CHEM - 750

Advanced Organic synthesis

Dr. Humaira Yasmeen Gondal

Department of Chemistry
University of Sargodha

C-C BOND FORMATION

Carbanion:

By the removal of a proton from a carbon by a Bronsted base.

$$R-CH_3 + B^- \longrightarrow R-CH_2 + BH$$

Enolate anion:

By the removal of a proton from a carbon alpha to a carbonyl group.

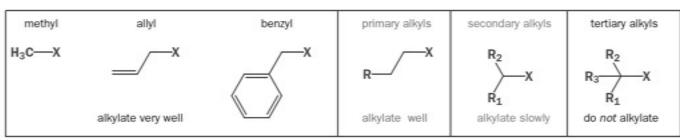
$$R \xrightarrow{CH_3} \longrightarrow R \xrightarrow{CH_2} \longrightarrow R \xrightarrow{CH_2}$$

Formation of enolate depends

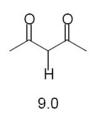
Condition:

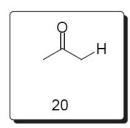
Acidity of C-H bond, Base

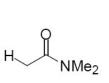
Acidity of C-H bond greater than the acidity of conjugate acid of the base used for deprotonation


The acidity of C-H bond depends on the functional group attached to it. The order of acidity,

C-Alkylation


Factors effecting C-alkylation


- solvent
- base
- cation
- temperature



Some important substrates & Bases

lithium diisopropylamide

lithium tetramethylpiperidide LTMP

lithium hexamethyldisilazide LHMDS

BuLi

Alkoxides

NaH, KH

Regioselectivity in Enolate Formation

Kinetic vs. thermodynamic control

Regioselectivity in Enolate Formation

factors favouring the formation of the kinetic	factors favouring the formation of the		
enolate	thermodynamic enolate		
aprotic solvents e.g. THF, Et ₂ O (no acidic proton to encourage the reverse reaction)	protic solvents e.g. ROH which have slightly more acidic protons than the enolate and favour formation of the enol allowing tautomerisation to the ketone (i.e. the reverse reaction)		
strong bases e.g. LDA (which generate a weak conjugate acid (e.g. ⁱ Pr ₂ NH) specifically one which is less acidic than the enolate product).	weaker bases which provide a relatively strong conjugate acid.		
oxophilic cations e.g. Li			
low temperature (e.g. < -78 °C)	higher temperature		
short reaction times	long reaction times		
All these conditions suppress equilibration and ensure the reaction is essentially irreversible.	All these conditions encourage the reverse reaction		

Kinetic vs. Thermodynamic Control

base	temp	ratio (A/B)	control
LiN(i-C ₃ H ₇) ₂	0 °C	99:1	kinetic
KN(SiMe ₃) ₂	- 78 °C	95:5	kinetic
Ph ₃ CLi	-78 °C	90:10	kinetic
Ph ₃ CK	25 °C	67:33	kinetic
Ph ₃ CK	25 °C	38:62	thermodynamic
NaH	25 °C	26:74	thermodynamic
Ph ₃ CLi	25 °C	10:90	thermodynamic

Enolates: Ambident Nucleophiles

O-alkylation (charge control)

Prevalent in polar, aprotic solvents

· Predominant with hard leaving groups

- Metal chelators are effective additives
- · Favored by an early transition state, where charge distribution is the most important factor
- ·Favored by conditions that afford a dissociated, more reactive enolate
- C-alkylation (orbital control)
- · Predominant with soft leaving groups

- Favors smaller, harder cations due to tighter coordination
- · Favored by a later transition state, where partial bond formation is the dominant factor
 - Prevalent in protic & apolar solvents

· More stable than the O-alkylation product

Dissociation vs. clustering of ions

- O-alkylation is prevalent when the enolate is dissociated
- C-alkylation is prevalent where ion clustering occurs

В Δ C В C solvent Α **HMPA** 15% 2% 83% t-BuOH 94% 6% 0% THF 94% 6% 0%

- HMPA promotes ion dissociation, favoring O-alkylation
- THF promotes ion clustering, favoring C-alkylation
- · t-BuOH hydrogen-bonds with enolate anion, favoring C-alkylation

Nature of the Leaving Group

X	Α	В	С
OTs	11%	1%	88%
CI	32%	8%	60%
Br	38%	23%	39%
1	71%	16%	13%

- Hard---OTs > CI > Br > I---Soft
- Greater O-alkylation is observed with harder electrophiles
- Greater C-alkylation is observed with softer nucleophiles

Orbital Overlap (Baldwin's Suggestions)

For enolate cyclizations, orbital overlap is imperative