Semantic Nets and Frames

Semantic Nets

- A semantic network
 - □ a classic AI representation technique used for propositional information
 - □ a propositional net
- A proposition
 - □ a statement that is either true or false
- A semantic net
 - \Box a labeled, directed graph
- The structure of a semantic net is shown graphically in terms of nodes and the arcs connecting them.
 - □ Nodes are sometimes referred to as objects
 - \Box arcs as links or edges
 - □ The links are used to express relationships
 - □ Nodes are to represent physical objects, concepts, or situation

Semantic Nets

- Two types of commonly used links are
 - \Box IS-A, and
 - □ A-KIND-OF
- IS-A means "is an instance of' and refers to a specific member of a class
 - A class is related to the mathematical concept of a set in that it refers to a group of objects
 - □ For example,
 - {3, eggs, blue, tires, art}

SEEM 5750

Semantic Nets

- The link AKO is used here to relate one class to another
 - AKO relates generic nodes to generic nodes while the IS-A relates an instance or individual to a generic class
 - The more general class that an AKO arrow points to is called a superclass
 - □ AKO points from a subclass to a class
- The objects in a class have one or more attributes in common
 - □ Each attribute has a value
 - □ The combination of attribute and value is a property
 - For example, a blimp has attributes of size, weight, shape, and color.
 The value of the shape attribute is ellipsoidal

Schemata

- Semantic nets have limitations
 - \Box such as the lack of link name standard
- In AI, the term schema (plural schemas or schemata) is used to describe a more complex knowledge structure than the semantic net
 - □ For example, the acts of eating and drinking are pleasurable sensorimotor schemata that involve coordinating information from the senses with the required motor (muscle) movements to eat and drink
- Another type of schema is the concept schema by which we represent concepts.
 - □ For example,
 - we all have stereotypes in our minds of concepts
 - a stereotype of an animal might be a dog to many people

Schemata

- A conceptual schema is an abstraction in which specific objects are classified by their general properties
 - The conceptual schema of a real apple will include general properties of apples such as sizes, colors. tastes, uses, and so forth
- Schemas have internal structure to their nodes while semantic nets do not

- One type of schema that has been used in many AI applications is the frame
- Another type of schema is the script,
 - $\hfill\square$ a time-ordered sequence of frames
- frames are useful for simulating commonsense knowledge, which is a very difficult area for computers to master
- While semantic nets are basically a two-dimensional representation of knowledge, frames add a third dimension by allowing nodes to have structures

- The basic characteristic of a frame is that it represents related knowledge about a narrow subject that has much default knowledge
- A frame system would be a good choice for describing a mechanical device, for example a car
- The frame contrasts with the semantic net, which is generally used for broad knowledge representation
- Just as with semantic nets, there are no standards for defining frame-based systems
- A frame is analogous to a record structure, corresponding to the fields and values of a record are the slots and slot fillers of a frame
- A frame is basically a group of slots and fillers that defines a stereotypical object

The car is the object, the slot name is the attribute, and the filler is the value

Fillers
General Motors
Chevrolet Caprice
1979
automatic
gasoline
4
blue

- By using frames in the filler slots and inheritance, very powerful knowledge representation systems can be built.
- frame-based expert systems are very useful for representing causal knowledge because their information is organized by cause and effect
- Frames are generally designed to represent either generic or specific knowledge
- The slots may also contain procedures attached to the slots, called procedural attachments
 - The if-needed type is executed when a filler value is needed but none are initially present or the default value is not suitable
 - Defaults are often used to represent commonsense knowledge

Figure 2.9 A Generic Frame for Property

Slots	Fillers
name	property
specialization_of	a_kind_of object
types	(car, boat, house) if-added: Procedure ADD_PROPERTY
owner	default: government if-needed: Procedure FIND_OWNER
location	(home, work, mobile)
status	(missing, poor, good)
under_warranty	(yes, no)

- The if-added type is run for procedures to be executed when a value is to be added to a slot
- □ An if-removal type is run whenever a value is to be removed from a slot
- Slot fillers may also contain relations,
 - e.g. a-kind-of and is-a relations
 - □ Figure 2.11 is a specific frame because it is an instance of the car frame

Figure 2.10 Car Frame—A Generic Subframe of Property

Slots	Fillers	
name	car	
specialization_of	a-kind-of property	
types	(sedan, sports, convertible)	
manufacturer	(GM, Ford, Toyota)	
location	mobile	
wheels	4	
transmission	(manual, automatic)	
engine	(gasoline, hybrid gas/electric)	

Figure 2.11 An Instance of a Car Frame

	Slots	Fillers		
	name	John`s car	and the second	
	specialization_of	is_a car		
	manufacturer	GM		
	owner	John Doe		
	transmission	automatic		
	engine	gasoline		
	status	good		
	under_warranty	yes		

- Frame systems are designed so that more generic frames are at the top of the hierarchy
- Frames attempt to model real-world objects by using generic knowledge for the majority of an object's attributes and specific knowledge for special cases
- The object that has all of the typical characteristics is called a prototype
- Frames may also be classified by their applications
 - A situational frame contains knowledge about what to expect in a given situation
 - An action frame contains slots that specify the actions to be performed in a given situation
 - □ The combination of situational and action frames can be used to describe cause-and-effect relationships in the form of causal knowledge frames