

What is logic?

- Logic is an "algebra" for manipulating only two values: true (T) and false (F)
- Nevertheless, logic can be quite challenging
- This talk will cover:
 - Propositional logic--the simplest kind
 - Predicate logic (predicate calculus)--an extension of propositional logic
 - Resolution theory--a general way of doing proofs in predicate logic
 - Possibly: Conversion to clause form
 - Possibly: Other logics (just to make you aware that they exist)

Propositional logic

- Propositional logic consists of:
 - The logical values true and false (T and F)
 - Propositions: "Sentences," which
 - Are atomic (that is, they must be treated as indivisible units, with no internal structure), and
 - Have a single logical value, either true or false
 - Operators, both unary and binary; when applied to logical values, yield logical values
 - The usual operators are and, or, not, and implies

Truth tables

- Logic, like arithmetic, has operators, which apply to one, two, or more values (operands)
- A truth table lists the results for each possible arrangement of operands
 - Order is important: x op y may or may not give the same result as y op x
- The rows in a truth table list all possible sequences of truth values for n operands, and specify a result for each sequence
 - Hence, there are 2ⁿ rows in a truth table for n operands

There are four possible unary operators:

Х	Constant true, (T)	X	Identity, (X)
Т	Т	т	Т
F	т	F	F
X	Constant false, (F)	X	Negation, ¬X
X T	Constant false, (F) F	X T	Negation, ¬X F

Only the last of these (negation) is widely used (and has a symbol, ¬, for the operation

Combined tables for unary operators

Х	Constant T	Constant F	Identity	¬X
Т	Т	F	Т	F
F	Т	F	F	т

There are sixteen possible binary operators:

- All these operators have names, but I haven't tried to fit them in
- Only a few of these operators are normally used in logic

Useful binary operators

Here are the binary operators that are traditionally used:

		AND	OR	IMPLIES	BICONDITIONAL
Χ	Y	$X \wedge Y$	$X \lor Y$	$X \Rightarrow Y$	$X \Leftrightarrow Y$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	F	т	т	F
F	F	F	F	т	Т

- Notice in particular that material implication (⇒) only approximately means the same as the English word "implies"
- All the other operators can be constructed from a combination of these (along with unary not, ¬)

Logical expressions

- All logical expressions can be computed with some combination of and (^), or (v), and not (¬) operators
- For example, logical implication can be computed this way:

• Notice that $\neg X \lor Y$ is equivalent to $X \Rightarrow Y$

Another example

Exclusive or (xor) is true if exactly one of its operands is true

• Notice that $(\neg X \land Y) \lor (X \land \neg Y)$ is equivalent to X xor Y

Worlds

- A world is a collection of prepositions and logical expressions relating those prepositions
- Example:
 - Propositions: JohnLovesMary, MaryIsFemale, MaryIsRich
 - Expressions:
 MaryIsFemale ∧ MaryIsRich ⇒ JohnLovesMary
- A proposition "says something" about the world, but since it is atomic (you can't look inside it to see component parts), propositions tend to be very specialized and inflexible

Models

A model is an assignment of a truth value to each proposition, for example:

- JohnLovesMary: T, MaryIsFemale: T, MaryIsRich: F
- An expression is satisfiable if there is a model for which the expression is true
 - For example, the above model satisfies the expression
 MaryIsFemale ∧ MaryIsRich ⇒ JohnLovesMary
- An expression is valid if it is satisfied by every model
 - This expression is *not* valid: MarylsFemale ∧ MarylsRich ⇒ JohnLovesMary because it is not satisfied by this model: JohnLovesMary: F, MarylsFemale: T, MarylsRich: T
 - But this expression *is* valid: MaryIsFemale ∧ MaryIsRich ⇒ MaryIsFemale

Inference rules in propositional logic

Here are just a few of the rules you can apply when reasoning in propositional logic:

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Implication elimination

• A particularly important rule allows you to get rid of the implication operator, \Rightarrow :

 $^{\bullet} X \Longrightarrow Y \equiv \neg X \lor Y$

- We will use this later on as a necessary tool for simplifying logical expressions
- The symbol \equiv means "is logically equivalent to"

Conjunction elimination

- Another important rule for simplifying logical expressions allows you to get rid of the conjunction (and) operator, ∧ :
- This rule simply says that if you have an **and** operator at the top level of a fact (logical expression), you can break the expression up into two separate facts:
 - MaryIsFemale MaryIsRich
 - becomes:
 - MaryIsFemale
 - MarylsRich

Inference by computer

- To do inference (reasoning) by computer is basically a *search* process, taking logical expressions and applying inference rules to them
 - Which logical expressions to use?
 - Which inference rules to apply?
- Usually you are trying to "prove" some particular statement
- Example:
 - it_is_raining v it_is_sunny
 - it_is_sunny \Rightarrow l_stay_dry
 - it_is_rainy \Rightarrow I_take_umbrella
 - I_take_umbrella ⇒ I_stay_dry
 - To prove: l_stay_dry

Forward and backward reasoning

- Situation: You have a collection of logical expressions (premises), and you are trying to prove some additional logical expression (the conclusion)
- You can:
 - Do forward reasoning: Start applying inference rules to the logical expressions you have, and stop if one of your results is the conclusion you want
 - Do backward reasoning: Start from the conclusion you want, and try to choose inference rules that will get you back to the logical expressions you have
- With the tools we have discussed so far, *neither* is feasible

Example

- Given:
 - it_is_raining v it_is_sunny
 - it_is_sunny \Rightarrow I_stay_dry
 - it_is_raining \Rightarrow I_take_umbrella
 - I_take_umbrella ⇒ I_stay_dry
- You can conclude:
 - it_is_sunny v it_is_raining
 - I_take_umbrella v it_is_sunny
 - \neg I_stay_dry \Rightarrow I_take_umbrella
 - Etc., etc. ... there are *just too many* things you can conclude!

Predicate Calculus

Predicate calculus

- Predicate calculus is also known as "First Order Logic" (FOL)
- Predicate calculus includes:
 - All of propositional logic
 - Logical values true, false
 - Variables x, y, a, b,...
 - Connectives $\neg, \Rightarrow, \land, \lor, \Leftrightarrow$
 - Constants
 - Predicates
 - Functions
 - Quantifiers

- KingJohn, 2, Villanova,...
- Brother, >,...
 - Sqrt, MotherOf,...

Constants, functions, and predicates

- A constant represents a "thing"--it has no truth value, and it does not occur "bare" in a logical expression
 - Examples: DavidMatuszek, 5, Earth, goodldea
- Given zero or more arguments, a function produces a constant as its value:
 - Examples: motherOf(DavidMatuszek), add(2, 2), thisPlanet()
- A predicate is like a function, but produces a truth value
 - Examples: greatInstructor(DavidMatuszek), isPlanet(Earth), greater(3, add(2, 2))

Universal quantification

- The universal quantifier, ∀, is read as "for each" or "for every"
 - Example: ∀x, x² ≥ 0 (for all x, x² is greater than or equal to zero)
- Typically, ⇒ is the main connective with ∀:
 ∀x, at(x,Villanova) ⇒ smart(x)
 means "Everyone at Villanova is smart"
- Common mistake: using ∧ as the main connective with ∀:
 ∀x, at(x,Villanova) ∧ smart(x)

means "Everyone is at Villanova and everyone is smart"

- If there are no values satisfying the condition, the result is true
 - Example: $\forall x$, isPersonFromMars(x) \Rightarrow smart(x) is true

Existential quantification

- The existential quantifier, ∃, is read "for some" or "there exists"
 - Example: ∃x, x² < 0 (there exists an x such that x² is less than zero)
- Typically, ∧ is the main connective with ∃:
 ∃x, at(x,Villanova) ∧ smart(x)

means "There is someone who is at Villanova and is smart"

Common mistake: using \Rightarrow as the main connective with \exists : $\exists x, at(x, Villanova) \Rightarrow smart(x)$

This is true if there is someone at Villanova who is smart...

...but it is also true if there is someone who is *not* at Villanova

By the rules of material implication, the result of $F \implies T$ is T

Properties of quantifiers

- $\forall x \forall y \text{ is the same as } \forall y \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is } not \text{ the same as } \forall y \exists x$
- $\exists x \forall y Loves(x,y)$
 - "There is a person who loves everyone in the world"
 - More exactly: $\exists x \forall y (person(x) \land person(y) \Rightarrow Loves(x,y))$
- ∀y ∃x Loves(x,y)
 - "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- Vx Likes(x, IceCream)
- ∃x Likes(x,Broccoli)

 $\neg \exists x \neg Likes(x, IceCream)$ $\neg \forall x \neg Likes(x, Broccoli)$

Parentheses

- Parentheses are often used with quantifiers
- Unfortunately, everyone uses them differently, so don't be upset at any usage you see
- Examples:
 - $(\forall x) \text{ person}(x) \Rightarrow \text{likes}(x, \text{iceCream})$
 - $(\forall x) (person(x) \Rightarrow likes(x, iceCream))$
 - $(\forall x) [person(x) \Rightarrow likes(x, iceCream)]$
 - $\forall x, person(x) \Rightarrow likes(x, iceCream)$
 - $\forall x \text{ (person}(x) \Rightarrow \text{likes}(x, \text{iceCream}))$
- I prefer parentheses that show the scope of the quantifier
 - $\exists x (x > 0) \land \exists x (x < 0)$

More rules

- Now there are numerous additional rules we can apply!
- Here are two exceptionally important rules:
 - ¬∀x, p(x) ⇒ ∃x, ¬p(x)
 "If not every x satisfies p(x), then there exists a x that does not satisfy p(x)"
 - ¬∃x, p(x) ⇒ ∀x, ¬p(x)
 "If there does not exist an x that satisfies p(x), then all x do not satisfy p(x)"
- In any case, the search space is *just too large* to be feasible
- This was the case until 1970, when J. Robinson discovered resolution

Interlude: Definitions

- syntax: defines the formal structure of sentences
- semantics: determines the truth of sentences wrt (with respect to) models
- entailment: one statement entails another if the truth of the first means that the second must also be true
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Resolution

Logic by computer was infeasible

- Why is logic so hard?
 - You start with a large collection of facts (predicates)
 - You start with a large collection of possible transformations (rules)
 - Some of these rules apply to a single fact to yield a new fact
 - Some of these rules apply to a pair of facts to yield a new fact
 - So at every step you must:
 - Choose some rule to apply
 - Choose one or two facts to which you might be able to apply the rule
 - If there are n facts
 - There are **n** potential ways to apply a single-operand rule
 - There are n * (n 1) potential ways to apply a two-operand rule
 - Add the new fact to your ever-expanding fact base
 - The search space is huge!

The magic of resolution

Here's how resolution works:

- You transform each of your facts into a particular form, called a clause (this is the tricky part)
- You apply a *single rule*, the resolution principle, to a pair of clauses
 - Clauses are closed with respect to resolution--that is, when you resolve two clauses, you get a new clause
- You add the new clause to your fact base
- So the number of facts you have grows linearly
 - You still have to choose a pair of facts to resolve
 - You never have to choose a rule, because there's only one

The fact base

- A fact base is a collection of "facts," expressed in predicate calculus, that are presumed to be true (valid)
- These facts are implicitly "anded" together
- Example fact base:
 - seafood(X) \Rightarrow likes(John, X) (where X is a variable)
 - seafood(shrimp)
 - $pasta(X) \Rightarrow \neg likes(Mary, X)$ (where X is a *different* variable)
 - pasta(spaghetti)
- That is,
 - (seafood(X) ⇒ likes(John, X)) ∧ seafood(shrimp) ∧ (pasta(Y) ⇒ ¬likes(Mary, Y)) ∧ pasta(spaghetti)
 - Notice that we had to change some Xs to Ys
 - The scope of a variable is the single fact in which it occurs

Clause form

- A clause is a disjunction ("or") of zero or more literals, some or all of which may be negated
- Example: sinks(X) v dissolves(X, water) v ¬denser(X, water)
- Notice that clauses use only "or" and "not"—they do not use "and," "implies," or either of the quantifiers "for all" or "there exists"
- The impressive part is that any predicate calculus expression can be put into clause form
 - Existential quantifiers, ∃, are the trickiest ones

Unification

- From the pair of facts (not yet clauses, just facts):
 - seafood(X) \Rightarrow likes(John, X) (where X is a variable)
 - seafood(shrimp)
- We ought to be able to conclude
 - likes(John, shrimp)
- We can do this by unifying the variable X with the constant shrimp
 - This is the *same* "unification" as is done in Prolog
- This unification turns seafood(X) ⇒ likes(John, X) into seafood(shrimp) ⇒ likes(John, shrimp)
- Together with the given fact seafood(shrimp), the final deductive step is easy

The resolution principle

- Here it is:
 - From X ∨ someLiterals and ¬X ∨ someOtherLiterals

conclude: someLiterals v someOtherLiterals

- That's all there is to it!
- Example:
 - broke(Bob) v well-fed(Bob)
 broke(Bob) v ¬hungry(Bob)

well-fed(Bob) \vee \ngry(Bob)

A common error

- You can only do *one* resolution at a time
- Example:
 - broke(Bob) v well-fed(Bob) v happy(Bob)
 ¬broke(Bob) v ¬hungry(Bob) v ¬happy(Bob)
- You can resolve on broke to get:
 - well-fed(Bob) \vdot happy(Bob) \vdot \number hungry(Bob) \vdot \number happy(Bob) \equiv T
- Or you can resolve on happy to get:
 - broke(Bob) \vdot well-fed(Bob) \vdot \sigma broke(Bob) \vdot \sigma hungry(Bob) \equiv T
- Note that both legal resolutions yield a tautology (a trivially true statement, containing X v ¬X), which is correct but useless
- But you *cannot* resolve on both at once to get:
 - well-fed(Bob) v ¬hungry(Bob)

Contradiction

- A special case occurs when the result of a resolution (the resolvent) is empty, or "NIL"
- Example:
 - hungry(Bob)
 hungry(Bob)

NIL

- In this case, the fact base is inconsistent
- This will turn out to be a very useful observation in doing resolution theorem proving

A first example

- "Everywhere that John goes, Rover goes. John is at school."
 - $at(John, X) \Rightarrow at(Rover, X)$ (not yet in clause form)
 - at(John, school) (already in clause form)
- We use implication elimination to change the first of these into clause form:
 - \neg at(John, X) \lor at(Rover, X)
 - at(John, school)
- We can resolve these on at(-, -), but to do so we have to unify X with school; this gives:
 - at(Rover, school)

Refutation resolution

- The previous example was easy because it had very few clauses
- When we have a lot of clauses, we want to *focus* our search on the thing we would like to prove
- We can do this as follows:
 - Assume that our fact base is **consistent** (we can't derive NIL)
 - Add the *negation* of the thing we want to prove to the fact base
 - Show that the fact base is now inconsistent
 - Conclude the thing we want to prove

Example of refutation resolution

- "Everywhere that John goes, Rover goes. John is at school.
 Prove that Rover is at school."
 - 1. \neg at(John, X) \lor at(Rover, X)
 - 2. at(John, school)
 - \neg at(Rover, school) (this is the added clause)
- Resolve #1 and #3:
 - 4. ¬at(John, X)
- Resolve #2 and #4:
 - 5. **NIL**
- Conclude the negation of the added clause: at(Rover, school)
- This seems a roundabout approach for such a simple example, but it works well for larger problems

A second example

- Start with:
 - it_is_raining v it_is_sunny
 - it_is_sunny \Rightarrow l_stay_dry
 - it_is_raining \Rightarrow I_take_umbrella
 - I_take_umbrella ⇒ I_stay_dry
- Convert to clause form:
 - 1. it_is_raining \lor it_is_sunny
 - 2. \neg it_is_sunny \lor l_stay_dry
 - 3. ¬it_is_raining ∨ I_take_umbrella
 - 4. ¬I_take_umbrella ∨ I_stay_dry
- Prove that I stay dry:
 - 5. ¬I_stay_dry

- Proof:
 - 6. (5, 2) ¬it_is_sunny
 - 7. (6, 1) it_is_raining
 - 8. (5, 4) ¬I_take_umbrella
 - 9. (8, 3) ¬it_is_raining
 - 10. **(9, 7)** NIL
- Therefore, ¬(¬l_stay_dry)
 - I_stay_dry

A nine-step process

Reference: Artificial Intelligence, by Elaine Rich and Kevin Knight

Running example

- All Romans who know Marcus either hate Caesar or think that anyone who hates anyone is crazy
- ▼x, [Roman(x) ∧ know(x, Marcus)] ⇒
 [hate(x, Caesar) ∨
 (∀y, ∃z, hate(y, z) ⇒ thinkCrazy(x, y))]

Step 1: Eliminate implications

- Use the fact that $x \Rightarrow y$ is equivalent to $\neg x \lor y$
- ▼x, [Roman(x) ∧ know(x, Marcus)] ⇒
 [hate(x, Caesar) ∨
 (∀y, ∃z, hate(y, z) ⇒ thinkCrazy(x, y))]
- ∀x, ¬[Roman(x) ∧ know(x, Marcus)] ∨ [hate(x, Caesar) ∨ (∀y, ¬(∃z, hate(y, z) ∨ thinkCrazy(x, y))]

Step 2: Reduce the scope of \neg

- Reduce the scope of negation to a single term, using:
 - $\neg (\neg p) \equiv p$
 - $\neg(a \land b) \equiv (\neg a \lor \neg b)$
 - $\neg(a \lor b) \equiv (\neg a \land \neg b)$
 - $\neg \forall x, p(x) \equiv \exists x, \neg p(x)$
 - $\neg \exists x, p(x) \equiv \forall x, \neg p(x)$
- ∀x, ¬[Roman(x) ∧ know(x, Marcus)] ∨ [hate(x, Caesar) ∨ (∀y, ¬(∃z, hate(y, z) ∨ thinkCrazy(x, y))]
- ∀x, [¬Roman(x) ∨ ¬know(x, Marcus)] ∨ [hate(x, Caesar) ∨ (∀y, ∀z, ¬hate(y, z) ∨ thinkCrazy(x, y))]

Step 3: Standardize variables apart

- $\forall x, P(x) \lor \forall x, Q(x)$ becomes $\forall x, P(x) \lor \forall y, Q(y)$
- This is just to keep the scopes of variables from getting confused
- Not necessary in our running example

Step 4: Move quantifiers

- Move all quantifiers to the left, without changing their relative positions
- ∀x, [¬Roman(x) ∨ ¬know(x, Marcus)] ∨ [hate(x, Caesar) ∨ (∀y, ∀z, ¬hate(y, z) ∨ thinkCrazy(x, y)]
- ∀x, ∀y, ∀z, [¬Roman(x) ∨ ¬know(x, Marcus)] ∨ [hate(x, Caesar) ∨ (¬hate(y, z) ∨ thinkCrazy(x, y))]

Step 5: Eliminate existential quantifiers

- We do this by introducing **Skolem functions**:
 - If ∃x, p(x) then just pick one; call it x'
 - If the existential quantifier is under control of a universal quantifier, then the picked value has to be a function of the universally quantified variable:
 - If $\forall x, \exists y, p(x, y)$ then $\forall x, p(x, y(x))$
- Not necessary in our running example

Convert the following in to skolem form

 $\exists u \,\,\forall v \,\,\forall x \,\,\exists y \,\, \mathsf{P}(\mathsf{f}(u), \, v, \,\, x, \, y) \Rightarrow \mathsf{Q}(u, \, v, \, y)$

Step 6: Drop the prefix (quantifiers)

- $\forall x, \forall y, \forall z, [\neg Roman(x) \lor \neg know(x, Marcus)] \lor$ [hate(x, Caesar) ∨ (¬hate(y, z) ∨ thinkCrazy(x, y))]
- At this point, all the quantifiers are universal quantifiers
- We can just take it for granted that all variables are universally quantified
- [\neg Roman(x) $\lor \neg$ know(x, Marcus)] \lor [hate(x, Caesar) \lor (\neg hate(y, z) \lor thinkCrazy(x, y))]

Step 7: Create a conjunction of disjuncts

[¬Roman(x) ∨ ¬know(x, Marcus)] ∨ [hate(x, Caesar) ∨ (¬hate(y, z) ∨ thinkCrazy(x, y))]

becomes

 \neg Roman(x) $\lor \neg$ know(x, Marcus) \lor hate(x, Caesar) $\lor \neg$ hate(y, z) \lor thinkCrazy(x, y)

Step 8: Create separate clauses

- Every place we have an ^, we break our expression up into separate pieces
- Not necessary in our running example

Step 9: Standardize apart

- Rename variables so that no two clauses have the same variable
- Not necessary in our running example
- Final result:

 \neg Roman(x) $\lor \neg$ know(x, Marcus) \lor hate(x, Caesar) $\lor \neg$ hate(y, z) \lor thinkCrazy(x, y)

That's it! It's a long process, but easy enough to do mechanically

Convert the following into clausal form

 $\exists x \forall y (\forall z P(f(x), y, z) \Rightarrow (\exists u Q(x, u) \& \exists v R(y, v)))$