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Balanced binary tree

● The disadvantage of a binary search tree is that its height can 

be as large as N-1

● This means that the time needed to perform insertion and 

deletion and many other operations can be O(N) in the worst 

case

● We want a tree with small height

● A binary tree with N node has height at least (log N) 

● Thus, our goal is to keep the height of a binary search tree 

O(log N)

● Such trees are called balanced binary search trees.  Examples 

are AVL tree, red-black tree.



Binary Search Tree - Best Time

● All BST operations are O(h), where d is tree 
depth

● minimum d is                     for a binary tree 
with N nodes

■ What is the best case tree?

■ What is the worst case tree?

● So, best case running time of BST operations 
is O(log N)

2h log N



Binary Search Tree - Worst Time

● Worst case running time is O(N) 

■ What happens when you Insert elements in 
ascending order?

○ Insert: 2, 4, 6, 8, 10, 12 into an empty BST

■ Problem: Lack of “balance”: 

○ compare depths of left and right subtree

■ Unbalanced degenerate tree



Balanced and unbalanced BST
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Approaches to balancing trees

● Don't balance

■ May end up with some nodes very deep

● Strict balance

■ The tree must always be balanced perfectly

● Pretty good balance

■ Only allow a little out of balance

● Adjust on access

■ Self-adjusting



Balancing Binary Search Trees

● Many algorithms exist for keeping binary 

search trees balanced

■ Adelson-Velskii and Landis (AVL) trees

(height-balanced trees) 

■ Splay trees and other self-adjusting trees

■ B-trees and other multiway search trees



AVL Tree is…

● Named after Adelson-Velskii and Landis

● the first dynamically balanced trees to be 

propose

● Binary search tree with balance condition in 

which the sub-trees of each node can differ by 

at most 1 in their height



Definition of a balanced tree

● Ensure the depth = O(log N)

● Take O(log N) time for searching, insertion, 

and deletion

● Every node must have left & right sub-trees of 

the same height



An AVL tree has the following 

properties:

1. Sub-trees of each 

node can differ by 

at most 1 in their 

height

2. Every sub-trees is 

an AVL tree



AVL tree?

YES
Each left sub-tree has 

height 1 greater than each 

right sub-tree

NO
Left sub-tree has height 3, 

but right sub-tree has height 

1



AVL tree

Height of a node

● The height of a leaf is 1.  The height of a null 

pointer is zero.

● The height of an internal node is the maximum 

height of its children plus 1

Note that this definition of height is different from the one we 

defined previously (we defined the height of a leaf as zero 

previously).



AVL Trees
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AVL Trees
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Height of an AVL Tree

● Fact: The height of an AVL tree storing n keys is O(log n).

● Proof: Let us bound n(h): the minimum number of internal nodes 
of an AVL tree of height h.

● We easily see that n(1) = 1 and n(2) = 2

● For n > 2, an AVL tree of height h contains the root node, one AVL 
subtree of height n-1 and another of height n-2.

● That is, n(h) = 1 + n(h-1) + n(h-2)

● Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So

n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),

n(h) > 2in(h-2i)

● Solving the base case we get: n(h) > 2 h/2-1

● Taking logarithms: h < 2log n(h) +2

● Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)



AVL - Good but not Perfect 

Balance

● AVL trees are height-balanced binary search 
trees

● Balance factor of a node

■ height(left subtree) - height(right subtree)

● An AVL tree has balance factor calculated at 
every node

■ For every node, heights of left and right subtree 
can differ by no more than 1

■ Store current heights in each node



Height of an AVL Tree

● N(h) = minimum number of nodes in an AVL 
tree of height h.

● Basis

■ N(0) = 1, N(1) = 2

● Induction

■ N(h) = N(h-1) + N(h-2) + 1

● Solution (recall Fibonacci analysis)

■ N(h) > h ( 1.62)

h-1
h-2

h



Height of an AVL Tree

● N(h) > h ( 1.62)

● Suppose we have n nodes in an AVL tree of 

height h.

■ n > N(h) (because N(h) was the minimum)

■ n > h hence log n > h (relatively well balanced 

tree!!)

■ h < 1.44 log2n (i.e., Find takes O(log n))



Insertion

Insert 6

Imbalance at 8

Perform rotation with 7



Deletion

Delete 4

Imbalance at 3

Perform rotation with 2

Imbalance at 5

Perform rotation with 8



Key Points

● AVL tree remain balanced by applying 

rotations, therefore it guarantees O(log N)

search time in a dynamic environment

● Tree can be re-balanced in at most O(log N)

time



Searching AVL Trees

● Searching an AVL tree is exactly the same as 

searching a regular binary tree

■ all descendants to the right of a node are greater 

than the node

■ all descendants to the left of a node are less than 

the node



Inserting in AVL Tree

● Insertion is similar to regular binary tree

■ keep going left (or right) in the tree until a null 
child is reached

■ insert a new node in this position

○ an inserted node is always a leaf to start with

● Major difference from binary tree

■ must check if any of the sub-trees in the tree have 
become too unbalanced

○ search from inserted node to root looking for any node 
with a balance factor of 2



Inserting in AVL Tree

● A few points about tree inserts

■ the insert will be done recursively

■ the insert call will return true if the height of the 
sub-tree has changed

○ since we are doing an insert, the height of the sub-tree 
can only increase

■ if insert() returns true, balance factor of current 
node needs to be adjusted

○ balance factor = height(right) – height(left)

 left sub-tree increases, balance factor decreases by 1

 right sub-tree increases, balance factor increases by 1

■ if balance factor equals 2 for any node, the sub-
tree must be rebalanced



Inserting in AVL Tree
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This tree needs to be fixed!



Re-Balancing a Tree

● To check if a tree needs to be rebalanced

■ start at the parent of the inserted node and journey 

up the tree to the root

○ if a node’s balance factor becomes 2 need to do a 

rotation in the sub-tree rooted at the node

○ once sub-tree has been re-balanced, guaranteed that the 

rest of the tree is balanced as well

 can just return false from the insert() method

■ 4 possible cases for re-balancing

○ only 2 of them need to be considered

 other 2 are identical but in the opposite direction



Let the node that needs rebalancing be .

There are 4 cases:

Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of .

2. Insertion into right subtree of right child of .

Inside Cases (require double rotation) :

3. Insertion into right subtree of left child of .

4. Insertion into left subtree of right child of .

The rebalancing is performed through four separate 

rotation algorithms.

Insertions in AVL Trees
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Inserting into X

destroys the AVL 

property at node j
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Do a “right rotation”
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Do a “right rotation”

Single right rotation
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k

X Y Z

“Right rotation” done!

(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!
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AVL Insertion: Inside Case

Consider a valid

AVL subtree

h
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Inserting into Y 

destroys the

AVL property

at node j 
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AVL Insertion: Inside Case

Does “right rotation”

restore balance?
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“Right rotation”

does not restore

balance… now k is

out of balance

AVL Insertion: Inside Case

h
h+1

h



Consider the structure

of subtree Y… j
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AVL Insertion: Inside Case
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AVL Insertion: Inside Case

We will do a left-right 

“double rotation” . . .
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Double rotation : first rotation

left rotation complete
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Double rotation : second 

rotation

Now do a right rotation
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Double rotation : second 

rotation

right rotation complete

Balance has been 

restored

hh h or h-1



AVL Trees Example
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AVL Trees Example
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Example
● Insert 3 into the AVL tree
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Example
● Insert 5 into the AVL tree

5

11

8 20

4 16 27 8

11

5 20

4 16 27
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AVL Trees: Exercise

● Insertion order:

■ 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55
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Deletion X in AVL Trees

● Deletion:

■ Case 1: if X is a leaf, delete X

■ Case 2: if X has 1 child, use it to replace X

■ Case 3: if X has 2 children, replace X with its 

inorder predecessor (and recursively delete it)

● Rebalancing



5/22/2012

Delete 55 (case 1)

60

20 70

10 40 65 85

5 15 30 50 80 90

55
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Delete 55 (case 1)

60

20 70

10 40 65 85

5 15 30 50 80 90

55
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Delete 50 (case 2)

60

20 70

10 40 65 85

5 15 30 50 80 90

55
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Delete 50 (case 2)

60

20 70

10 40 65 85

5 15 30
50 80 90

55
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Delete 60 (case 3)

60

20 70

10 40 65 85

5 15 30 50 80 90

55

prev
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Delete 60 (case 3)

55

20 70

10 40 65 85

5 15 30 50 80 90
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Delete 55 (case 3)

55

20 70

10 40 65 85

5 15 30 50 80 90

prev



5/22/2012

Delete 55 (case 3)

50

20 70

10 40 65 85

5 15 30 80 90
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Delete 50 (case 3)

50

20 70

10 40 65 85

5 15 30 80 90

prev
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Delete 50 (case 3)

40

20 70

10 30 65 85

5 15 80 90
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Delete 40 (case 3)

40

20 70

10 30 65 85

5 15 80 90

prev
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Delete 40 : Rebalancing

30

20 70

10 65 85

5 15 80 90

Case ?
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Delete 40: after rebalancing

30

7010

20 65 855

15 80 90

Single rotation is preferred!
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AVL Tree: analysis 

● The depth of AVL Trees is at most logarithmic.

● So, all of the operations on AVL trees are also 

logarithmic.

● The worst-case height is at most 44 percent 

more than the minimum possible for binary 

trees.


