
Algorithms

AVL Tree

Balanced binary tree

● The disadvantage of a binary search tree is that its height can

be as large as N-1

● This means that the time needed to perform insertion and

deletion and many other operations can be O(N) in the worst

case

● We want a tree with small height

● A binary tree with N node has height at least (log N)

● Thus, our goal is to keep the height of a binary search tree

O(log N)

● Such trees are called balanced binary search trees. Examples

are AVL tree, red-black tree.

Binary Search Tree - Best Time

● All BST operations are O(h), where d is tree
depth

● minimum d is for a binary tree
with N nodes

■ What is the best case tree?

■ What is the worst case tree?

● So, best case running time of BST operations
is O(log N)

2h log N

Binary Search Tree - Worst Time

● Worst case running time is O(N)

■ What happens when you Insert elements in
ascending order?

○ Insert: 2, 4, 6, 8, 10, 12 into an empty BST

■ Problem: Lack of “balance”:

○ compare depths of left and right subtree

■ Unbalanced degenerate tree

Balanced and unbalanced BST

4

2 5

1 3

1

5

2

4

3

7

6

4

2 6

5 71 3

Is this “balanced”?

Approaches to balancing trees

● Don't balance

■ May end up with some nodes very deep

● Strict balance

■ The tree must always be balanced perfectly

● Pretty good balance

■ Only allow a little out of balance

● Adjust on access

■ Self-adjusting

Balancing Binary Search Trees

● Many algorithms exist for keeping binary

search trees balanced

■ Adelson-Velskii and Landis (AVL) trees

(height-balanced trees)

■ Splay trees and other self-adjusting trees

■ B-trees and other multiway search trees

AVL Tree is…

● Named after Adelson-Velskii and Landis

● the first dynamically balanced trees to be

propose

● Binary search tree with balance condition in

which the sub-trees of each node can differ by

at most 1 in their height

Definition of a balanced tree

● Ensure the depth = O(log N)

● Take O(log N) time for searching, insertion,

and deletion

● Every node must have left & right sub-trees of

the same height

An AVL tree has the following

properties:

1. Sub-trees of each

node can differ by

at most 1 in their

height

2. Every sub-trees is

an AVL tree

AVL tree?

YES
Each left sub-tree has

height 1 greater than each

right sub-tree

NO
Left sub-tree has height 3,

but right sub-tree has height

1

AVL tree

Height of a node

● The height of a leaf is 1. The height of a null

pointer is zero.

● The height of an internal node is the maximum

height of its children plus 1

Note that this definition of height is different from the one we

defined previously (we defined the height of a leaf as zero

previously).

AVL Trees

10

5

3

20

2

1 3

10

5

3

20

1

43

5

AVL Trees

12

8 16

4 10

2 6

14

AVL Tree

-1

0

00

0

0

-1

00

1

-2

1

-10

0

AVL Tree
AVL Tree

0 Not an AVL Tree

Height of an AVL Tree

● Fact: The height of an AVL tree storing n keys is O(log n).

● Proof: Let us bound n(h): the minimum number of internal nodes
of an AVL tree of height h.

● We easily see that n(1) = 1 and n(2) = 2

● For n > 2, an AVL tree of height h contains the root node, one AVL
subtree of height n-1 and another of height n-2.

● That is, n(h) = 1 + n(h-1) + n(h-2)

● Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So

n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),

n(h) > 2in(h-2i)

● Solving the base case we get: n(h) > 2 h/2-1

● Taking logarithms: h < 2log n(h) +2

● Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)

AVL - Good but not Perfect

Balance

● AVL trees are height-balanced binary search
trees

● Balance factor of a node

■ height(left subtree) - height(right subtree)

● An AVL tree has balance factor calculated at
every node

■ For every node, heights of left and right subtree
can differ by no more than 1

■ Store current heights in each node

Height of an AVL Tree

● N(h) = minimum number of nodes in an AVL
tree of height h.

● Basis

■ N(0) = 1, N(1) = 2

● Induction

■ N(h) = N(h-1) + N(h-2) + 1

● Solution (recall Fibonacci analysis)

■ N(h) > h (1.62)

h-1
h-2

h

Height of an AVL Tree

● N(h) > h (1.62)

● Suppose we have n nodes in an AVL tree of

height h.

■ n > N(h) (because N(h) was the minimum)

■ n > h hence log n > h (relatively well balanced

tree!!)

■ h < 1.44 log2n (i.e., Find takes O(log n))

Insertion

Insert 6

Imbalance at 8

Perform rotation with 7

Deletion

Delete 4

Imbalance at 3

Perform rotation with 2

Imbalance at 5

Perform rotation with 8

Key Points

● AVL tree remain balanced by applying

rotations, therefore it guarantees O(log N)

search time in a dynamic environment

● Tree can be re-balanced in at most O(log N)

time

Searching AVL Trees

● Searching an AVL tree is exactly the same as

searching a regular binary tree

■ all descendants to the right of a node are greater

than the node

■ all descendants to the left of a node are less than

the node

Inserting in AVL Tree

● Insertion is similar to regular binary tree

■ keep going left (or right) in the tree until a null
child is reached

■ insert a new node in this position

○ an inserted node is always a leaf to start with

● Major difference from binary tree

■ must check if any of the sub-trees in the tree have
become too unbalanced

○ search from inserted node to root looking for any node
with a balance factor of 2

Inserting in AVL Tree

● A few points about tree inserts

■ the insert will be done recursively

■ the insert call will return true if the height of the
sub-tree has changed

○ since we are doing an insert, the height of the sub-tree
can only increase

■ if insert() returns true, balance factor of current
node needs to be adjusted

○ balance factor = height(right) – height(left)

 left sub-tree increases, balance factor decreases by 1

 right sub-tree increases, balance factor increases by 1

■ if balance factor equals 2 for any node, the sub-
tree must be rebalanced

Inserting in AVL Tree

M(-1)

insert(V)
E(1)

J(0)

P(0)

M(0)

E(1)

J(0)

P(1)

V(0)

M(-1)

insert(L)
E(1)

J(0)

P(0)

M(-2)

E(-2)

J(1)

P(0)

L(0)

This tree needs to be fixed!

Re-Balancing a Tree

● To check if a tree needs to be rebalanced

■ start at the parent of the inserted node and journey

up the tree to the root

○ if a node’s balance factor becomes 2 need to do a

rotation in the sub-tree rooted at the node

○ once sub-tree has been re-balanced, guaranteed that the

rest of the tree is balanced as well

 can just return false from the insert() method

■ 4 possible cases for re-balancing

○ only 2 of them need to be considered

 other 2 are identical but in the opposite direction

Let the node that needs rebalancing be .

There are 4 cases:

Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of .

2. Insertion into right subtree of right child of .

Inside Cases (require double rotation) :

3. Insertion into right subtree of left child of .

4. Insertion into left subtree of right child of .

The rebalancing is performed through four separate

rotation algorithms.

Insertions in AVL Trees

j

k

X Y

Z

Consider a valid

AVL subtree

AVL Insertion: Outside Case

h

h
h

j

k

X
Y

Z

Inserting into X

destroys the AVL

property at node j

AVL Insertion: Outside Case

h

h+1 h

j

k

X
Y

Z

Do a “right rotation”

AVL Insertion: Outside Case

h

h+1 h

j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h

j

k

X Y Z

“Right rotation” done!

(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

j

k

X Y

Z

AVL Insertion: Inside Case

Consider a valid

AVL subtree

h

hh

Inserting into Y

destroys the

AVL property

at node j

j

k

X
Y

Z

AVL Insertion: Inside Case

Does “right rotation”

restore balance?

h

h+1h

j

k

X

Y
Z

“Right rotation”

does not restore

balance… now k is

out of balance

AVL Insertion: Inside Case

h
h+1

h

Consider the structure

of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

j

k

X

V

Z

W

i

Y = node i and

subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

j

k

X

V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right

“double rotation” . . .

j

k

X V

Z

W

i

Double rotation : first rotation

left rotation complete

j

k

X V

Z

W

i

Double rotation : second

rotation

Now do a right rotation

jk

X V ZW

i

Double rotation : second

rotation

right rotation complete

Balance has been

restored

hh h or h-1

AVL Trees Example

AVL Trees Example

AVL Trees Example

AVL Trees Example

AVL Trees Example

AVL Trees Example

5/22/2012

3

Example
● Insert 3 into the AVL tree

11

8 20

4 16 27

8

8

11

4 20

3 16 27

5/22/2012

Example
● Insert 5 into the AVL tree

5

11

8 20

4 16 27 8

11

5 20

4 16 27

8

5/22/2012

AVL Trees: Exercise

● Insertion order:

■ 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55

5/22/2012

Deletion X in AVL Trees

● Deletion:

■ Case 1: if X is a leaf, delete X

■ Case 2: if X has 1 child, use it to replace X

■ Case 3: if X has 2 children, replace X with its

inorder predecessor (and recursively delete it)

● Rebalancing

5/22/2012

Delete 55 (case 1)

60

20 70

10 40 65 85

5 15 30 50 80 90

55

5/22/2012

Delete 55 (case 1)

60

20 70

10 40 65 85

5 15 30 50 80 90

55

5/22/2012

Delete 50 (case 2)

60

20 70

10 40 65 85

5 15 30 50 80 90

55

5/22/2012

Delete 50 (case 2)

60

20 70

10 40 65 85

5 15 30
50 80 90

55

5/22/2012

Delete 60 (case 3)

60

20 70

10 40 65 85

5 15 30 50 80 90

55

prev

5/22/2012

Delete 60 (case 3)

55

20 70

10 40 65 85

5 15 30 50 80 90

5/22/2012

Delete 55 (case 3)

55

20 70

10 40 65 85

5 15 30 50 80 90

prev

5/22/2012

Delete 55 (case 3)

50

20 70

10 40 65 85

5 15 30 80 90

5/22/2012

Delete 50 (case 3)

50

20 70

10 40 65 85

5 15 30 80 90

prev

5/22/2012

Delete 50 (case 3)

40

20 70

10 30 65 85

5 15 80 90

5/22/2012

Delete 40 (case 3)

40

20 70

10 30 65 85

5 15 80 90

prev

5/22/2012

Delete 40 : Rebalancing

30

20 70

10 65 85

5 15 80 90

Case ?

5/22/2012

Delete 40: after rebalancing

30

7010

20 65 855

15 80 90

Single rotation is preferred!

5/22/2012

AVL Tree: analysis

● The depth of AVL Trees is at most logarithmic.

● So, all of the operations on AVL trees are also

logarithmic.

● The worst-case height is at most 44 percent

more than the minimum possible for binary

trees.

