(a<\chi_{n-1}^{2}<b\right)=$ $1-\alpha$. Then

$$
\left[\frac{(n-1) S^{2}}{b}, \frac{(n-1) S^{2}}{a}\right]
$$

is a $(1-\alpha) 100 \%$ confidence interval for σ^{2}.

Shortest length confidence intervals

Subject to the confidence coefficient being 1 α, we would like our confidence interval to be of shortest length.

Example 43 (continued) X_{1}, \ldots, X_{n} i.i.d. $N(\mu$, σ^{2}). The length of the previously derived confidence interval for μ is

$$
\frac{S}{\sqrt{n}}\left(-t_{1-\alpha_{1}, n-1}+t_{\alpha_{2}, n-1}\right) .
$$

Subject to the constraint $\alpha_{1}+\alpha_{2}=\alpha$, choose α_{1} and α_{2} to minimize

$$
t_{\alpha_{2}, n-1}-t_{1-\alpha_{1}, n-1}
$$

Theorem 12 Let f be a unimodal pdf. If the interval $[a, b]$ satisfies
(i) $\int_{a}^{b} f(x) d x=1-\alpha$
(ii) $f(a)=f(b)>0$
(iii) $a \leq x^{*} \leq b$ where x^{*} is the mode of f,
then $[a, b]$ is the shortest of all intervals that satisfy (i).

Proof: See Casella and Berger, p. 442.

Continuing Example 43, since the t-distribution is unimodal, we may apply Theorem 13. Now, the t-distribution is symmetric, so $t_{\alpha_{2}, n-1}-$ $t_{1-\alpha_{1}, n-1}$ is minimized subject to $\alpha_{1}+\alpha_{2}=\alpha$ when $\alpha_{1}=\alpha_{2}=\alpha / 2$.

The shortest interval has the form

$$
\left[\bar{X}-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}, \bar{X}+t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}\right] .
$$

In some situations we can minimize length directly.

Example 44 In Example 42 we had X_{1}, \ldots, X_{n} i.i.d. $U(0, \theta)$, and found that $\left[X_{(n)} / b, X_{(n)} / a\right]$ is a $(1-\alpha) 100 \%$ confidence interval for θ for each (a, b) such that $b^{n}-a^{n}=1-\alpha$. Here, we can't apply Theorem 12, but we could minimize the length directly.

