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Confidence Interval  

 

Some concepts: Interval estimate, coverage probability, 

confidence coefficient, confidence interval (CI) 

 

Definition: an interval estimate for a real-valued parameter θ 

based on a sample X ≡ (X1,… , Xn) is a pair of functions L(X ) and 

U(X ) so that L(X ) ≤ U(X ) for all X , that is ൣ𝐿൫𝑋൯, 𝑈൫𝑋൯൧. 

Note: 

• The above is  a two-sided confidence interval, one can also define 

one-sided intervals: (-∞, U(X )] or [L(X), ∞). 

 

Definition: the coverage probability of an interval estimator is  

𝑃ఏ൫𝜃 ∈ ൣ𝐿൫𝑋൯, 𝑈൫𝑋൯൧൯ =  𝑃ఏ൫𝐿൫𝑋൯ ≤ 𝜃, 𝑈൫𝑋൯ ≥ 𝜃൯ 

Note: 

• This is the probability that the random interval ൣ𝐿൫𝑋൯, 𝑈൫𝑋൯൧ 

covers the true θ. 

• One problem about the coverage probability is that it can vary 

depend on what θ is. 

 

Definition: For an interval estimator ൣ𝐿൫𝑋൯, 𝑈൫𝑋൯൧ of a parameter 

θ, the confidence coefficient ≡ 𝑖𝑛𝑓ఏ𝑃ఏ൫𝜃 ∈ ൣ𝐿൫𝑋൯, 𝑈൫𝑋൯൧൯. 

 

Note: 

• The term confidence interval refers to the interval estimate 

along with its confidence coefficient. 
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There are two general approaches to derive the confidence 

interval: (1) the privotal quantitymethod, and (2) invert the 

test, a introduced next.  

 

1. General approach for deriving CI’s :  

The Pivotal Quantity Method 

 

Definition: A pivotal quantity is a function of the sample and 

the parameter of interest. Furthermore, its distribution is 

entirely known. 

 

Example.  Point estimator and confidence interval 

for µ when the population is normal and the population 

variance is known. 

- Let nXXX ,,, 21   be a random sample for a normal 

population with mean   and variance 2 . That is, 

niNX
iid

i ,...,1),,( 2
.

~  .  

- For now, we assume that 2  is known. 

 

(1).  We start by looking at the point estimator of   :

),(~
2

n
NX

  

 

(2). Then we found the pivotal quantity Z: 

)1,0(~ N
n

X
Z




  

Now we shall start the derivation for the symmetrical CI’s for µ 

from the PDF of the pivotal quantity Z 
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100(1-)% CI for , 0<<1 

(e.g. =0.05 ⇒ 95% C.I.) 

  1)( 22 ZZZP  





 


 1)( 22 Z

n

X
ZP  


  1)( 22

n
ZX

n
ZP  


  1)( 22

n
ZX

n
ZXP  


  1)( 22

n
ZX

n
ZXP  


  1)( 22

n
ZX

n
ZXP  

(3) ∴ the 100(1-α)% C.I. for μ is ],[ 22
n

ZX
n

ZX


   

*Note, some special values for 𝛂 and the corresponding 

𝐙𝛂/𝟐values are: 
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1. The 95% CI, where 𝛂 = 𝟎. 𝟎𝟓 and the corresponding 

𝐙𝛂

𝟐
= 𝐙𝟎.𝟎𝟐𝟓 = 𝟏. 𝟗𝟔 

2. The 90% CI, where 𝛂 = 𝟎. 𝟏 and the corresponding 

𝐙𝛂

𝟐
= 𝐙𝟎.𝟎𝟓 = 𝟏. 𝟔𝟒𝟓 

3. The 99% CI, where 𝛂 = 𝟎. 𝟎𝟏 and the corresponding 

𝐙𝛂

𝟐
= 𝐙𝟎.𝟎𝟎𝟓 = 𝟐. 𝟓𝟕𝟓 

 

 

∴Recall the 100(1-α)% symmetric C.I. for μ is 

],[ 22
n

ZX
n

ZX


   

*Please note that this CI is symmetric around  𝑿ഥ

 

The length of this CI is: n
ZLsy


 

2
2  

 

 
(4) Now we derive a non-symmetrical CI: 
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
  1)(

3
2

3
ZZZP  

100(1-α)% C.I. for μ 

⇒ ],[
3

1
3

2
n

ZX
n

ZX



  

Compare the lengths of the C.I.’s, one can prove theoretically 

that: 
n

ZL
n

ZZL sy


 

23
2

3
2)(

 

You can try a few numerical values for α, and see for yourself. 

For example,  
𝛂 = 𝟎. 𝟎𝟓 

 

 
Theorem: Let f(y) be a unimodal pdf. If the interval satisfies 

(i) ∫ 𝑓(𝑦)
௕

௔
𝑑𝑦 = 1 − 𝛼  

(ii) f(a) = f(b) > 0 

(iii) a ≤ 𝑦∗ ≤ b, where 𝑦∗ is a mode of f(y), then [a, b] is the 

shortest lengthed interval satisfying (i). 

 

Note: 

• y in the above theorem denotes the pivotal statistic upon which 

the CI is based 

• f(y) need not be symmetric: (graph) 

• However, when f(y) is symmetric, and 𝑦∗ = 0, then a = -b. This is 

the case for the N(0, 1) density and the t density. 
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Example. Large Sample Confidence interval for a 
population mean (*any population) and a population 
proportion p 

 
 <Theorem> Central Limit Theorem 

𝑍 =
𝑋ത − 𝜇

𝜎/√𝑛

௡→ஶ
ሱ⎯⎯ሮ 𝑁(0,1) 

 When n is large enough, we have 
   

𝑍 =
𝑋ത − 𝜇

𝜎/√𝑛
~̇ 𝑁(0,1) 

 
That means Z follows approximately the normal (0,1) distribution. 
 
Application #1. Inference on   when the population 
distribution is unknown but the sample size is large 

~ (0,1)
/

X
Z N

n





   

By Slutsky’s Theorem We can also obtain another pivotal quantity 
when σ is unknown by plugging the sample standard deviation S as 
follows: 

~ (0,1)
/

X
Z N

S n


   

We subsequently obtain the 100(1 )%  C.I. using the second P.Q. 

for  :  /2

S
X Z

n
  

 
Application #2. Inference on one population 
proportion p when the population is Bernoulli(p) *** 

Let 
. . .

~ ( ), 1, ,
i i d

iX Bernoulli p i n  , please find the 100(1-α)% CI 

for p. 

Point estimator : 1ˆ

n

i
i

X
p X

n
 


 (ex. 1000n  , ˆ 0.6p  ) 

Our goal: derive a 100(1-α)% C.I. for p 
 
Thus for the Bernoulli population, we have: 

𝜇 = 𝐸(𝑋) = 𝑝 
 

𝜎ଶ = 𝑉𝑎𝑟(𝑋) = 𝑝(1 − 𝑝) 
Thus by the CLT we have: 
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~ (0,1)
(1 )

X p
Z N

p p
n





  

Furthermore, we have for this situation: 𝑋ത = �̂� 
Therefore we obtain the following pivotal quantity Z for p: 
 

ˆ
~ (0,1)

(1 )

p p
Z N

p p
n





  

 
By Slustky’s theorem, we can replace the population proportion in 
the denominator with the sample proportion and obtain another 
pivotal quantity for p: 
 

𝑍∗ =
�̂� − 𝑝

ට�̂�(1 − �̂�)
𝑛

~̇𝑁(0,1) 

 
# Thus the 100(1 )% (approximate, or large sample) C.I. for 
p based on the second pivotal quantity 𝑍∗ is: 
  

 

*
/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 2 / 2

( ) 1

ˆ
( ) 1

ˆ ˆ(1 )

ˆ ˆ ˆ ˆ(1 ) (1 )
ˆ ˆ( ) 1

ˆ ˆ ˆ ˆ(1 ) (1 )
ˆ ˆ( ) 1

P z Z z

p p
P z z

p p
n

p p p p
P p z p p z

n n

p p p p
P p z p p z

n n

 

 

 

 









    


    


 
        

 
     

 

 => The 100(1 )% large sample C.I. for p is 

/2 /2

ˆ ˆ ˆ ˆ(1 ) (1 )
ˆ ˆ[ , ]

p p p p
p Z p Z

n n 
 

  . 

#  CLT => n large usually means 30n   
#  special case for the inference on p based on a Bernoulli 
population. The sample size n is large means 

Let 
1

n

i
i

X X


 , large sample means:  

ˆ 5np X   (*Here X= total # of ‘S’), and   
ˆ(1 ) 5n p n X     (*Here n-X= total # of ‘F’) 
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Example: normal population, 2  unknown 

1. Point estimation : 
2

~ ( , )X N
n

  

2. ~ (0,1)
X

Z N
n





  

3. Theorem. Sampling from normal population 
a. ~ (0,1)Z N  

b. 
  2

2
12

1
~ n

n S
W 

 


  

c. Z  and W  are independent. 
 

Definition. 1~
( 1)

n

Z X
T t

W n S n





 


 

------ Derivation of CI, normal population, 2  is unknown ------ 

 
2

~ ( , )X N
n

  is not a pivotal quantity. 

 
2

~ (0, )X N
n

  is not a pivotal quantity. 

 ~ (0,1)
/

X
Z N

n





  is not a pivotal quantity. 

 Remove  !!! 

 Therefore 1~
/

n

X
T t

S n





  is a pivotal quantity. 

 Now we will use this pivotal quantity to derive the 100(1-
α)% confidence interval for μ. 

 We start by plotting the pdf of the t-distribution with n-1 
degrees of freedom as follows: 
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The above pdf plot corresponds to the following probability 
statement: 

 1, /2 1, /2( ) 1n nP t T t         

 => 1, /2 1, /2( ) 1
/

n n

X
P t t

S n
 

  


      

 => 1, /2 1, /2( ) 1n n

S S
P t X t

n n
          

 => 1, /2 1, /2( ) 1n n

S S
P X t X t

n n
             

 => 1, /2 1, /2( ) 1n n

S S
P X t X t

n n
          

 => 1, /2 1, /2( ) 1n n

S S
P X t X t

n n
          

 

=>  Thus the 100(1 )%  C.I. for   when 2  is unknown is 

1, /2 1, /2[ , ]n n

S S
X t X t

n n
    .   (*Please note that 

1, /2 /2nt Z   ) 
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Example. Inference on 2 population means, 

when both populations are normal. We have 2 

independent samples, the population variances 

are unknown but equal ( 2 2 2
1 2    )  pooled-

variance t-test. 

Data:  
1

2
1 1 1, , ~ ( , )

iid

nX X N    

     
2

2
1 2 2, , ~ ( , )

iid

nY Y N    

Goal:       Compare 1  and 2  

1) Point estimator:  

μଵ − μଶෟ = Xഥ − Yഥ~N ቆμଵ − μଶ,
σଵ

ଶ

nଵ

+
σଶ

ଶ

nଶ

ቇ = N ൬μଵ − μଶ, ൬
1

nଵ

+
1

nଶ

൰ σଶ൰ 

2) Pivotal quantity:  

1 2

1 2

1 2 1 2
22 2

1 1 2 2
2 2

1 2 1 2

1 2

( ) ( )

1 1

( ) ( )
~

1 1( 1) ( 1)
2

2

n n

p

X Y

n n X YZ
T t

W n S n S S
n n n n

n n

 


 

 

 

  

 
  

  
  

 
 

. 

where 
2 2

2 1 1 2 2

1 2

( 1) ( 1)

2p

n S n S
S

n n

  


 
is the pooled variance. 

This is the PQ of the inference on the parameter of interest 

1 2( )   
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3) Confidence Interval for 1 2( )   

 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

2, 2,
2 2

1 2

2, 2,
2 2

1 2

1 2
2, 2,

1 2 1 22 2

1 2
2,

1 22

1 ( )

( ) ( )
1 ( )

1 1

1 1 1 1
1 ( ( ) ( ) )

1 1
1 (

n n n n

n n n n

p

p p
n n n n

p
n n n n

P t T t

X Y
P t t

S
n n

P t S X Y t S
n n n n

P X Y t S X Y t
n n

 

 

 





 

  

  

   

   

   

  

    

  
    



           

          
2,

1 22

1 1
)pS

n n


 

 

 This is the 100(1 )%  C.I for 1 2( )   
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2. General approach for deriving CI’s :  

Inverting a Test 

 

Hypothesis test: under a given 𝐻଴ : θ = 𝜃଴, 

𝑃ఏబ
(𝑇௡ ∈ 𝑅) = 𝛼 ⟺ 𝑃ఏబ

(𝑇௡ ∉ 𝑅) = 1 − 𝛼 

where 𝑇௡ is a test statistic. 

 
We can use this to construct a (1 - α) confidence interval: 

• Define acceptance region A = ℝ\𝑅. 

• If you fix α, but vary the null hypothesis 𝜃଴, then you obtain 
R(𝜃଴), a rejection region for each 𝜃଴  such that, by construction: 

∀𝜃଴ ∈ Θ: 𝑃ఏబ
൫𝑇௡ ∉ 𝑅(𝜃଴)൯ = 𝑃ఏబ

൫𝑇௡ ∈ 𝐴(𝜃଴)൯ = 1 − 𝛼 

• Now, for a given sample X ~ ≡ X1, …, Xn, consider the set 

𝐶൫𝑋൯ ≡ ൛𝜃: 𝑇௡൫𝑋൯ ∈ 𝐴(𝜃)ൟ 

By construction: 

𝑃ఏ ቀ𝜃 ∈ 𝐶൫𝑋൯ቁ = 𝑃ఏ ቀ𝑇௡൫𝑋൯ ∈ 𝐴(𝜃)ቁ , ∀𝜃 ∈ Θ 

Therefore, 𝐶൫𝑋൯ is a (1 - α) confidence interval for θ. 

• The confidence interval 𝐶൫𝑋൯ is the set of θ’s such that, for 

the given data 𝑋 and for each 𝜃଴ ∈ 𝐶൫𝑋൯, you would not be 

able to reject the null hypothesis 
𝐻଴ : θ = 𝜃଴. 

• In hypothesis testing, the acceptance region is the set of 𝑋 

which are very likely for a fixed 𝜃଴. 

In interval estimation, the confidence interval is the set of θ’s 
which make 𝑋 very likely, for a fixed 𝑋 . 
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Example: X1, …, Xn ∼ i.i.d. N(µ,1). 
We want to construct a 95% CI for µ by inverting the Z-test. 

• We know that, under each null hypothesis 𝐻଴: 𝜇 = 𝜇଴,  

√𝑛൫𝑋௡ − 𝜇଴൯~𝑁(0,1) 

• Hence, for each 𝜇଴, a 95% acceptance region is 

൛−1.96 ≤ √𝑛൫𝑋௡ − 𝜇଴൯ ≤ 1.96ൟ 

⟺ ൜𝑋௡ − 1.96
1

√𝑛
≤ 𝜇଴ ≤ 𝑋௡ + 1.96

1

√𝑛
ൠ 

 
• Now consider what happens when we invert one-sided test. 
Consider the hypotheses 𝐻଴: 𝜇 ≤ 𝜇଴vs. 𝐻௔: 𝜇 > 𝜇଴. Then a 95% 
acceptance region is 

൛√𝑛൫𝑋௡ − 𝜇଴൯ ≤ 1.645ൟ 

⟺ ൜𝜇଴ ≥ 𝑋௡ − 1.645
1

√𝑛
ൠ 

 

Quiz: 

Let the random sample 𝑋ଵ, 𝑋ଶ, … 𝑋௡ ~𝑁(𝜇, 𝜎ଶ), where both 𝜇 and 
𝜎ଶ are unknown 

(1) Derive the 100(1-α)% CI for 𝜎ଶ using the pivotal quantity 
method;  

(2) Derive the 100(1-α)% CI for 𝜎ଶ by inverting the two sided 
test 𝐻଴: 𝜎ଶ = 𝜎଴

ଶ   𝑣𝑠   𝐻௔:  𝜎ଶ ≠ 𝜎଴
ଶ 

(3) Are your CIs in (1) and (2) the same? 
(4) Are your CI(s) optimal? If not, please derive the optimal CI.  
 


