Friction Notes

Overview

Friction!

http://www.maniacworld.com/ducks-landing-on-ice.html
OK... so what is it?

Friction Description

Definition

${ }^{-}$A force that opposes motion

- When a force is applied to a body resting on a rough plane so that the body moves or tends to move, a frictional force acts on the body in opposition to the applied force.

Friction

- Symbol
${ }^{\circ} \mathrm{F}_{\mathrm{f}}$
- Units
- Newtons (it's a force!)

Depends on

- Weight of object (normal force)
- Nature of the surfaces between the moving object and the supporting surface

Friction

- Two types
- Static friction (pushing the piano but no motion)
- Sliding (kinetic) friction (piano moves!!!)
- Static force > kinetic force

Friction

Formula

$$
\boldsymbol{\mu}=\frac{F_{f}}{F_{N}} \operatorname{or}_{f}=\boldsymbol{\mu} F_{N} \quad \text { where }
$$

- $\mu=$ coefficient of friction,
- values usually between 0 and 1
- Note:
- Low μ = slippery
- High μ = sticky
- $\mathrm{F}_{\mathrm{N}}=$ normal force dependent on weight vector

Examples of μ

Surfaces	Static	Sliding
Hardwood on hardwood	0.5	0.25
Rubber on dry concrete	1.0	0.75
Rubber on wet concrete	0.75	0.5
Steel on steel	0.74	0.6
Steel on steel (lub'd)	0.15	0.06
Human joints	0.01	0.003

Stages of Friction

Plot of applied force vs friction force

Frictional force

Friction Practice

- If it takes 200 N to move a 100 kg box across a flat floor at constant speed, what is the coefficient of friction (μ) ?
- Solution
- Constant speed means no acceleration, so the applied force is balancing the friction force or a state of equilibrium exists $\therefore \mathrm{F}_{\mathrm{a}}=\mathrm{F}_{\mathrm{f}}$
${ }^{-} \mu=F_{f} / F_{\mathrm{n}}=\mathrm{F}_{\mathrm{a}} / \mathrm{mg}$
${ }^{\circ}=200 /(100 * 9.8)=\sim 0.2$

Inclined Plane with Friction

Skier mass=m

Friction on Inclined Plane

Practice Inclined plane

What is the force of friction $\left(F_{f}\right)$ between a 105 kg crate on a plane inclined at 30°, with a coefficient of friction of 0.3 ?

- Solution
- Use inclined plane diagram to find
- F_{f}
- $F_{\|}$
- $F_{\text {net }}$
- a

Summary - Newton's 2nd Law: $F_{\text {net }}=\mathbf{m a}$

Flat plane

- $\mathrm{a}=\mathrm{F}_{\text {net }} / \mathrm{mass}$
${ }^{\bullet} a=\left(F_{a}-F_{f}\right) / m$
- $\mathrm{a}=\left(\mathrm{F}_{\mathrm{a}}-\mu . \mathrm{F}_{\mathrm{n}}\right) / m$
${ }^{\circ} \mathrm{a}=\left(\mathrm{F}_{\mathrm{a}}-\mu \cdot \mathrm{mg}\right) / \mathrm{m}$

Summary - Newton's 2nd Law: $F_{\text {net }}=\mathbf{m a}$

Inclined plane

${ }^{\circ} \mathrm{a}=\mathrm{F}_{\text {net }} / \mathrm{mass}$
${ }^{-} \mathrm{a}=\left(\mathrm{F}_{\|}-\mathrm{F}_{\mathrm{f}}\right) / \mathrm{m}$

