
Binary Search Tree



What is a Binary Tree? 
 Property 1: Each node can have up to two 

successor nodes.



• Property 2: a unique path exists from the root 
to every other node 

What is a Binary Tree? 

Not a valid binary tree!



A Binary Tree



Binary Tree

typedef struct tnode *ptnode;
typedef struct node {
             short int  key;
             ptnode right, left; 

    } ;



Basic Terminology
 The successor nodes of a node are called its children
 The predecessor node of a node is called its parent
 The "beginning" node is called the root (has no parent)
 A node without children is called a leaf



Basic Terminology
 Nodes are organize in levels (indexed from 0).

 Level (or depth) of a node: number of edges in the path 
from the root to that node.

 Height of a tree h: #levels = L                                                      
 (some books define h as                                                                  
          number of levels-1).

 Full tree: every node has exactly                                          
two children and all the leaves are                                              
                            on the same level.

not full!



What is the max number of  nodes 
at any  level l ?

02≤
12≤
22≤
32≤

where l=0,1,2, ...,L-1 

The maximum number of nodes at any level l is less 
than or equal to 2l where l=0, 1, 2, 3,….. L-1



What is the total number of nodes N 
of a full tree with height h?

0 1 1

1
0 1 1 1

1
0

2 2 ... 2 2 1

...
n

h h

n
n i x

x
i

N

x x x x

−

−
− −

−
=

= + + + = −

+ + + = =∑
Derived according to the geometric series:

l=0 l=1 l=h-1



What is the height h 
of a full tree with N nodes?

2 1

2 1

log( 1) (log )

h

h

N

N

h N O N

− =

⇒ = +
⇒ = + →



Why is h important?

 The Tree operations like insert, delete, retrieve etc. 
are typically expressed in terms of the height of the 
tree h.

 So, it can be stated that the tree height h determines 
running time!



 What is the max heightmax height of a tree 
with N nodes? 

 What is the min heightmin height of a tree with 
N nodes? 

N (same as a linked list)

log(N+1)



Binary Search
 Suppose DATA is an array which is sorted in increasing 

numerical order and we want to find the location LOC of a given 
ITEM in DATA. Then there is an extremely efficient searching 
algorithm called Binary Search. 



Binary Search
 Consider that you want to find the location of some word in a 

dictionary. 
 I guess you are not fool enough to search it in a linear way or in 

other words apply linear search.  That is no one search page by 
page from the start to end of the book. 

 Rather, I guess you will open or divide the dictionary in the 
middle to determine which half contains the word. 

 Then consider new probable half and open or divide that half in 
the middle to determine which half contains the word.  This 
process goes on. 

 Eventually you will find the location of the word and thus you 
are reducing the number of possible locations for the word in the 
dictionary.



How to search a binary tree? 

1. Start at the root
2. Search the tree level by level,                                          

    until you find the element you                                    
                            are searching for or you reach            
                                                                                      a leaf.

   

Is this better than searching a linked list?          

No   O(N)



Binary Search Trees 

 Binary Search  Tree Property: 
The value stored at 
a node is greater than 
the value stored at its 
left child and less than 
the value stored at its 
right child



 In a BST, the value 
stored at the root of 
a subtree  is greater 
than any value in its 
left subtree and less  
than any value in its 
right subtree! 

Binary Search Trees 



Where is the smallest 
element?
Ans: leftmost element

Where is the largest 
element?
Ans: rightmost element

Binary Search Trees 



How to search a binary search 
tree? 

1. Start at the root
2. Compare the value of 

the item you are 
searching for with the 
value stored at the root

3. If the values are equal, 
then item found; 
otherwise, if it is a leaf 
node, then not found 



How to search a binary search 
tree? 

4.  If it is less than the value 
stored at the root, then 
search the left subtree

5. If it is greater than the 
value stored at the root, 
then search the right 
subtree

6. Repeat steps 2-6 for the 
root of the subtree 
chosen in the previous 
step 4 or 5



How to search a binary search 
tree? 

 Is this better than searching 

 a linked list? 

Yes !!      O(logN)



Difference between BT and BST
 A binary tree is simply a tree in which each node can have 

at most two children. 
 A binary search tree is a binary tree in which the nodes are 

assigned values, with the following restrictions :
1. No duplicate values. 
2. The left subtree of a node can only have values less than 

the node 
3. The right subtree of a node can only have values greater 

than the node and recursively defined
4. The left subtree of a node is a binary search tree. 
5. The right subtree of a node is a binary search tree.



Binary Tree Search Algorithm
 Let x be a node in a binary search tree and k is the 

value, we are supposed to search. 
 Then according to the binary search tree property we 

know that: if y is a node in the left subtree of x, then 
y.key <= x.key. If y is a node in the right subtree of x, 
then y.key>=x.key. (x.key denotes the value at node x)

 To search the location of given data k, the binary search 
tree algorithm begins its search at the root and traces 
the path downward in the tree. 

 For each node x it compares the value k with x.key. If 
the values are equal then the search terminates and x is 
the desired node. 



Binary Tree Search Algorithm
 If k is smaller than x.key, then the search continues in 

the left subtree of x, since the binary search tree 
property implies that k could not be in the right subtree. 

 Symmetrically, if k is larger than x.key, then the search 
continues in the right subtree. 

 The nodes encountered during the recursion form a 
simple path downward from the root of the tree, and 
thus the running time of TREE-SEARCH is O(h), where h 
is the height of the tree.



Binary Tree Search Algorithm
TREE-SEARCH(x,k)
1.If x==NIL or k==x.key
2.            return x
3.If k < x.key
4.            return TREE-SEARCH(x.left,k)
5.else return TREE-SEARCH(x.right,k)



Binary Tree Search Algorithm

66

22 99

11 44 88

Example: key =4 then find(4)
Call TREE-SEARCH(x,k)



Binary Tree Search Algorithm

66

22 99

11 44 88

Example: k =4 and x=root
Call TREE-SEARCH(root,4)
Now x.key=6 then k<x.key
So call TREE-SEARCH(x.left,k)

x=root



Binary Tree Search Algorithm

66

22 99

11 44 88

Example: k =4 and x=root.left
Call TREE-SEARCH(x,4)
Now x.key=2 then k>x.key
TREE-SEARCH(x.right,k)

x=root.left



Binary Tree Search Algorithm

66

22 99

11 44 88

Example: k =4 and x=root.left.right
Call TREE-SEARCH(x,4)
Now x.key=4 then k=x.key
Search terminates

x=root.left.right



Binary Tree Search Algorithm

66

22 99

11 44 88

Example: k =4 and x=root.left.right
Now x.key=4 then k=x.key
Search terminates and 
x=root.left.right is the desired    

node or location

x=root.left.right



Animation of How Works in a 
Sorted Data Array



if the tree is empty
   return NULL

else if  the key value in the node(root) equals the target
return the node value

else if  the key value in the node is greater than the target
return the result of searching the left subtree

else if  the key value in the node is smaller than the target
return the result of searching the right subtree

BST - Pseudo code



Search in a BST: C code

Ptnode search(ptnode root,
    int key)

{
/* return a pointer to the node that 
   contains key. If there is no such 
 node, return NULL */

  if (!root) return NULL;
  if (key == root->key) return root;
  if (key < root->key) 
      return search(root->left,key);
  return search(root->right,key);
}



 Minimum Key or Element
 We can always find an element in a binary search tree 

whose key is minimum by following the left children from 
the root until we encounter a NIL.

 Otherwise if a node x has no left subtree then the value 
x.key contained in root x is the minimum key or element.  
The procedure for finding the minimum key:

 TREE-MINIMUM(x)
1. while x.left ≠ NIL
2.             x = x.left
3. return x



 Maximum Key or Element
 We can always find an element in a binary search tree 

whose key is maximum by following the right children from 
the root until we encounter a NIL.

 Otherwise if a node x has no right subtree then the value 
x.key contained in root x is the maximum key or element.  
The procedure for finding the maximum key:

 TREE-MAXIMUM(x)
1. while x.right ≠ NIL
2.             x = x.right
3. return x



Insert a value into the BST
 To insert a new value v into a binary search tree T, we use 

the procedure TREE-INSERT.
 The procedure takes a node z for which z.key=v , z.left=NIL 

and z.right=NIL.
 It modifies T and some of the attributes of z in such a way 

that it inserts z into an appropriate position in the tree



Insert a value into the BST
 Suppose v is the value we want to insert and z is the node (New 

or NIL) we are supposed to find to insert the value v.                    
z.p denotes the parent of z. 

 X is a pointer that traces a simple path downward the tree and y 
is the trailing pointer as the parent of  x. T.root denote the root 
of the tree. 

 Now the intention is to find a new or NIL node that will satisfy 
the BST property  after placing the value v. The procedure  first 
consider x as the root of the tree thus the parent of the root 
y=NIL.  

 In steps 3 to 7 the procedure causes the two pointer y and x to 
move down the tree, going left or right depending on the 
comparison of z.key with x.key, until x becomes NIL.  



Insert a value into the BST
 Now this NIL occupies the position z, where we wish to place the 

input item.  
 At this time we need y the parent of the desired node. This is why 

at step four we always storing the parent of current node x while 
moving downward.  At the end of step 7 (in step 8) we make this 
node the parent of z (z.p). 

 From steps 9 to 11: 

 Now if  tree is empty (y==NIL) then create a root node with the 
new key(T.root=z)

 If the value v is less than the value of the parent(z.key<y.key) 
then make it as the left-child of the parent(y.left=z)

 If the value v is greater than the value of the parent(z.key>y.key) 
then make it as the right-child of the parent(y.right=z)



Insert a value into the BST
 TREE-INSERT(T , z)
1. y=NIL
2. x= T.root
3. While x ≠ NIL
4.             y=x
5.             if z.key<x.key
6.                 x=x.left
7.             else x=x.right
8. z.p=y
9. if y== NIL
10.        T.root = z
11.elseif  z.key < y.key
12.            y.left=z
13.else y.right = z



BST Insertion Algorithm

66

22 99

11 44 88

We are supposed to insert 
an item value 5 and find an 
appropriate  node z for it



66

22 99

11 44 88

x=T.root

BST Insertion Algorithm
Y=NIL and x=T.root



66

22 99

11 44 88

x=T.root

BST Insertion Algorithm
Now x≠NIL and z.key<x.key
That is [5<6]



66

22 99

11 44 88

x

BST Insertion Algorithm
Y=T.root and x=T.root.left
And z.key>x.key[5>2]

y



66

22 99

11 44 88

x

BST Insertion Algorithm
Y=T.root.left and 
x=T.root.left.right
And z.key>x.key[5>4]

y



66

22 99

11 44 88

y

BST Insertion Algorithm
Y=T.root.left.right and x=NIL
Then z.p=T.root.left.right



66

22 99

11 44 88

y

BST Insertion Algorithm
Y=T.root.left.right [y ≠ NIL]
And z.key>y.key [5>4] 
So y.right=z that is 
T.root.left.right.right=z

z 5



if  tree is empty
create a root node with the new key

else 
compare key with the top node 
if key =  node key

replace the node with the new value
else if  key >  node key

compare key with the right subtree:
  if  subtree is empty create a leaf node
  else add key  in right subtree

 else  key <  node key
 compare key with the left subtree:

  if the subtree is empty create a leaf node
  else add key to the left subtree

Insertion in BST – Pseudo code



Insertion into a BST: C code
void insert (ptnode *node, int key)
{
  ptnode ptr, 
      temp = search(*node, key);
  if (temp || !(*node)) {
   ptr = (ptnode) malloc(sizeof(tnode));
   if (IS_FULL(ptr)) {
     fprintf(stderr, “The memory is full\n”);
     exit(1);
   }
   ptr->key = key;
   ptr->left = ptr->right = NULL;
   if (*node) 
     if (key<temp->key) temp->left=ptr;
        else temp->right = ptr;
   else *node = ptr;
  }
}  



 Removing a node from a BST is a bit more complex, since we do 
not want to create any "holes" in the tree. The intention is to 
remove the specified item from the BST and adjusts the tree

  The binary search algorithm is used  to locate the target item: 
starting at the root it probes down the tree till it finds the 
target or reaches a leaf node (target not in the tree)

  If the node has one child then the child is spliced to the parent 
of the node. If the node has two children then its successor has 
no left child; copy the successor into the node and delete the 
successor instead TREE-DELETE (T, z) removes the node 
pointed to by z from the tree T. IT returns a pointer to the node 
removed so that the node can be put on a free-node list 

 The overall strategy for deleting a node or item from a binary 
search tree can be described through some cases. 

Delete a value from the BST



Experimenting the cases:

 if the tree is empty return false
 else Attempt to locate the node containing the target 

using the binary search  algorithm:
if the target is not found return false
else the target is found,  then remove its node. Now  

 while removing the node four cases may happen
     

Delete a value from the BST



Case 1:  if the node has 2 empty subtrees        
                - replace the link in the parent with null

Case 2:  if the node has a left and a right subtree
              - replace the node's value with the max value in the
                left subtree
              - delete the max node in the left subtree

Case 3:  if  the node has no left child
   - link the parent of the node to the right 
     (non-empty) subtree     

Case 4:   if the node has no right child
   - link the parent of the target to the left 
     (non-empty) subtree          

Delete a value from the BST



Case 1: removing a node  with 2 EMPTY SUBTREES              
  -replace the link in the parent with  null

Parent

Z

Removing  4

Delete a value from the BST

55

44

77

99

66 88 1010

77

55

66

99

101088



Case 2: removing a node with 2 SUBTREES
- replace the node's value with the max value in the left subtree
- delete the max node in the left subtree

Z Removing 7

Delete a value from the BST

55

44

77

99

66 88 1010

66

55

44 88

99

1010



Case 3:  if  the node has no left child
- link the parent of the node to the right (non-empty) subtree     

Z
Removing 5

Delete a value from the BST

55

77

99

66 88 1010

77

88

99

1010

Parent Parent

66



Case 4:  if  the node has no right child
- link the parent of the node to the left (non-empty) subtree     

Z
Removing 5

Delete a value from the BST

55

77

99

88 1010

77

88

99

1010

Parent Parent

44

44



BST Deletion Algorithm
• TREE-DELETE (T, z)
1. if left [z] = NIL    .OR.     right[z] = NIL
2.     then y  z←
3.     else y  TREE-SUCCESSOR (z)←
4. if left [y] ≠ NIL
5.     then x  left[y]←
6.     else x  right [y]←
7. if x ≠ NIL
8.     then p[x]  p[y]←
9. if p[y] = NIL
10.     then root [T]  x←
11.     else if y = left [p[y]]
12.         then left [p[y]]  x←
13.         else right [p[y]]  x←
14. if y ≠ z
15.     then key [z]  key [y]←
16.         if y has other field, copy them, too
17. return y



  The complexity of operations search, insert and 
remove in BST  is O(h) , where h is the height.

 When the tree is balanced  then it is O(log n). The 
updating operations cause the tree to become 
unbalanced.

  The tree can degenerate to a linear shape and the 
operations will become O (n)

Analysis of BST Operations



Applications for BST
 Binary Search Tree: Used in many search applications where data is 

constantly entering/leaving, such as the map and set objects in many 
languages' libraries.

  Binary Space Partition: Used in almost every 3D video game to 
determine what objects need to be rendered.

 Binary Tries: Used in almost every high-bandwidth router for storing 
router-tables.

 Heaps: Used in implementing efficient priority-queues. Also used in 
heap-sort.

  Huffman Coding Tree:- used in compression algorithms, such as 
those used by the .jpeg and .mp3 file-formats. 

 GGM Trees - Used in cryptographic applications to generate a tree of 
pseudo-random numbers. 

 Syntax Tree: Constructed by compilers and (implicitly) calculators to 
parse expressions. 



What is a Degenerate BST?
 A degenerate binary  search tree is one where most or 

all of the nodes contain only one sub node. 
 It is unbalanced and, in the worst case, performance 

degrades to that of a linked list. 
 If your add node function does not handle rebalancing, 

then you can easily construct a degenerate tree by 
feeding it data that is already sorted.



 Yes, certain orders might produce very 
unbalanced trees or degenerated trees!

 Unbalanced trees are not desirable because search 
time increases!

 Advanced tree structures, such as red-black 
trees, AVL trees, guarantee balanced trees. 

Does the order of inserting 
elements into a tree matter? 



Does the 
order of 
inserting 
elements 
into a tree 
matter? 



Prevent the degeneration of the BST :
 A BST can be set up to maintain balance during updating 

operations (insertions and removals)
 Types of  ST which maintain the optimal performance in 

other words balanced trees:
– splay trees
– AVL trees
– 2-4 Trees
– Red-Black trees
– B-trees

Better Search Trees



 Introduction to Algorithms by Thomas H. Cormen 
and others

 Binary Search Tree by Penelope Hofsdal
  Rada Mihalcea
http://www.cs.unt.edu/~rada/CSCE3110

References

http://www.cs.unt.edu/~rada/CSCE3110


MD. Shakhawat Hossain 
Student of Computer Science & Engineering Dept.

University of Rajshahi


