Confidence Interval

Some concepts: Interval estimate, coverage probability, confidence coefficient, confidence interval (CI)

Definition: an interval estimate for a real-valued parameter θ based on a sample $\underline{X} \equiv\left(X_{1}, \ldots, X_{n}\right)$ is a pair of functions $L(\underline{X})$ and $U(\underline{X})$ so that $L(\underline{X}) \leq U(\underline{X})$ for all \underline{X}, that is $[L(\underline{X}), U(\underline{X})]$.
Note:

- The above is a two-sided confidence interval, one can also define one-sided intervals: $(-\infty, U(\underline{X})]$ or $[L(\underline{X}), \infty)$.

Definition: the coverage probability of an interval estimator is

$$
P_{\theta}(\theta \in[L(\underline{X}), U(\underline{X})])=P_{\theta}(L(\underline{X}) \leq \theta, U(\underline{X}) \geq \theta)
$$

Note:

- This is the probability that the random interval $[L(\underline{X}), U(\underline{X})]$ covers the true θ.
- One problem about the coverage probability is that it can vary depend on what θ is.

Definition: For an interval estimator $[L(\underline{X}), U(\underline{X})]$ of a parameter θ, the confidence coefficient $\equiv \inf _{\theta} P_{\theta}(\theta \in[L(\underline{X}), U(\underline{X})])$.

Note:

- The term confidence interval refers to the interval estimate along with its confidence coefficient.

There are two general approaches to derive the confidence interval: (1) the privotal quantitymethod, and (2) invert the test, a introduced next.

1. General approach for deriving CI's :

The Pivotal Quantity Method

Definition: A pivotal quantity is a function of the sample and the parameter of interest. Furthermore, its distribution is entirely known.

Example. Point estimator and confidence interval

for μ when the population is normal and the population variance is known.

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample for a normal population with mean μ and variance σ^{2}. That is, $X_{i} \sim N\left(\mu, \sigma^{2}\right), i=1, \ldots, n$.
- For now, we assume that σ^{2} is known.
(1). We start by looking at the point estimator of μ :

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

(2). Then we found the pivotal quantity Z :

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

Now we shall start the derivation for the symmetrical CI's for μ from the PDF of the pivotal quantity Z

$100(1-\alpha) \%$ CI for $\mu, 0<\alpha<1$
(e.g. $\alpha=0.05 \Rightarrow 95 \%$ C.I.)

$$
\begin{aligned}
& P\left(-Z_{\alpha / 2} \leq Z \leq Z_{\alpha / 2}\right)=1-\alpha \\
& P\left(-Z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq Z_{\alpha / 2}\right)=1-\alpha \\
& P\left(-Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}} \leq \bar{X}-\mu \leq Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha \\
& P\left(-\bar{X}-Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}} \leq-\mu \leq-\bar{X}+Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha \\
& P\left(\bar{X}+Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}} \geq \mu \geq \bar{X}-Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha \\
& P\left(\bar{X}-Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha
\end{aligned}
$$

(3) \therefore the $100(1-\alpha) \%$ C.I. for μ is $\left[\bar{X}-Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right]$
*Note, some special values for α and the corresponding $Z_{\alpha / 2}$ values are:

1. The 95% CI, where $\boldsymbol{\alpha}=\mathbf{0 . 0 5}$ and the corresponding $\mathrm{Z}_{\frac{\alpha}{2}}=\mathrm{Z}_{0.025}=1.96$
2. The $90 \% \mathrm{CI}$, where $\boldsymbol{\alpha}=\mathbf{0 . 1}$ and the corresponding $\mathrm{Z}_{\frac{\alpha}{2}}=\mathrm{Z}_{0.05}=1.645$
3. The 99% CI, where $\boldsymbol{\alpha}=\mathbf{0 . 0 1}$ and the corresponding

$$
Z_{\frac{\alpha}{2}}=Z_{0.005}=2.575
$$

\therefore Recall the $100(1-\alpha) \%$ symmetric C.I. for μ is $\left[\bar{X}-Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right]$
*Please note that this CI is symmetric around $\overline{\boldsymbol{X}}$
The length of this CI is: $L_{s y}=2 \cdot Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$
(4) Now we derive a non-symmetrical CI:

$P\left(-Z_{\alpha / 3} \leq Z \leq Z_{2 / 3 \alpha}\right)=1-\alpha$
$100(1-\alpha) \%$ C.I. for μ
$\Rightarrow\left[\bar{X}-Z_{2 / 3^{\alpha}} \cdot \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{1 / 3^{\alpha}} \cdot \frac{\sigma}{\sqrt{n}}\right]$
Compare the lengths of the C.I.'s, one can prove theoretically that: $L=\left(Z_{\alpha / 3}+Z_{2 / 3^{\alpha}}\right) \cdot \frac{\sigma}{\sqrt{n}}>L_{s y}=2 \cdot Z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$

You can try a few numerical values for α, and see for yourself. For example,

$$
\alpha=0.05
$$

Theorem: Let $f(y)$ be a unimodal pdf. If the interval satisfies
(i) $\int_{a}^{b} f(y) d y=1-\alpha$
(ii) $f(a)=f(b)>0$
(iii) $a \leq y^{*} \leq b$, where y^{*} is a mode of $f(y)$, then $[a, b]$ is the shortest lengthed interval satisfying (i).

Note:

- y in the above theorem denotes the pivotal statistic upon which the CI is based
- $f(y)$ need not be symmetric: (graph)
- However, when $f(y)$ is symmetric, and $y^{*}=0$, then $a=-b$. This is the case for the $N(0,1)$ density and the t density.

Example. Large Sample Confidence interval for a population mean (*any population) and a population proportion \mathbf{p}

$<$ Theorem> Central Limit Theorem

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \xrightarrow{n \rightarrow \infty} N(0,1)
$$

When n is large enough, we have

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \dot{\sim} N(0,1)
$$

That means Z follows approximately the normal $(0,1)$ distribution.

Application \#1. Inference on μ when the population

 distribution is unknown but the sample size is large$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \dot{\sim} N(0,1)
$$

By Slutsky's Theorem We can also obtain another pivotal quantity when σ is unknown by plugging the sample standard deviation S as follows:

$$
Z=\frac{\bar{X}-\mu}{S / \sqrt{n}} \dot{\sim} N(0,1)
$$

We subsequently obtain the $100(1-\alpha) \%$ C.I. using the second P.Q.
for $\mu: \bar{X} \pm Z_{\alpha / 2} \frac{S}{\sqrt{n}}$

Application \#2. Inference on one population

 proportion \mathbf{p} when the population is Bernoulli(p) $\% * *$ Let $X_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Bernoulli}(p), i=1, \cdots, n$, please find the $100(1-\alpha) \%$ CI for p .Point estimator : $\hat{p}=\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ (ex. $n=1000, \hat{p}=0.6$)
Our goal: derive a $100(1-\alpha) \%$ C.I. for p
Thus for the Bernoulli population, we have:

$$
\mu=E(X)=p
$$

$$
\sigma^{2}=\operatorname{Var}(X)=p(1-p)
$$

Thus by the CLT we have:

$$
Z=\frac{\bar{X}-p}{\sqrt{\frac{p(1-p)}{n}}} \dot{\sim} N(0,1)
$$

Furthermore, we have for this situation: $\bar{X}=\hat{p}$
Therefore we obtain the following pivotal quantity Z for p :

$$
Z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \dot{\sim} N(0,1)
$$

By Slustky's theorem, we can replace the population proportion in the denominator with the sample proportion and obtain another pivotal quantity for p :

$$
Z^{*}=\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \dot{\sim} N(0,1)
$$

\# Thus the $100(1-\alpha) \%$ (approximate, or large sample) C.I. for p based on the second pivotal quantity Z^{*} is:

$$
\begin{aligned}
& P\left(-z_{\alpha / 2} \leq Z^{*} \leq z_{\alpha / 2}\right)=1-\alpha \\
& P\left(-z_{\alpha / 2} \leq \frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \leq z_{\alpha / 2}\right)=1-\alpha \\
& P\left(-\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq-p \leq-\hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)=1-\alpha \\
& P\left(\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)=1-\alpha \\
& =>\text { The } 100(1-\alpha) \% \text { large sample C.I. for } \mathrm{p} \text { is }
\end{aligned}
$$

$\left[\hat{p}-Z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+Z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$.
\# CLT $=>$ n large usually means $n \geq 30$
\# special case for the inference on p based on a Bernoulli population. The sample size n is large means
Let $X=\sum_{i=1}^{n} X_{i}$, large sample means:
$n \hat{p}=X \geq 5$ (*Here $\mathrm{X}=$ total \# of 'S'), and
$n(1-\hat{p})=n-X \geq 5\left(*\right.$ Here $n-X=$ total $\#$ of $\left.{ }^{‘} \mathrm{~F}^{\prime}\right)$

Example: normal population, σ^{2} unknown

1. Point estimation : $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
2. $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$
3. Theorem. Sampling from normal population
a. $\quad Z \sim N(0,1)$
b. $W=\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$
c. $\quad Z$ and W are independent.

Definition. $T=\frac{Z}{\sqrt{W /(n-1)}}=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}$
------ Derivation of CI, normal population, σ^{2} is unknown ------

$$
\begin{aligned}
& \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \text { is not a pivotal quantity. } \\
& \bar{X}-\mu \sim N\left(0, \frac{\sigma^{2}}{n}\right) \text { is not a pivotal quantity. } \\
& Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \text { is not a pivotal quantity. }
\end{aligned}
$$

Remove $\sigma!!!$
Therefore $T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}$ is a pivotal quantity.
Now we will use this pivotal quantity to derive the 100 (1$\alpha) \%$ confidence interval for μ.

We start by plotting the pdf of the t -distribution with $\mathrm{n}-1$ degrees of freedom as follows:

The above pdf plot corresponds to the following probability statement:

$$
\begin{aligned}
& P\left(-t_{n-1, \alpha / 2} \leq T \leq t_{n-1, \alpha / 2}\right)=1-\alpha \\
& \Rightarrow P\left(-t_{n-1, \alpha / 2} \leq \frac{\bar{X}-\mu}{S / \sqrt{n}} \leq t_{n-1, \alpha / 2}\right)=1-\alpha \\
& \Rightarrow P\left(-t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}} \leq \bar{X}-\mu \leq t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right)=1-\alpha \\
& \Rightarrow P\left(-\bar{X}-t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}} \leq-\mu \leq-\bar{X}+t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right)=1-\alpha \\
& \Rightarrow P\left(\bar{X}+t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}} \geq \mu \geq \bar{X}-t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right)=1-\alpha \\
& \Rightarrow P\left(\bar{X}-t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X}+t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right)=1-\alpha
\end{aligned}
$$

\Rightarrow Thus the $100(1-\alpha) \%$ C.I. for μ when σ^{2} is unknown is

$$
\begin{aligned}
& {\left[\bar{X}-t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}, \bar{X}+t_{n-1, \alpha / 2} \frac{S}{\sqrt{n}}\right] . \text { (*Please note that }} \\
& \left.t_{n-1, \alpha / 2} \geq Z_{\alpha / 2}\right)
\end{aligned}
$$

Example. Inference on 2 population means,

 when both populations are normal. We have 2 independent samples, the population variances are unknown but equal $\left(\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=\sigma^{2}\right) \Rightarrow$ pooledvariance t-test.Data: $\quad X_{1}, \ldots, X_{n_{1}} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$

$$
Y_{1}, \ldots, Y_{n_{2}}{ }^{i d d} \sim N\left(\mu_{2}, \sigma_{2}{ }^{2}\right)
$$

Goal: Compare μ_{1} and μ_{2}

1) Point estimator:

$$
\widehat{\mu_{1}-\mu_{2}}=\bar{X}-\overline{\mathrm{Y}} \sim \mathrm{~N}\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)=\mathrm{N}\left(\mu_{1}-\mu_{2},\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) \sigma^{2}\right)
$$

2) Pivotal quantity:

$$
T=\frac{Z}{\sqrt{\frac{W}{n_{1}+n_{2}-2}}}=\frac{\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sigma \cdot \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}}{\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma^{2}}+\frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma^{2}}}}=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2}
$$

where $S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}$ is the pooled variance.
This is the PQ of the inference on the parameter of interest

$$
\left(\mu_{1}-\mu_{2}\right)
$$

3) Confidence Interval for $\left(\mu_{1}-\mu_{2}\right)$

$1-\alpha=P\left(-t_{n_{1}+n_{2}-2, \frac{\alpha}{2}} \leq T \leq t_{n_{1}+n_{2}-2, \frac{\alpha}{2}}\right)$
$1-\alpha=P\left(-t_{n_{1}+n_{2}-2, \frac{\alpha}{2}} \leq \frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \leq t_{n_{1}+n_{2}-2, \frac{\alpha}{2}}\right)$
$1-\alpha=P\left(-t_{n_{1}+n_{2}-2, \frac{\alpha}{2}} \cdot S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \leq(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right) \leq t_{n_{1}+n_{2}-2, \frac{\alpha}{2}} \cdot S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)$
$1-\alpha=P\left(\bar{X}-\bar{Y}-t_{n_{1}+n_{2}-2, \frac{\alpha}{2}} \cdot S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \leq \mu_{1}-\mu_{2} \leq \bar{X}-\bar{Y}+t_{n_{1}+n_{2}-2, \frac{\alpha}{2}} \cdot S_{p} \sqrt{\frac{1}{n_{1}+\frac{1}{n_{2}}}}\right)$
\therefore This is the $100(1-\alpha) \%$ C.I for $\left(\mu_{1}-\mu_{2}\right)$

2. General approach for deriving CI's :

Inverting a Test

Hypothesis test: under a given $H_{0}: \theta=\theta_{0}$,

$$
P_{\theta_{0}}\left(T_{n} \in R\right)=\alpha \Leftrightarrow P_{\theta_{0}}\left(T_{n} \notin R\right)=1-\alpha
$$

where T_{n} is a test statistic.

We can use this to construct a $(1-\alpha)$ confidence interval:

- Define acceptance region $A=\mathbb{R} \backslash R$.
- If you $f i x \alpha$, but vary the null hypothesis θ_{0}, then you obtain $R\left(\theta_{0}\right)$, a rejection region for each θ_{0} such that, by construction:

$$
\forall \theta_{0} \in \Theta: P_{\theta_{0}}\left(T_{n} \notin R\left(\theta_{0}\right)\right)=P_{\theta_{0}}\left(T_{n} \in A\left(\theta_{0}\right)\right)=1-\alpha
$$

- Now, for a given sample $X \sim \equiv X_{1}, \ldots, X_{n}$, consider the set

$$
C(\underline{X}) \equiv\left\{\theta: T_{n}(\underline{X}) \in A(\theta)\right\}
$$

By construction:

$$
P_{\theta}(\theta \in C(\underline{X}))=P_{\theta}\left(T_{n}(\underline{X}) \in A(\theta)\right), \forall \theta \in \Theta
$$

Therefore, $C(\underline{X})$ is a $(1-\alpha)$ confidence interval for θ.

- The confidence interval $C(\underline{X})$ is the set of θ 's such that, for the given data \underline{X} and for each $\theta_{0} \in C(\underline{X})$, you would not be able to reject the null hypothesis
$H_{0}: \theta=\theta_{0}$.
- In hypothesis testing, the acceptance region is the set of \underline{X} which are very likely for a fixed θ_{0}.

In interval estimation, the confidence interval is the set of θ 's which make \underline{X} very likely, for a fixed \underline{X}.

Example: $X_{1}, \ldots, X_{n} \sim$ i.i.d. $N(\mu, 1)$.
We want to construct a 95% CI for μ by inverting the Z-test.

- We know that, under each null hypothesis $H_{0}: \mu=\mu_{0}$,

$$
\sqrt{n}\left(\bar{X}_{n}-\mu_{0}\right) \sim N(0,1)
$$

- Hence, for each μ_{0}, a 95% acceptance region is

$$
\begin{gathered}
\left\{-1.96 \leq \sqrt{n}\left(\bar{X}_{n}-\mu_{0}\right) \leq 1.96\right\} \\
\Leftrightarrow\left\{\bar{X}_{n}-1.96 \frac{1}{\sqrt{n}} \leq \mu_{0} \leq \bar{X}_{n}+1.96 \frac{1}{\sqrt{n}}\right\}
\end{gathered}
$$

- Now consider what happens when we invert one-sided test. Consider the hypotheses $H_{0}: \mu \leq \mu_{0}$ vs. $H_{a}: \mu>\mu_{0}$. Then a 95% acceptance region is

$$
\begin{aligned}
& \left\{\sqrt{n}\left(\bar{X}_{n}-\mu_{0}\right) \leq 1.645\right\} \\
& \Leftrightarrow\left\{\mu_{0} \geq \bar{X}_{n}-1.645 \frac{1}{\sqrt{n}}\right\}
\end{aligned}
$$

Quiz:

Let the random sample $X_{1}, X_{2}, \ldots X_{n} \sim N\left(\mu, \sigma^{2}\right)$, where both μ and σ^{2} are unknown
(1) Derive the $100(1-\alpha) \%$ CI for σ^{2} using the pivotal quantity method;
(2) Derive the $100(1-\alpha) \% \mathrm{CI}$ for σ^{2} by inverting the two sided test $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ vs $H_{a}: \sigma^{2} \neq \sigma_{0}^{2}$
(3) Are your CIs in (1) and (2) the same?
(4) Are your CI(s) optimal? If not, please derive the optimal CI.

