Red Black Trees

Data Structures

i

— Some Properties of Binary Search Tree

S

* The common properties of binary search trees are as follows:

The left sub tree of a node contains only nodes with keys less than the node's key.

* The right sub tree of a node contains only nodes with keys greater than the node's
key.

 The left and right sub tree each must also be a binary search tree.
* There must be no duplicate nodes.
* A unique path exists from the root to every other node.

o
e

Problem with Binary Search Tree

Binary Search Tree is fast in insertion and deletion etc. when balanced.

Time Complexity of performing operations (e.g. searching, inserting , deletion etc) on
binary search tree is O(logn) in best case i.e when tree is balanced.

And on the other hand performance degrades from O(logn) to O(n) when tree is not
balanced.

Basic binary search trees have three very nasty degenerate cases where the structure
stops being logarithmic and becomes a glorified linked list.

The two most common of these degenerate cases is ascending or descending sorted
order (the third is outside-in alternating order).

o/ Problem with Binary Search Tree

-

0

-4

IS

(5)
(4
©

o
o

7
o

®

Ascending order

Descending Order

L

4

Alternating Order

~
u) \

Red Black Tree

A red-black tree is a balanced binary search tree with one extra bit of storage per node:
its color, which can be either Red or Black.

By constraining the node colors on any simple path from the root to a leaf, red-black
trees ensure that no such path is more than twice as long as any other, so that the tree
is approximately balanced.

Each node of the tree now contains the attributes color, key, left, right, and p.

If a child or the parent of a node does not exist, the corresponding pointer attribute of
the node contains the value NIL.

-/
J

</ Properties of Red Black Tree

-

A red-black tree is a binary tree that satisfies the
following red-black properties:
1. Every node is either red or black. 4

N

2. Theroot is black.

3. Every leaf (NIL) is black.

4. If a node is red, then both its children are
black.

5. For each node, all simple paths from the
node to descendant leaves contain the same
number of black nodes.

o
e

Red Black (Rotations)

The search-tree operations TREE-INSERT and TREE-DELETE, when run on a red black
tree with n keys, take O(log n)time. Because they modify the tree, the result may
violate the red-black properties.

To restore these properties, we must change the colors of some of the nodes in the
tree and also change the pointer structure.

We change the pointer structure through rotation, which is a local operationin a
search tree that preserves the binary-search-tree property.

There are two kinds of rotations : left rotations and right rotations.

I st

-

_ * When we do a left rotation on a node x, we assume that its right child y is
not null ;x may be any node in the tree whose right child is not null.

' 9
N/ o A

N/ 4

\/ _ LEFT-ROTATE (T, X)
| 1. y = X.right /] sety new temporary node
N 2. x.right = y.left // turny’s left subtree into x’s
- right subtree
3. if y.left = T.nil
4. y.left.p = x
5. y.p= X.p /] link x’s parent to y
6. if x.p == T. nil
/. T.root =y
8. else if x == x.p.left
9. x.p.left =y
10.else x.p.right =y
11. y.left = x /] put x on y’s left

]2xp—
c’eo >
® XD ORG I >

Right Rotation

Comparison @)

BST., Red-Black and AVL

S/ Insertion ')

—

_, * We can insert a node into an n-node red-black tree in O(logn) time.

* To do so, we use a slightly modified version of the TREE-INSERT procedure to
insert node into the tree T as if it were an ordinary binary search tree.

e Then we color it to red.

* To guarantee that the red-black properties are preserved, we then call an

auxiliary procedure RB-INSERT-FIXUP to recolor nodes and perform rotations.
—

—/

- - 4

Insertion

RB-INSERT(T, 2)

Sl U0 B WD =

=
s ©

N e N =
EREERUIE B W N

y < T.nil
X €& T.root
while x # T.nil
y =X
if z.key < x.key
then x & x.left
else x & x.right
Z.p=y
if y = T.nil
then T.root < z
else if z.key< y.key
then y.left & z
else y.right &z
z.left & Tonil
z.right < Tnil
z.color<& RED
RB-INSERT-FIXUP(T, z)

\/ ~—

y
_

— Insertion

N
_, The procedures TREE-INSERT and RB-INSERT differ in four ways.
 First, all instances of NIL in TREE-INSERT are replaced by T.nil.

e Second, we set z.left and z.right to T. nil in lines 14—15 of RB-INSERT, in order to
maintain the proper tree structure.

* Third, we color z red in line 16.

e Fourth, because coloring z.red may cause a violation of one of the red-black

properties, we call RB-INSERT-FIXUP(T,z) in line 17 of RB-INSERT to restore the
red-black properties

’

o/

) ~)

-
Insertion

e Case 1. z'sunclevy is red

e Case 2. z'suncle yis black and z is a right child

* Case 3. z'suncle yis black and z is a left child

| & Insertion

® O
® O

zo Case 1. z'suncley is red

Case 2. z'suncle y is black and z is a right child

MY

N
—@
K -

= Insertion

S
.t a

lnsertion

Insertion

T Q\/B? 5 —> /G\/R; s ZQ‘/G\E\ L

CE 7 ﬂ o i
| - j oy
sl

b Y . o
s a right child Case3:z's uncley is black and z is a left child gy

» Bl

=

T
Rt . B

NE

J Insertion

*) RB-INSERT-FIXUP(T, z)
1. while z.p.color == RED

2. if z.p == z.p.p.left

3. theny & z.p.p.right

4. if y.color==RED

5. then z.p.coloré BLACK //Case 1
6. y.color ¢ BLACK //Case 1
7. z.p.p.coloré RED //Case 1
8. Z & 2.p.p // Case 1

9. else if z = z.p.right

10. thenz & z.p //Case 2

11. LEFT-ROTATE(T, z) //Case 2

12. z.p .color& BLACK //Case 3

13. z.p .p.coloré& RED //Case 3

14. RIGHT-ROTATE(T, z.p .p) // Case 3

15. else .same as then clause with "right" an="left" exchange=)

16. T.root.coloré& BLACK

u\/ @’

P

- Insertion

-’

* To understand how RB-INSERT-FIXUP works, we shall break our examination of
the code into three major steps.

* First, we shall determine what violations of the red-black properties are
introduced in RB-INSERT when node z is inserted and colored red.

e Second, we shall examine the overall goal of the while loop in lines 1-15.

* Finally, we shall explore each of the three cases within the while loop’s body and
see how they accomplish the goal.

— Insertion

-

* The while loop in lines 1-15 maintains the following three-part invariant.

e

* At the start of each iteration of the loop,

a) Nodezis red.
b) Ifz.pistheroot, then z.p is black.

c) Ifthereisa violation of the red-black properties, there is at most one violation, and it is of

either property 2 or property 4. If there is a violation of property 2, it occurs because z is the
root and is red. If there is a violation of property 4, it occurs because both z and z.p are red.

\/ ~— |

Deletion

Like the other basic operations on an Red Black tree, deletion of a node takes time
O(logn)

Deleting a node from a red-black tree is a bit more complicated than inserting a node.

The procedure for deleting a node from a red-black tree is based on the RB-DELETE
procedure

First, we need to customize the TRANSPLANT subroutine that RB-DELETE calls so that it
applies to a red-black tree.

Deletion

9
_, RB-TRANSPLANT(T.u.v)

1. if u.p == T.nil

2 T.root=v
3. elseif u==u.p.left ,
4 u.p.left=v ”

.z ~else u.p.right=v

i
\
u.p
e RN %
b
8 A
R

=
Bt —
hl .

</

4 Deletion

9) RB-DELETE (T,z2)
1. y=z
2. y-original-color = y.color
3. ifzleft==T nil
4, X = z. right
5. RB-TRANSPLANT (T, z, z. right)
6. elseif z. right==T. nil
7. X = z. left
8. RB-TRANSPLANT(T, z, z. left)
9. elsey=TREE-MINIMUM(z. right)
10. y-original-color = y. color
11. X =Yy. right
12. ify.p==z

13. X.p=Yy

P

Deletion
14. else RB-TRANSPLANT(T, y, y. right)
15. y. right = z. right
16. y. right.p=vy
i RB-TRANSPLANT(T, z,)
18. y. left = z. left
19. y.left. p=y
20. y. color = z. color

21. if y-original-color == BLACK
22. RB-DELETE-FIXUP(T, x)

(@)

Deletion

Case 1: x's sibling w is red

u\/ ®)

(b)

Q

Deletion

?

4 Deletion

o o
\\1_\ J ‘\\\
x °‘. : ow / \\‘
e \ ” --_ , ’
Y A \ & A
. -
A

B e — e
Bk i 3 A /0\ ?/Q\ P
4 d 5

new x = T.root

Case 3: x's sibling w is black, w's left child is red, and w's right child is black

Deletion
xo . ; QW ! i ° /ane\vi w
gy g 0 v /e
(d) ., e ’/
e 0. & ¢ ¥

N/ Deletion

— RB-DELETE-FIXUP(T, x)

1. while x I=T.root an= x. color == BLACK

2. if x ==x. p. left

3 W = X. p. right

4 if w. color ==RED

5. w. color = BLACK //case 1

6. X. p. color = RED //case 1

7 LEFT-ROTATE(T, x. p) //case 1

8 W = X. p. right //case 1

£ if w. left. color == BLACK and w. right. color = = BLACK
10. w. color = RED //case 2

11. X=X.p //ca§/e 2\/

\—/ Deletion
@) 12. else if w. right. color == BLACK

13. w. left. color = BLACK //case 3
14. w. color = RED //case 3
15. RIGHT-ROTATE(T, w) //case 3
16. W = X. p. right //case 3
17. w. color = x. p. color //case 4
18. X. p. color = BLACK //case 4
19. w. right. color = BLACK //case 4
20. LEFT-ROTATE(T, x. p) //case 4
21. X =T. root //case 4

22. else (same as then clause with “right” and “left” exchanged)
23. x. color = BLACK
~ =4

