## Chapter 4 Shear Forces and Bending Moments

### 4.1 Introduction

Consider a beam subjected to transverse loads as shown in figure, the
 deflections occur in the plane same as the loading plane, is called the plane of bending. In this chapter we discuss shear forces and bending moments in beams related to the loads.

### 4.2 Types of Beams, Loads, and Reactions

Type of beams
a. simply supported beam (simple beam)

(a)
b. cantilever beam (fixed end beam)
c. beam with an overhang

(b)

(c)

## Type of loads

a. concentrated load (single force)
b. distributed load (measured by their intensity) :
uniformly distributed load (uniform load)
linearly varying load
c. couple

## Reactions

consider the loaded beam in figure equation of equilibrium in horizontal direction

$$
\begin{aligned}
& \Sigma F_{X}=0 \\
& H_{A}-P_{1} \cos \alpha=0 \\
& H_{A}=P_{1} \cos \alpha \\
& \Sigma M_{B}=0-R_{A} L+\left(P_{1} \sin a\right)(L-a)+P_{2}(L-b)+q c^{2} / 2=0 \\
& R_{A}=\frac{\left(P_{1} \sin \alpha\right)(L-a)}{L}+\frac{P_{2}(L-b)}{L}+\frac{q c^{2}}{2 L} \\
& R_{B}=\frac{\left(P_{1} \sin a\right) a}{L}+\frac{P_{2} b}{L}+\frac{q c^{2}}{2 L}
\end{aligned}
$$

for the cantilever beam

$$
\begin{aligned}
& \Sigma F_{x}=0 \quad H_{A}=5 P_{3} / 13 \\
& \Sigma F_{y}=0 \quad R_{A}=\frac{12 P_{3}}{13}+\frac{\left(q_{1}+q_{2}\right) b}{2}
\end{aligned}
$$


(b)

$$
\Sigma M_{A}=0 \quad M_{A}=\frac{12 P_{3}}{13}+\frac{q_{1} b}{2}(L-2 b / 3)+\frac{q_{1} b}{2}(L-b / 3)
$$

for the overhanging beam

$$
\begin{aligned}
\Sigma M_{B} & =0 \quad-R_{\mathrm{A}} L+P_{4}(L-a)+M_{1}=0 \\
\Sigma M_{A} & =0 \quad-P_{4} a+R_{\mathrm{B}} L+M_{1}=0 \\
R_{A} & =\frac{P_{4}(L-a)+M_{1}}{L} \quad R_{\mathrm{B}}=\frac{P_{4} a-M_{1}}{L}
\end{aligned}
$$


(c)

### 4.3 Shear Forces and Bending Moments

Consider a cantilever beam with a concentrated load $P$ applied at the end $A$, at the cross section $m n$, the shear

(a) force and bending moment are found

$$
\begin{array}{lll}
\Sigma F_{y}=0 & V=P \\
\Sigma M=0 & M=P x
\end{array}
$$


(c)
(b)
sign conventions (deformation sign conventions)
the shear force tends to rotate the
 material clockwise is defined as positive
the bending moment tends to compress the upper part of the beam and elongate the

(a) lower part is defined as positive


(b)

## Example 4-1

a simple beam $A B$ supports a force $P$ and a couple $M_{0}$, find the shear $V$ and bending moment $M$ at

(a) at $x=(L / 2)$
(b) at $x=(L / 2)_{+}$
$R_{A}=\frac{3 P}{4}-\frac{M_{0}}{L} \quad R_{B}=\frac{P}{4}+\frac{M_{0}}{L}$
(a) at $x=(L / 2)$

$$
\begin{aligned}
\Sigma F_{y} & =0 R_{A}-P-V=0 \\
V & =R_{A}-P=-P / 4-M_{0} / L \\
\Sigma M & =0-R_{A}(L / 2)+P(L / 4)+M=0 \\
M & =R_{A}(L / 2)+P(L / 4)=P L / 8-M_{0} / 2
\end{aligned}
$$


(a)

$$
\begin{aligned}
& \Sigma M=0 \quad M+1 / 2\left(q_{0} x / L\right)(x)(x / 3)=0 \\
& M=-q_{0} x^{3} /(6 L) \\
& M_{\max }=-q_{0} L^{2} / 6
\end{aligned}
$$

## Example 4-3

an overhanging beam $A B C$ is supported to an uniform load of intensity $q$ and a concentrated load $P$, calculate the shear force $V$ and the bending moment $M$ at $D$
from equations of equilibrium, it is found

$$
R_{A}=40 \mathrm{kN} \quad R_{B}=48 \mathrm{kN}
$$


(b)

(c)

$$
V=-18 \mathrm{kN}
$$

$$
\begin{aligned}
\Sigma M= & 0 \\
& -40 \times 5+28 \times 2+6 \times 5 \times 2.5+M=0 \\
& M=69 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

from the free body diagram of the right-hand part, same results can be obtained

### 4.4 Relationships Between Loads, Shear Forces, and Bending Moments

consider an element of a beam of length $d x \quad$ subjected to distributed loads $\quad q$ equilibrium of forces in vertical direction

(a)

$$
\begin{array}{cl}
\Sigma F_{y}=0 & V-q d x-(V+d V)=0 \\
\text { or } & \boldsymbol{d V} / \boldsymbol{d x}=-\boldsymbol{q}
\end{array}
$$

integrate between two points $A$ and $B$

$$
\int_{A}^{B} d V=-\int_{A}^{B} q d x
$$

i.e.

$$
\begin{aligned}
V_{B} & -V_{A}=-\int_{A}^{B} q d x \\
& =-(\text { area of the loading diagram between } A \text { and } B)
\end{aligned}
$$

the area of loading diagram may be positive or negative moment equilibrium of the element

$$
\begin{array}{cl}
\Sigma M=0 & -M-q d x(d x / 2)-(V+d V) d x+M+d M=0 \\
\text { or } & \boldsymbol{d} \boldsymbol{M} / \boldsymbol{d} \boldsymbol{x}=\boldsymbol{V}
\end{array}
$$

maximum (or minimum) bending-moment occurs at $d M / d x=0$, i.e. at the point of shear force $V=0$ integrate between two points $A$ and $B$

$$
\int_{A}^{B} d M=\int_{A}^{B} V d x
$$

i.e.

$$
\begin{aligned}
M_{B}- & M_{A}=\int_{A}^{B} V d x \\
& =\text { (area of the shear-force diagram between } A \text { and } B)
\end{aligned}
$$

this equation is valid even when concentrated loads act on the beam between $A$ and $B$, but it is not valid if a couple acts between $A$ and $B$
concentrated loads
equilibrium of force

$$
\begin{aligned}
& V-P-\left(V+V_{1}\right)=0 \\
& \text { or } \quad V_{1}=-P
\end{aligned}
$$


(b)
i.e. an abrupt change in the shear force occurs
at any point where a concentrated load acts
equilibrium of moment

$$
\begin{array}{ll} 
& -M-P(d x / 2)-\left(V+V_{1}\right) d x+M+M_{1}=0 \\
\text { or } \quad M_{1}=P(d x / 2)+V d x+V_{1} d x \simeq 0
\end{array}
$$

since the length $d x$ of the element is infinitesimally small, i.e. $M_{1}$ is also infinitesimally small, thus, the bending moment does not change as we pass through the point of application of a concentrated load
loads in the form of couples
equilibrium of force $V_{1}=0$
i.e. no change in shear force at the point of application of a couple

(c)
equilibrium of moment

$$
\begin{aligned}
& -M+M_{0}-\left(V+V_{1}\right) d x+M+M_{1}=0 \\
& \text { or } \quad M_{1}=-M_{0}
\end{aligned}
$$

the bending moment changes abruptly at a point of application of a couple

### 4.5 Shear-Force and Bending-Moment Diagrams

concentrated loads
consider a simply support beam $A B$ with a concentrated load $\quad P$

(a)
for $0<x<a$ $V=R_{A}=P b / L$
$M=R_{A} x=P b x / L$
note that $\quad \boldsymbol{d M} / \boldsymbol{d} \boldsymbol{x}=P b / L=V$

(c)
for $\mathrm{a}<x<L$

$$
V=R_{A}-P=-P a / L
$$

$$
M=R_{A} x-P(x-a)=P a(L-x) / L
$$

note that $\quad \boldsymbol{d} \boldsymbol{M} / \boldsymbol{d} \boldsymbol{x}=-P a / L=V$
with $\quad M_{\max }=P a b / L$

(d)

(e)
uniform load
consider a simple beam $A B$ with a uniformly distributed load of constant intensity $q$

(a)

$$
\begin{aligned}
& R_{A}=R_{B}=q L / 2 \\
& V=R_{A}-q x=q L / 2-q x \\
& M=R_{A} x-q x(x / 2)=q L x / 2-q x^{2} / 2
\end{aligned}
$$


(c)
several concentrated loads

$$
\begin{aligned}
& \text { for } 0<x<a_{1} \quad V=R_{A} \quad M=R_{A} x \\
& \text { for } \begin{array}{rl}
M_{1}= & R_{A} a_{1} \\
a_{1}<x<a_{2} & V=R_{A}-P_{1} \\
M=R_{A} x-P_{1}\left(x-a_{1}\right) \\
& M_{2}-M_{1}=\left(R_{A}-P_{1}\right)\left(a_{2}-a_{1}\right)
\end{array}
\end{aligned}
$$


similarly for others
$M_{2}=M_{\max } \quad$ because $V=0$ at that point

(c)

## Example 4-4

construct the shear-force and bending -moment diagrams for the simple beam $A B$

$$
\begin{aligned}
R_{A} & =q b(b+2 c) / 2 L \\
R_{B} & =q b(b+2 a) / 2 L \\
\text { for } 0 & <x<a \\
& V=R_{A} M=R_{A} x
\end{aligned}
$$


(a)

(b)
for $a<x<a+b$

$$
V=R_{A}-q(x-a)
$$

$$
M=R_{A} x-q(x-a)^{2} / 2
$$


(c)
for $a+b<x<L$

$$
V=-R_{B} \quad M=R_{B}(L-x)
$$

maximum moment occurs where $V=0$
i.e. $\quad x_{1}=a+b(b+2 c) / 2 L$
$M_{\max }=q b(b+2 c)\left(4 a L+2 b c+b^{2}\right) / 8 L^{2}$
for

$$
a=c, \quad x_{1}=L / 2
$$

$$
M_{\max }=q b(2 L-b) / 8
$$

for $b=L, \quad a=c=0 \quad$ (uniform loading over the entire span)

$$
M_{\max }=q L^{2} / 8
$$

Example 4-5
construct the $V$ - and $M$-dia for the cantilever beam supported to $\quad P_{1}$ and $P_{2}$

$$
R_{B}=P_{1}+P_{2} \quad M_{B}=P_{1} L+P_{2} b
$$

$$
\begin{aligned}
& \text { for } 0<x<a \\
& V=-P_{1} \quad M=-P_{1} x \\
& \text { for } a<x<L
\end{aligned}
$$



$$
\begin{aligned}
V & =-P_{1}-P_{2} M \\
& =-P_{1} x-P_{2}(x-a)
\end{aligned}
$$


(b)

(c)

## Example 4-6

construct the $V$ - and $M$-dia for the cantilever beam supporting to a constant uniform load of intensity $q$

(a)

(b)

$$
\begin{aligned}
& V-V_{A}=V-0=V=-\int_{0}^{x} q d x=-q x^{(c)} \\
& M-M_{A}=M-0=M=-\int_{0}^{x} V d x=-q x^{2} / 2
\end{aligned}
$$

Example 4-7

(a) the beam

$$
R_{B}=5.25 \mathrm{kN} \quad R_{C}=1.25 \mathrm{kN}
$$

shear force diagram

$$
\begin{aligned}
V & =-q x & \text { on } A B \\
V & =\text { constant } & \text { on } B C
\end{aligned}
$$


(b)

(c)
bending moment diagram

$$
M_{B}=-q b^{2} / 2=-1 \times 4^{2} / 2=-8 \mathrm{kN}-\mathrm{m}
$$

the slope of $M$ on $B C$ is constant $(1.25 \mathrm{kN})$, the bending moment just to the left of $M_{0}$ is

$$
M=-8+1.25 \times 8=2 \mathrm{kN}-\mathrm{m}
$$

the bending moment just to the right of $M_{0}$ is

$$
M=2-12=-10 \mathrm{kN}-\mathrm{m}
$$

and the bending moment at point $C$ is

$$
M_{C}=-10+1.25 \times 8=0 \quad \text { as expected }
$$

