Algorithms

AVL Tree



Balanced binary tree

The disadvantage of a binary search tree is that its height can
be as large as N-1

This means that the time needed to perform insertion and
deletion and many other operations can be O(N) in the worst
case

We want a tree with small height
A binary tree with N node has height ®(log N)

Thus, our goal is to keep the height of a binary search tree
O(log N)

Such trees are called binary search trees. Examples
are AVL tree, red-black tree.



Binary Search Tree - Best Time

e All BST operations are O(h), where d Is tree
depth
e minimumdis h=|log,N ffor a binary tree
with N nodes
m \What Is the best case tree?
m \What iIs the worst case tree?

e S0, best case running time of BST operations
IS O(log N)



Binary Search Tree - Worst Time

e Worst case running time is O(N)

= What happens when you Insert elements in
ascending order?

o Insert: 2, 4, 6, 8, 10, 12 into an empty BST

= Problem: Lack of “balance”:
o compare depths of left and right subtree

= Unbalanced degenerate tree






Approaches to balancing trees

e Don't balance
= May end up with some nodes very deep

e Strict balance
= The tree must always be balanced perfectly

e Pretty good balance
= Only allow a little out of balance

e Adjust on access
= Self-adjusting



Balancing Binary Search Trees

e Many algorithms exist for keeping binary
search trees balanced

= Adelson-Velskii and Landis (AVL) trees
(height-balanced trees)

m Splay trees and other self-adjusting trees
m B-trees and other multiway search trees



AVL Tree is...

e Named after Adelson-Velskii and Landis
e the first dynamically balanced trees to be
propose

e Binary search tree with balance condition In
which the sub-trees of each node can differ by
at most 1 in their height




Definition of a balanced tree

e Ensure the depth = O(log N)

e Take O(log N) time for searching, insertion,
and deletion

e Every node must have left & right sub-trees of
the same height



An AVL tree has the following
properties:

1. Sub-trees of each
node can differ by
at most 1 In their l f

height e
2. Every sub-trees is i l
an AVL tree




AVL tree?

Each left sub-tree has
height 1 greater than each
right sub-tree

NO
Left sub-tree has height 3,

but right sub-tree has height
1



AVL tree

Height of a node

e The height of a leaf is 1. The height of a null
pointer IS zero.

e The height of an internal node Is the maximum
height of Its children plus 1

Note that this definition of height is different from the one we

defined previously (we defined the height of a leaf as zero
previously).






AVL Trees




AVL Tree

o

AVL Tree
o@iko
/

@ Not an AVL Tree

AVL Tree



Height of an AVL Tree

e Fact: The height of an AVL tree storing n keys is O(log n).

e Proof: Let us bound n(h): the minimum number of internal nodes
of an AVL tree of height h.

e We easily see thatn(1) =1and n(2) =2

e Forn> 2, an AVL tree of height h contains the root node, one AVL
subtree of height n-1 and another of height n-2.

e Thatis, n(h) =1+ n(h-1) + n(h-2)

e Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So

n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction),
n(h) > 2in(h-2i)

e Solving the base case we get: n(h) > 2 "1

e Taking logarithms: h < 2log n(h) +2

e Thus the height of an AVL tree is O(log n)



AVL - Good but not Perfect
Balance

e AVL trees are height-balanced binary search
trees

e Balance factor of a node
m height(left subtree) - height(right subtree)

e An AVL tree has balance factor calculated at
every node

m For every node, heights of left and right subtree
can differ by no more than 1

= Store current heights in each node



Height of an AVL Tree

e N(h) = minimum number of nodes in an AVL
tree of height h.

e Basis
a N(0) =1, N(1) =2
¢ Induction
s N(h) = N(h-1) + N(h-2) +1

e Solution (recall Fibonacci analysis)
a N(h) > 0" (¢~ 1.62) A

h




Height of an AVL Tree

e N(h) >¢" (¢~1.62)

e Suppose we have n nodes in an AVL tree of
height h.
m N > N(h) (because N(h) was the minimum)

= N > ¢" hence log, n > h (relatively well balanced
tree!!)

s h <1.44log,n (i.e., Find takes O(log n))




Insertion

Insert 6

/ ) ©
Imbalance at 8

Perform rotation with 7

F [}
& LY
& L
i L1

J



Deletion

Delete 4

Imbalance at 3
Perform rotation with 2

Imbalance at 5 ()
Perform rotation with 8




Key Points

e AVL tree remain balanced by applying
rotations, therefore it guarantees O(log N)
search time in a dynamic environment

e Tree can be re-balanced in at most O(log N)
time



Searching AVL Trees

e Searching an AVL tree is exactly the same as
searching a regular binary tree

= all descendants to the right of a node are greater
than the node

= all descendants to the left of a node are less than
the node



Inserting in AVL Tree

e Insertion is similar to regular binary tree

= keep going left (or right) in the tree until a null
child is reached

= Insert a new node in this position
o an inserted node is always a leaf to start with

e Major difference from binary tree
m must check If any of the sub-trees in the tree have

become too unbalanced

o search from inserted node to root looking for any node
with a balance factor of 2



Inserting in AVL Tree

e A TEW POINTS abOUT tree mserts

= the insert will be done recursively

= the Insert call will return true if the height of the
sub-tree has changed
o since we are doing an insert, the height of the sub-tree
can only increase
m If Insert() returns true, balance factor of current
node needs to be adjusted

o balance factor = height(right) — height(left)
o left sub-tree increases, balance factor decreases by 1
o right sub-tree increases, balance factor increases by 1
= If balance factor equals 2 for any node, the sub-
tree must be rebalanced



Inserting In AVL Tree
) o,
@ @ insert(V) @ @

This tree needs to be fixed!



Re-Balancing a Tree

e To check If a tree needs to be rebalanced

= start at the parent of the inserted node and journey
up the tree to the root

o if a node’s balance factor becomes 2 needto do a
rotation in the sub-tree rooted at the node

o once sub-tree has been re-balanced, guaranteed that the
rest of the tree is balanced as well
& can just return false from the insert() method

m 4 possible cases for re-balancing

o only 2 of them need to be considered
o other 2 are identical but in the opposite direction



Insertions In AVL Trees

Let the node that needs rebalancing be «.

There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child of «.
2. Insertion into right subtree of right child of .

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of «.
4. Insertion into left subtree of right child of «.

The rebalancing is performed through four separate
rotation algorithms.



AVL Insertion: Outside Case

Consider a valid
AVL subtree




AVL Insertion: Outside Case

Inserting into X
destroys the AVL
property at node |




AVL Insertion: Outside Case

Do a “right rotation”




Sinagle right rotation

Do a “right rotation”




Outside Case Completed

“Right rotation” done!
(“Left rotation” is mirror
symmetric)

AVL property has been restored!



AVL Insertion: Inside Case

Consider a valid
AVL subtree




AVL Insertion: Inside Case

Does °right rotation”

Inserting into Y
restore balance?

destroys the
AVL property
at node |




AVL Insertion: Inside Case

“Right rotation”
does not restore
balance... now Kk is
out of balance




AVL Insertion: Inside Case

Consider the structure
of subtree Y...




AVL Insertion: Inside Case

Y = node | and
subtrees V and W




AVL Insertion: Inside Case

\

, We will do a left-right
“double rotation” . . .




Double rotation : first rotation

left rotation complete




Double rotation : second
rotation

Now do a right rotation




Double rotation : second
rotation

right rotation complete

Balance has been
restored




Insert 3‘

AVL Trees Example

Insert 2

Insert 1| (non-AVL) AVL

’;E)

&9

‘311121& (D}z%

rotation



AVL Trees Example

Insert 4 Insert 5| (non-AVL)

4 3\ Single
rotation
\




AVL Trees Example

Insert 6 (non-AVL) AVL Insert 7/ (non-AVL)

/ N\
s X\O\ (&)
@{ D i
()




AVL Trees Example

Insert 16

Insert 15

‘-311121&
rotation o o

(nun AVL)




AVL Trees Example

Step 1: Rotate child and grandchild Step 2: Rotate node and new child (AVL

> of
Dole \ (¢,
DO W O S0d &

(5, O ®




AVL Trees Example

Insert 14 (non-AVL) Step 1: Rotate child and Step 2: Rotate node and
grandchild new child (AVL)

@ ©)

o Y = 39/ 0 o
®b\. & QNG

@ ONNCES
0




Example
e lnsert 3 into the AN/l _tree

a>




Example
—a lnsert 5 into the AN/ tree




AVL Trees: Exercise

e Insertion order:
m 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55



Deletion X in AVL Trees

e Deletion:
m Case 1: If X is a leaf, delete X
m Case 2: iIf X has 1 child, use it to replace X

m Case 3: If X has 2 children, replace X with its
Inorder predecessor (and recursively delete it)

e Rebalancing

5/22/2012



Delete 55 (case 1)




Delete 55 (case 1)




Delete 50 (case 2)




Delete 50 (case 2)




Delete 60 (case 3)




Delete 60 (case 3)




Delete 55 (case 3)

prev




Delete 55 (case 3)




Delete 50 (case 3)




Delete 50 (case 3)




Delete 40 (case 3)




Delete 40 : Rebalancing

5/22/2012



Delete 40: after rebalancing

Single rotation Is preferred!



AVL Tree: analysis

e The depth of AVL Trees Is at most logarithmic.

e S0, all of the operations on AVL trees are also
logarithmic.

e The worst-case height Is at most 44 percent
more than the minimum possible for binary
trees.



