Confidence Interval

Some concepts: Interval estimate, coverage probability,

confidence coefficient, confidence interval (CI)

Definition: an interval estimate for a real-valued parameter 6

based on a sample X = (X1,..., X») is a pair of functions L(X ) and
U(X) so that L(X ) <U(X) for all X, that is [L(X), U(X)].

Note:

* The above is a two-sided confidence interval, one can also define

one-sided intervals: (-00, U(X )] or [L(X), o).

Definition: the coverage probability of an interval estimator is

Po(6 € [L(X), UX)]) = Po(L(X) < 0,U(X) = 6)
Note:

» This is the probability that the random interval [L (K ), U (K )]
covers the true 6.
* One problem about the coverage probability is that it can vary

depend on what 6 is.

Definition: For an interval estimator [L (K ), U (K )] of a parameter

0, the confidence coefficient = infy Py (6 € [L(X), U(X)]).

Note:

* The term confidence interval refers to the interval estimate

along with its confidence coefficient.



There are two general approaches to derive the confidence
interval: (1) the privotal quantitymethod, and (2) invert the

test, a introduced next.

1. General approach for deriving CI's :

The Pivotal Quantity Method

Definition: A pivotal quantity is a function of the sample and
the parameter of interest. Furthermore, its distribution is

entirely known.

Example. Point estimator and confidence interval

for p when the population is normal and the population
variance is known.
- Let X|,X,,...,X, bearandom sample for a normal

population with mean x and variance o*. That s,

iid

Xi,;N(y,O'z),i =1...,n.

- For now, we assume that &2 is known.

(1). We start by looking at the point estimator of x :

2

— o
X ~ N(ﬂ,7)

(2). Then we found the pivotal quantity Z:

X-—p
o/In

Now we shall start the derivation for the symmetrical CI's for p

Z= ~ N(0,])

from the PDF of the pivotal quantity Z




100(1-0)% CI for p, 0<a<1
(e.g.a=0.05=95% C.I)
P(-Z,,<Z<Z,,)=1-a

X -u
P2, <2z, =1-a
w S o = fer
o — o)
P(-Z, —=<X-u<Z, —=)=1-a
/2 , /2 \/;
P(-X=Z,, ——<-p<-X+Z,, —)=1-a
n Vn
— o — o
P(X+Za/2'EZﬂZX_Za/z'ﬁ)zl_a
— o — O
p(X_Za/2.Egy£X+Za/2'ﬁ):1_a
(3) - the 100(1-)% C.I. for pis [}_Zaﬂ o
Jn

*Note, some special values for a and the corresponding

Zpvalues are:

,Y+Za/2 *

(o)

9n

]




1. The 95% CI, where a = 0. 05 and the corresponding
Zg = Z0.025 =1.96
2

2. The 90% CI, where a = 0.1 and the corresponding
Zg = Z0.05 =1.645
2

3. The 99% CI, where a = 0. 01 and the corresponding
Zg = ZO.OOS = 2.575
2

~Recall the 100(1-a)% symmetric C.I. for p is

g (o2

(X-Z,, —.X+Z

(o}
\/; a2’ ﬁ]

*Please note that this CI is symmetric around X

The length of this Cl is: B % Vn

(4) Now we derive a non-symmetrical CI:

T T T T T T

N(0,1)

~Zen 0 Z2e




P(-Z, <252, )=1-«

/ -
100(1-a)% C.I. for p

}Z 9

ne “ n

:>[X Z

Compare the lengths of the C.I.’s, one can prove theoretically

o
that: L=(Z =2-Z,, —
ati L= (Zy +Zy,) —=> % T
You can try a few numerical values for «, and see for yourself.

For example,
a=0.05

Theorem: Let f{y) be a unimodal pdf. If the interval satisfies

0 [ foNdy=1-a

(i) fi@) = fib) > 0

(ii1) a <y* < b, where y* is a mode of f(y), then [a, b] is the
shortest lengthed interval satisfying (i).

Note:

* y in the above theorem denotes the pivotal statistic upon which
the CI is based

* f(y) need not be symmetric: (graph)

» However, when f(y) is symmetric, and y* = 0, then a = -b. This is

the case for the N(0, 1) density and the t density.




Example. Large Sample Confidence interval for a
population mean (*any population) and a population
proportion p

<Theorem> Central Limit Theorem

7 =X ZEm o
= e )
a/yn
When n is large enough, we have
X—u
= ~N(0,1
o 0,1)

\That means Z follows approximately the normal (0,1) distribution.\

Application #1. Inference on x when the population

distribution is unknown but the sample size is large
X-u
0'/\/;
By Slutsky’s Theorem We can also obtain another pivotal quantity

when o is unknown by plugging the sample standard deviation S as
follows:

7= <~ N(0,1)

X-u
Z= ~ N(0,1
sidn OD
We subsequently obtain the 100(1—«)% C.I. using the second P.Q.
= S
for u: | X*£7Z,,—
H 2 \/;

Application #2. Inference on one population

proportion p when the population is Bernoulli(p) ***
iid.

Let X, ~ Bernoulli(p), i=1,---,n, please find the 100(1-a)% CI
for p.

n

2 X

Point estimator : p =X == (ex. n=1000, p=0.6)
n

Our goal: derive a 100(1-a)% C.I. for p

Thus for the Bernoulli population, we have:
k=EX) =y

0? =Var(X) =p(1 —p)
Thus by the CLT we have:




X=P N
p(l-p)

n
Furthermore, we have for this situation: |)? = ﬁ|

‘Therefore we obtain the following pivotal quantity Z for p:|

7 =

A

g__ PP
p(=p)
n

< N(0,1)

By Slustky’s theorem, we can replace the population proportion in|

the denominator with the sample proportion and obtain another|
ivotal quantity for p:|

7 = LPA&N(OJ)
p(1—p)
n

# Thus the 100(1 - )% (approximate, or large sample) C.I. for
p based on the second pivotal quantity Z* is:

P(-z,, <z <z,,)=l-a

P(-z,, < fj_pA
p(l—p)
n

| /ﬁ(l_ﬁ)g—pﬁ—f)+z | /ﬁ(l—fa)):l_
/p(— <p< 5, |PQ p))

=>The 100(1— a)% large sample C.I. for pis

N /AI—A R 1-
(p-Z,, p(np)ap"'za/z p( )]

# CLT => n large usually means n 2 30

# special case for the inference on p based on a Bernoulli
population. The sample size n is large means

SZa/Z)zl_a

Let X = Z X, , large sample means:

i=1
np =X >5 (*Here X=total # of ‘S’), and
n(l-p)=n—-X >5 (*Here n-X=total # of ‘F’)




Example: normal population, > unknown

o 2
1. Point estimation: X ~ N (u,—(7 )
n

X -

o/ J—
3. Theorem. Sampling from normal population
a. Z~N(0,1)
(r-1)s°

2. Z=

~ N(0,1)

b' W Nan

c. Z and W are independent.

o Z - u
Definition. 7 = = ~t
JWin-1) S/\n

2

------ Derivation of CI, normal population, o~ is unknown ------

2

X ~N( ,u,o-—) is not a pivotal quantity.
n

2
X —u~ N(O, 07) is not a pivotal quantity.

Z= X N(0,1) is not a pivotal quantity.
o/~n
Remove o !!!

X -
Therefore |T = ~ 1, ,|1s a pivotal quantity.
S/ \/— 1 p q y

Now we will use this pivotal quantity to derive the 100(1-
a)% confidence interval for p.

We start by plotting the pdf of the t-distribution with n-1
degrees of freedom as follows:



-t i +1

-l e n-, ez

The above pdf plot corresponds to the following probability

statement:

=> P(X +t

n-1,a/2

=> P(X -t Spus _+tn—l,a/2%):

S
n-l,a/2 ﬁ

=> Thus the 100(1 - )% C.L for x when o is unknown is

[X - byt X+t . (*Please note that

s S
\/; ’ n-l,a/2 \/;

t >Za/2)

n-l,a/2 =



Example. Inference on 2 population means,

when both populations are normal. We have 2
independent samples, the population variances
are unknown but equal (¢’ =0, =5’)= pooled-

variance t-test.

iid

Data: Xppeos X, ~N(t,0,")
iid s
Yl,...,Ynz NN(ILl290-2 )

Goal:  Compare 4 and g,

1) Point estimator:

i, =X - Y~N %4 90) 2 N (= o () )
Hi —H2 = M1 Hz'nl n, = H1 — M2, n, ' n, o

2) Pivotal quantity:

(X -Y)— (¢, — 1)

N e
7= Z iy iy :(X_Y)_(/ul_/"z)N

A (m —1)S; " (n, =1)S; S 1 +i
n +n,—2 o’ o’ Nm oo,
n+n,—2

~1DS} +(n, —-1)S;
where § 121 _m =DS, +0m, DS, is the pooled variance.
n+n,—2

This is the PQ of the inference on the parameter of interest

(44— 1)

10

n+n, =2



3) Confidence Interval for (u, —u,)

|- o P(t S()?—%—(ul—uz)gt )

nl+n2—2,% S \/1 N 1 nl+n2—2,%
p

n.n,

1 1 = = 1 1

—a=P(t S, |—+—<(X-D)-(4-p)<t S, |=—+—)

R I’ll 7’12 1+t I’ll 7’12
_ — 1 1 - = 1 1
l—a=P(X-Y~t S |t <, < XY+t Y R
"‘”’2_2’% "N om "‘”2_2’% "N o om

.. This is the 100(1-a)% C.Ifor (1, — i,)
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2. General approach for deriving CI’s :

Inverting a Test

Hypothesis test: under a given H, : 6 = 6,,,

Py (T,€ER)=a = Py (T, ¢R)=1—-«
where T, is a test statistic.

We can use this to construct a (1 - &) confidence interval:
* Define acceptance region 4 = R\R.

* If you fix a, but vary the null hypothesis 8,, then you obtain
R(6,), a rejection region for each 6 such that, by construction:

VO, € 0: Pg (T, & R(6,)) = Py, (T, € A(6p)) = 1 —«

* Now, for a given sample X ~ = X1, ..., X», consider the set
C(X) ={6:T,(X) € A(®)}

By construction:
Py (6 € C(X)) = Py (Tu(X) € A(B)), VO € ©
Therefore, C (K ) is a (1 - &) confidence interval for 6.

* The confidence interval C (K ) is the set of 0’s such that, for
the given data X and for each 6, € C (& ), you would not be

able to reject the null hypothesis
HO . 0 = 90.

* In hypothesis testing, the acceptance region is the set of X
which are very likely for a fixed 8.

In interval estimation, the confidence interval is the set of ’s
which make X very likely, for a fixed X .

12




Example: X1, ..., Xn ~i.i.d. N(u,1).
We want to construct a 95% CI for u by inverting the Z-test.

» We know that, under each null hypothesis Hy: u = o,
\/H(Yn - .UO)NN(O;l)

* Hence, for each p, a 95% acceptance region is
{-1.96 < Vn(X, — o) < 1.96}

— 1 — 1
=X, —1.96—=< <X,+ 1.96—}
{ n \/ﬁ Ho n \/ﬁ

* Now consider what happens when we invert one-sided test.
Consider the hypotheses Hy: t < pgvs. Hy: pt > pg. Then a 95%
acceptance region is

{(Vn(X, — o) < 1.645}

_ 1
N {uo > X, — 1.645 \/_Z}

Quiz:

Let the random sample X;, X5, ... X, ~N(u, 02), where both u and
o2 are unknown

(1) Derive the 100(1-a))% CI for 2 using the pivotal quantity
method;

(2) Derive the 100(1-0)% CI for a2 by inverting the two sided
test Hy: 02 = 0§ vs Hg: 0% # of

(3) Are your CIs in (1) and (2) the same?

(4) Are your CI(s) optimal? If not, please derive the optimal CI.
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