
Red Black Trees
Data Structures



Some Properties of Binary Search Tree

• The common properties of binary search trees are as follows:

• The left sub tree of a node contains only nodes with keys less than the node's key.

• The right sub tree of a node contains only nodes with keys greater than the node's 

key.

• The left and right sub tree each must also be a binary search tree.

• There must be no duplicate nodes.

• A unique path exists from the root to every other node.



Problem with Binary Search Tree
• Binary Search Tree is fast in insertion and deletion etc. when balanced.

• Time Complexity of performing operations (e.g. searching , inserting , deletion etc) on 
binary search tree is O(logn) in best case i.e when tree is balanced.

• And on the other hand performance degrades from O(logn) to O(n) when tree is not 
balanced.

• Basic binary search trees have three very nasty degenerate cases where the structure 
stops being logarithmic and becomes a glorified linked list.

• The two most common of these degenerate cases is ascending or descending sorted 
order (the third is outside-in alternating order).
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1

2

3

4

6

5

3

4

9

2

6

5

7

Alternating OrderDescending OrderAscending order



Red Black Tree

• A red-black tree is a balanced binary search tree with one extra bit of storage per node: 

its color, which can be either Red or Black. 

• By constraining the node colors on any simple path from the root to a leaf, red-black 

trees ensure that no such path is more than twice as long as any other, so that the tree 

is approximately balanced.

• Each node of the tree now contains the attributes color, key, left, right, and p.

• If a child or the parent of a node does not exist, the corresponding pointer attribute of 

the node contains the value NIL. 



Properties of Red Black Tree
A red-black tree is a binary tree that satisfies the 

following red-black properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (NIL) is black.

4. If a node is red, then both its children are 

black.

5. For each node, all simple paths from the 

node to descendant leaves contain the same 

number of black nodes.



Nil



• The search-tree operations TREE-INSERT and TREE-DELETE, when run on a red black 

tree with n keys, take O(log n)time. Because they modify the tree, the result may 

violate the red-black properties.

• To restore these properties, we must change the colors of some of the nodes in the 

tree and also change the pointer structure.

• We change the pointer structure through rotation, which is a local operation in a 

search tree that preserves the binary-search-tree property. 

• There are two kinds of rotations : left rotations and right rotations.

Red Black Tree (Rotations)



• When we do a left rotation on a node x, we assume that its right child y is 

not null ;x may be any node in the tree whose right child is not null. 

Left Rotation
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LEFT-ROTATE (T ,  x)

1. y = x.right // set y new temporary node
2. x.right =  y.left // turn y’s left subtree into x’s 

right subtree
3. if y.left != T.nil
4. y.left.p = x
5. y.p= x.p // link x’s parent to y
6. if x.p == T. nil
7. T.root = y
8. else if x == x.p.left
9. x.p.left = y
10.else x.p.right = y
11. y.left = x // put x on y’s left
12. x.p = y
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Right Rotation



Comparison



Insertion
• We can insert a node into an n-node red-black tree in O(logn)  time. 

• To do so, we use a slightly modified version of the TREE-INSERT procedure to 

insert node into the tree T as if it were an ordinary binary search tree.

• Then we color it to red.

• To guarantee that the red-black properties are preserved, we then call an 

auxiliary procedure RB-INSERT-FIXUP to recolor nodes and perform rotations. 



Insertion



Insertion
RB-INSERT(T, z)

1. y ← T.nil
2. x ← T.root
3. while x ≠ T.nil
4. y = x
5. if z.key < x.key
6. then x ← x.left
7. else x ← x.right
8. z.p = y
9. if y = T.nil
10. then T.root ← z
11. else if z.key< y.key
12. then y.left ← z
13. else y.right ← z
14. z.left ← T.nil
15. z.right ← T.nil
16. z.color← RED
17. RB-INSERT-FIXUP(T, z)



Insertion
The procedures TREE-INSERT and RB-INSERT differ in four ways. 

• First, all instances of NIL in TREE-INSERT are replaced by T.nil. 

• Second, we set z.left and z.right to T. nil in lines 14–15 of RB-INSERT, in order to 

maintain the proper tree structure. 

• Third, we color z red in line 16. 

• Fourth, because coloring z.red may cause a violation of one of the red-black 

properties, we call RB-INSERT-FIXUP(T,z) in line 17 of RB-INSERT to restore the 

red-black properties



Insertion

• Case 1. z's uncle y is red

• Case 2. z's uncle y is black and z is a right child

• Case 3. z's uncle y is black and z is a left child



Insertion



Insertion



Insertion



Insertion

Case3: z's uncle y is black and z is a left childCase2: z's uncle y is black and z is a right child



Insertion
RB-INSERT-FIXUP(T, z)

1. while z.p.color == RED
2. if z.p == z.p.p.left
3. then y ← z.p.p.right
4. if y.color== RED
5. then z.p.color← BLACK                 //Case 1
6. y.color ← BLACK  //Case 1
7. z.p.p.color← RED //Case 1
8. z ← z.p.p // Case 1
9. else if z = z.p.right
10. then z ← z.p //Case 2
11. LEFT-ROTATE(T, z) //Case 2
12. z.p .color← BLACK  //Case 3
13. z.p .p.color← RED //Case 3
14. RIGHT-ROTATE(T, z.p .p) // Case 3
15. else .same as then clause with "right" an= "left" exchange=)
16. T.root.color← BLACK



Insertion
• To understand how RB-INSERT-FIXUP works, we shall break our examination of 

the code into three major steps. 

• First, we shall determine what violations of the red-black properties are 

introduced in RB-INSERT when node z  is inserted and colored red. 

• Second, we shall examine the overall goal of the while loop in lines 1–15. 

• Finally, we shall explore each of the three cases within the while loop’s body and 

see how they accomplish the goal. 



Insertion
• The while loop in lines 1–15 maintains the following three-part invariant.

• At the start of each iteration of the loop,

a) Node z is red.

b) If z.p is the root, then z.p is black.

c) If there is a violation of the red-black properties , there is at most one violation, and it is of 

either property 2 or property 4. If there is a violation of property 2, it occurs because z is the 

root and is red. If there is a violation of property 4, it occurs because both z and z.p are red.



Deletion
• Like the other basic operations on an Red Black tree, deletion of a node takes time 

O(logn)

• Deleting a node from a red-black tree is a bit more complicated than inserting a node.

• The procedure for deleting a node from a red-black tree is based on the RB-DELETE

procedure

• First, we need to customize the TRANSPLANT subroutine that RB-DELETE calls so that it 

applies to a red-black tree.



Deletion
RB-TRANSPLANT(T.u.v)

1. if u.p == T.nil

2. T.root = v

3. elseif u == u.p.left

4. u.p.left = v

5. else u.p.right = v

6. v.p = u.p



Deletion
RB-DELETE (T,z)

1. y = z 

2. y-original-color =  y.color

3. if z.left = = T. nil

4. x = z. right

5. RB-TRANSPLANT (T, z, z. right)

6. elseif z. right = = T. nil

7. x = z. left

8. RB-TRANSPLANT(T, z, z. left)

9. else y = TREE-MINIMUM(z. right)

10. y-original-color = y. color

11. x = y. right

12. if y. p = = z

13. x. p = y



Deletion
14. else RB-TRANSPLANT(T, y, y. right)

15. y. right = z. right

16. y. right. p = y

17. RB-TRANSPLANT(T, z, y)

18. y. left = z. left

19. y. left. p = y

20. y. color = z. color

21. if y-original-color == BLACK

22. RB-DELETE-FIXUP(T, x)



Deletion

Case 1: x's sibling w is red



Deletion

Case 2: x's sibling w is black, and both of w's children are black



Deletion

Case 3: x's sibling w is black, w's left child is red, and w's right child is black



Deletion

Case 4: x's sibling w is black, and w's right child is red



Deletion
RB-DELETE-FIXUP(T, x)

1. while x !=T.root an= x. color == BLACK

2. if x == x. p. left

3. w = x. p. right

4. if w. color = = RED

5. w. color = BLACK                            //case 1

6. x. p. color = RED        //case 1

7. LEFT-ROTATE(T, x. p)  //case 1

8. w = x. p. right //case 1

9. if w. left. color == BLACK and w. right. color = = BLACK

10. w. color = RED //case 2

11. x = x. p //case 2



Deletion
12. else if w. right. color == BLACK

13. w. left. color = BLACK //case 3

14. w. color = RED //case 3

15. RIGHT-ROTATE(T, w) //case 3

16. w = x. p. right //case 3

17. w. color = x. p. color      //case 4

18. x. p. color = BLACK //case 4

19. w. right. color = BLACK //case 4

20. LEFT-ROTATE(T, x. p) //case 4

21. x = T. root //case 4

22. else (same as then clause with “right” and “left” exchanged)

23. x. color = BLACK


