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CHAPTER 11 Fourier Series, Integrals, and Transforms
CHAPTER 12 Partial Differential Equations (PDEs)

Fourier analysis concerns periodic phenomena, as they occur quite frequently in
engineering and elsewhere—think of rotating parts of machines, alternating electric
currents, or the motion of planets. Related periodic functions may be complicated. This
situation poses the important practical task of representing these complicated functions in
terms of simple periodic functions, namely, cosines and sines. These representations will
be infinite series, called Fourier series,!

The creation of these series was one of the most path-breaking events in applied
mathematics, and we mention that it also had considerable influence on mathematics as
a whole, on the concept of a function, on integration theory, on convergence theory for
series, and so on (see Ref. [GR7] in App. 1).

Chapter 1] is concerned mainly with Fourier series. However, the underlying ideas can
also be extended to nonperiodic phenomena. This leads to Fourier integrals and
transforms. A common name for the whole area is Fourier analysis.

Chapter 12 deals with the most important partial differential equations (PDEs) of physics
and engineering. This is the area in which Fourier analysis has its most basic applications,
related to boundary and initial value problems of mechanics, heat flow, electrostatics, and
other fields,

JEAN-BAPTISTE JOSEPH FOURIER (1768-1830), French physicist and mathematician, lived and taught
in Paris, accompanied Napoléon in the Egyptian War, and was later made prefect of Grenoble. The beginnings
on Fourier series can be found in works by Euler and by Daniel Bernoutli, but it was Fourier who employed
them in & systematic and general manner in his main work, Théorie analytigue de la chaleur (Analytic Theory
of Hear, Paris, 1822). in which he developed the theory of heat conduction (heat equation; see Sec. 12.5), making
these series a most important tool in applied mathematics.,
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Fourier Series, Integrals,
and Transforms

Fourier series (Sec. 11.1) are infinite series designed to represent general periodic
functions in terms of simple ones, namely, cosines and sines, They constitute a very
important tool, in particular in solving problems that involve ODEs and PDEs.

In this chapter we discuss Fourier series and their engineering use from a practical point
of view, in connection with ODEs and with the approximation of periodic functions.
Application to PDEs follows in Chap. 12.

The theory of Fourier series is complicated, but we shall see that the application of these
series is rather simple. Fourier series are in a certain sense more universal than the familiar
Taylor series in calculus because many discontinuous periodic functions of practical interest
can be developed in Fourier series but, of course, do not have Taylor series representations.

In the last sections (11.7-11.9) we consider Fourier integrals and Fourier transforms,
which extend the ideas and techniques of Fourier series to nonperiodic functions and have
basic applications to PDEs (to be shown in the next chapter).

Prerequisite: Elementary integral calculus (needed for Fourier coefficients)
Sections that may be omitted in a shorter course: 11.4-11.9
References and Answers to Problems: App. | Part C, App. 2.

11.1 Fourier Series
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Fourier series are the basic tool for representing periodic functions, which play an
important role in applications. A function f(x) is called a periodic function if f(x) is
defined for all real x (perhaps except at some points, such as x = *#/2, £37/2, - - - for
tan x) and if there is soine positive number p, called a period of f(x), such that

(1) fix + p) = fx) for all x.

The graph of such a function is obtained by periodic repetition of its graph in any interval
of length p (Fig. 255).

Familiar periodic functions are the cosine and sine functions. Examples of functions
that are not periodic are x, x2, x2, %, cosh x, and In x, to mention just a few.

If f(x) has period p, it also has the period 2p because (1) implies
f&x +2p) = f(Ix + p] + p) = f(x + p) = f(x), etc.; thus for any infegern = 1,2,3, - - -,

(2) fix + np) = f(x) for all x,
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f(x)

VARV,

o

Fig. 285, Perodic function

Furthermore if f(x) and g(x) have period p, then af(x) + bg(x) with any constants a and
b also has the period p.

Our problem in the first few sections of this chapter will be the representation of various
functions f(x) of period 24r in terms of the simple functions

3 1, cosx, sinx, cos2x, sin2x,---, cos nx, sinnx,---.

All these functions have the period 2. They form the so-called trigonometric system. Figure
256 shows the first few of them (except for the constant 1, which is periodic with any period).
The series to be obtained will be a trigonometric series, that is, a series of the form

ag + a;cosx + by sinx + agcos2x + by sin2x + - - -

@) = ag + 2, (ay cos nx + b, sin nx).
n=1
Gg, G1, D1, Ao, bg, * * * are constants, called the coefficients of the series. We see that each

term has the period 27. Hence if the coefficients are such that the series converges, its
sum will be a function of period 2.

It can be shown that if the series on the left side of (4) converges, then inserting
parentheses on the right gives a series that converges and has the same sum as the series
on the left. This justifies the equality in (4).

Now suppose that f(x) is a given function of period 27 and is such that it can be
represented by a series (4), that is, (4) converges and, moreover, has the sum f(x). Then,
using the equality sign, we write

(5) f&x) = ag + 2, (a, cos nx + b, sin nx)

n=1

N NVA N W AN AN/
0\/::\/2:: 0\/\:7\/2::

Cos X Cos 2X cos 3x

I AN AN AN A AN
7 VARV EVAAVALY

sin x sin 2x sin 3x
Fig. 256. Cosine and sine functions having the period 27
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EXAMPLE 1

CHAP. T Fourier Series, Integrals, and Transforms

and call (5) the Fourier series of f(x). We shall prove that in this case the coefficients
of (5) are the so-called Fourier coefficients of f(x), given by the Euler formulas

] kra
(a) @ =~ f_wf(x)dff
6 e i f‘rr tix f— 1 2 “ .
(6) (b) ay, = - _wf(x) COS 11X n=1,2,
] T
©  bo=— [ f&)sinmdr n=1,2,-.
™ -7

The name “Fourier series” is sometimes also used in the exceptional case that (5) with
coefficients (6) does not converge or does not have the sum f(x)—this may liappen but
is merely of theoretical interest, (For Euler see footnote 4 in Sec. 2.5.)

A Basic Example

Before we derive the Euler formulas (6), let us become familiar with the application of
(5) and (6) in the case of an important example. Since your work for other functions will
be quite similar, try to fully understand every detail of the integrations, which because of
the n involved differ somewhat from what you have practiced in calculus. Do not just
routinely use your software, but make observations: How are continuous functions (cosines
and sines) able to represent a given discontinuous function? How does the quality of the
approximation increase if you take more and more terms of the series? Why are the
approximating functions, called the partial sums of the series, always zero at 0 and 77
Why is the factor 1/n (obtained ir the integration) important?

Periodic Rectangular Wave (Fig. 257a)

Find the Fourier coefficients of the periodic function f(x) in Fig. 257a. The formula is

-k if —r<x<0
(7) fix) = [ ) and  f(x + 27 = f(O).
k if <<

Functions of this kind occur as external forces acting on mechanical systems. electromotive forces in electric
circuits, etc, (The value of f(x) at a single point does not affect the integral; hence we can leave f(x) undefined
atx=0and x = £m)

Solufion. From (6a) we obtain ay = 0. This can also be seen without integration, since the area under the
curve of f(x) between — and 7 is zero. From (6b),

T - .0 -
| l
p = — f flx)cosnx dx = p f (—k) cos nx dx + f k cos nx dx]
(] — | Y o
1 [ sinmx |© sinnx |7
a | 1 — n o
because sinnx =0at —, 0, and wforallp = 1, 2, - - - . Similarly, from (6c) we obtain
17 ] [ 0 =
b, = — f f) sinnxdx = — f {—k) sin nx dx + f k sin nx dx]
a — aT - 0
L  cosar|C. cosny ™
T | H — n 0 ’
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(b) The first three partial sums of the corresponding Fourier series
Fig. 257. Eample 1

Since cos (—a) = cos a and cos 0 = 1, this yields

K
= — — —nr) — cos nar + ¢ - - .
by, o [cos O — cos (—nw) — cos nar + cos 0] - (1 — cos nw)
Now, cos = = —1, cos 27r = 1, cos 3ar = —1, etc.; in general,
=1 for odd n, 2 for odd #,
Cos B = and thus I — cos par =
1 for even n, 0 foreveu n.

Hence the Fourier coefficients b,, of our function are
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THEOREM 1 Orthogonality of the Trigonometric System (3)

CHAP. 11 Fourier Series, Integrals, and Transforms

Since the a,, are zero, the Fourier series of f(x) is

g B (sinx+ = sinr+ = sinsr +
(8) g sin x 3 sin 3x 5 sin Sx .
The partial sums are
4k 4k f . |
S = —sinx, Sg = — [sinx + — sin3x], etc.,
T T 3

Their graphs in Fig, 257 seem to indicate that the series is convergent and has the sum f(x), the given function.
We notice that at x = 0 and x = 7, the points of discontinuity of f(x), all partial sums have the value zero, the
arithmetic mean of the limits —k and & of our function, at these points.

Furthermore, assuming that f(x) is the sum of the series and setting ¥ = #/2, we have

(s 4k 1 |
f(—2“)=k=—m_-(]--§+§—+'-').

R
3

thus

+
[
Il
&)

1
=

This is a famous result obtained by Leibniz in 1673 from geometric considerations. It illustrates that the values
of various series with constant terms can be obtained by evaluating Fourier series at specific points. [ |

Derivation of the Euler Formulas (6)

The key to the Euler formulas (6) is the erthogonality of (3), a concept of basic importance,
as follows.

The trigonometric system (3) is orthogonal on the interval —m = x = 7 (hence also
on 0 = x = 2 or any other interval of length 277 because of periodicity); that is,
the integral of the product of any two functions in (3) over that interval is Q, so that
for any integers n and m,

T

(a) fcosnxcosmxclx=0 (n + m)
9) (b) f sinnxsinmxdx =0 (n#m)
(c) fsinnxcosmxdx=0 (n ¥ mor n=m).

i

PROOF This follows simply by transforming the integrands trigonometrically from products into
sums, In (9a) and (9b), by (11) in App. A3.1,

J

k1 w

| 1
COS nx cos mx dx = E) f_wcos (n + m)x dx + Y f_wcos (n — m)x dx

w w w

1 1
fsinnxsinmxdx=-2—f cos(n—m)xdx——f cos (n + m)x dx.

i - 2 -7



SEC. 1.1 Fourier Series 483

Since m # n (integer!), the integrals on the right are all 0. Similarly, in (9c), for all integer
m and n (without exception; do you see why?)

J

r

1 ™ 1
sinnxcosmxdx=~§f sin(n-i-m)xdx-!-gf sin(hn —m)xde=0+0. W

-_—1T"

w

Application of Theorem 1 to the Fourier Series (5)
We prove (6a). Integrating on both sides of (5) from —# to 7, we get

J‘wf(x) dx = J‘W [%"‘E (an_cosnx+bnsinnx):| dx.

qim=]

We now assume that termwise integration is allowed. (We shall say in the proof of
Theorem 2 when this is true.) Then we obtain

T

fwf(x)dx=aofwdx+§ (anf cosnxdx—l—bﬂfwsinnxdx).
T -7 n=1 -

The first term on the right equals 27ra,. Integration shows that all the other integrals are
0. Hence division by 27 gives (6a).

We prove (6b). Multiplying (5) on both sides by cos mx with any fixed positive integer
m and integrating from —r to 7, we have

(10) f f(x) cos mx dx = f [ao + E (a,, cos nx + by, sin nx):| cos mx dx.

- n=1

We now integrate term by term. Then on the right we obtain an integral of ay cos mux,
which is 0; an integral of a,, cos nx cos mx, which is «a,, 7 for n = m and O for n # m by
(9a); and an integral of b,, sin nx cos mx, which is O for all » and m by (9¢c). Hence the
right side of (10) equals a,,7. Division by 7 gives (6b) (with m instead of n).

We finally prove (6¢). Multiplying (5) on both sides by sin mx with any fixed positive
integer 7z and integrating from —r to 77, we get

(11) f f(x) sin mx dx = f [ao + ) (a, cos nx + b, sin nx)] sin mx dx.

n=1

Integrating term by term, we obtain on the right an integral of aq sin mx, which is 0; an
integral of a,, cos nx sin mx, which i1s 0 by (9¢); and an integral of b,, sin nx sin mx, which
is by, mif n = m and 0 if n # m, by (9b). This implies (6¢c) (with n denoted by ). This
completes the proof of the Euler formulas (6) for the Fourier coefficients. [ |
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Convergence and Sum of a Fourier Series

The class of functions that can be represented by Fourier series is surprisingly large and
general. Sufficient conditions valid in most applications are as follows.

THEOREM 2 Representation by a Fourier Series

Let f(x) be periodic with period 21 and piecewise continuous (see Sec. 6.1) in the
interval —m = x = @. Furthermore, let f(x) have a left-hand derivative and a
right-hand derivative at each point of that interval. Then the Fourier series (5) of
f(x) [with coefficients (6)] converges. Its sum is f(x), except at points xo where f(x)
is discontinuous. There the sum of the series is the average of the left- and
right-hand limits® of f(x) at x,.

PROOF We prove convergence in Theorem 2. We prove convergence for a continuous function
f(x) having continuous first and second derivatives. Integrating (6b) by parts, we obtain.

k2

_ I . . f)sinnx
a, = - f_wj'(x) cos nx dx = __—_mr

K’ 1 w
- — f £'(x) sin nx dx.
nm J_,

The first term on the right is zero. Another integration by parts gives

. 1

() cos nx
n*ar

fw £7(x) cos nx dx.

i)
nr J_

-

The first term on the right is zero because of the periodicity and continuity of £'(x). Since
f" is continuous in the interval of integration, we have

"ol < M
for an appropriate constant M. Furthermore, |cos nx| = 1. It follows that

1
ntar

! T 2M
nwm J_ n

lan| =

f F£7(x) cos nx dx

flx)

fl1-0)
*The left-hand Limit of f(x) at x is defined as the limit of f(x) as x approaches xq from the left

1r- / and is commonly denoted by f(xo — 0). Thus
/ (1+0)

f ftso = 0) = Jim fxo — A) as /1 —» O through posicive valves.
0 1 x
Fig. 258. Left- and The right-hand limit is denoted by f(xp + 0) and
right-hand limits . -
Jixg + 0 =?[‘1F1‘l.‘10 J(xq + h) as h— 0 through positive values,
ft—0)=1
fll+0)=1 The left- and right-hand derivatives of f(x) at xy are defined as the limits of
2
of the function F(o — 1) — flxo — 0) and flxo + h) — flxg + 0)
—h h ’
x* Fx<]
flx) = respectively, as /# — 0 through positive values. Of course if f(x) is continuous at xg, the last term in
x/2 both numerators is simply f(xg).
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1. (Calcuolus review) Review integration techniques for
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Simitarly, |b,,| < 2 M/n? for all n. Hence the absolute value of each term of the Fourier
series of f(x) is at most equal to the corresponding term of the series

1 ] )
+ + -

22 22 32 32

|a0|+2M(1+1+i+
which is convergent. Hence that Fourier series converges and the proof is complete.
(Readers already familiar with uniform convergence will see that, by the Weierstrass test
in Sec. 15.5, under our present assumptions the Fourier series converges uniformly, and
our derivation of (6) by integrating term by term is then justified by Theorem 3 of
Sec. 15.5.)
The proof of convergence in the case of a piecewise continuous function f(x) and the
proof that under the assumptions in the theorem the Fourier series (5) with coefficients
(6) represents f(x) are substantially more complicated; see, for instance, Ref. [C12]. W

Convergence at a Jump as Indicated in Theorem 2

The rectangular wave in Example 1 has a jump at x = 0. Its left-hand lmit there is —k and its right-hand Hoit
is k (Fig. 257). Hence the average of these limits is 0. The Fourier series (8) of the wave does indeed converge
to this value when x = 0 because then all its terms are 0. Similarly for the other jumps. This is in agreement
with Theorem 2. [

Summary. A Fourier series of a given function f(x) of period 2 is a series of the form
(5) with coefficients given by the Euler formulas (6). Theorem 2 gives conditions that are
sufficient for this series to converge and at each x to have the value f(x), except at
discontinuities of f(x), where the series equals the arithmetic mean of the left-hand and
right-hand limits of f(x) at that point.

PROBLEM - SET 11.1———

6. (Change of scale) If f(x) has period p, show that f(ax),

integrals as they are likely to arise from the Euler

formulas, for instance, definite integrals of x cos nx,

x? sin nx, €2 cos nx, etc.

2-3] FUNDAMENTAL PERIOD

The fundamental period is the smallest positive period. Find
it for

2. cosx, sinx, cos2x, sin2x, cosx, sin 7,
cos 27rx, sin2x

) 27x . 2mx
3. cosnx, sinnx, cos s Sm—,
k k
29ThXx . 2mnx
cos sin
k7 k

4. Show that f = const is periodic with any period but
has no fundamental period.

5.If f(x) and g(x) have period p, show thal
h(x) = af(x) + bg(x) (a, b, constant) has the period p.
Thus all functions of period p form a vector space.

a # 0, and f(x/b), &b # 0, are periodic functions of x
of periods p/a and bp, respectively. Give examples.

7-121 GRAPHS OF 2#-PERIODIC FUNCTIONS

Sketch or graph f(x), of period 24, which for — v <x < 7
is given as follows.

7. f(x) = x
9. f(x) = w — |«

8. f(x) = eI
10, f(x) = |sin 2]

-3 f-r<x<0
11.;f(x)=={
2 f O<x<w
1 f—-7<x<0
12.f(x)={
cosgx if 0<x<m

1324 FOURIER SERIES

Showing the details of your work, find the Fourier series
of the given f(x), which is assumed to have the period 2.

Sketch or graph the partial sums up to that including
cos 5x and sin Sx.
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13.

14.

15.

16.

17.

18.

19.

21. f(x) = 22 (—7r < x < 17)
22, f(x) =x2 (0 <x < 2w

23. f(x) = {

CHAP. T1
1
L i
1 0 1
"
1
|
~T 0 T
T
J
=1 0 b o
1.l
2:1:
1 |
~T 0 %n T
T
i
- 0 b2
\’T
1 ]
-t 0 (4
Tc‘_
1 |
~TT 0 T
—uJT
1
§”V—
: } [
" T_ % - T

X

2

1.2 if
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24.

—4x if—7<x<0

f(x) = {

4x if O0<x<n

25. (Discontinuities) Verify the last statement in Theorem

26.

27,

28.

29.

30.

if—%w(_r{%ﬂ

T < x < 3w

2 for the discontinuities of f(x) in Prob. 13.

CAS EXPERIMENT., Graphing, Write a program for
graphing partial sums of the following series. Guess
from the graph what f(x) the series may represent.
Confirm or disprove your guess by using the Euler
formulas.

(@) 2(sinx + §sin3x + gsin5x + - - )

— 2(3sin2x + Lsindx + $sin6x - - )
(b) 1’+i(COSJC+'1'COS3JC+—'LCOSSJC+ e e )
2 7]_2 ] 25

(¢) 47 + d(cos x — 3 cos 2x + g cos 3x — 5 cos 4x
4+ - . ..)

CAS EXPERIMENT. Order of Fourier Coefficients,
The order seems to be L/n if f is discontinous, and 1/#*
if f is continuous but f = dfldx is discontinuous, 1/n®
if f and f' are continuous but f” is discontinuous, etc.
Try to verify this for examples. Try to prove it by
integrating the Euler formulas by parts. What is the
practical significance of this?

PROJECT. Euler Formulas in Terms of Jumps
Without Integration. Show that for a function whose
third derivative is identically zero,

l . ! i
an = — l:—-z Ja sinnxg — — > jicos nxg
l :
-t-;.,.—zj;'smnxsjl
IR . 1 .
b, = - 2 Js COS nxg — ; 213 sin n.x,
1

- — Zj;'cos nxs:l

’12

where n = 1, 2, - - - and we sum over all the jumps j,,
jo s of £, ', F', respectively, located at x,.

Apply the formulas in Project 28 to the function in
Prob. 21 and compare the results.

CAS EXPERIMENT. Orthogonality. Integrate and
graph the integral of the product cos mx cos nx (with
various integer m and n of your choice) from —aq to a
as a function of @ and conclude orthogonality of cos
mx and cos nx (m # n) for a = 7 from the graph. For
what m and » will you get orthogonality for a = /2,
/3, w/4? Other a? Extend the experiment to cos mx
sin zx and sin mx sin nx.
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11.2 Functions of Any Period p = 2L

The functions considered so far had period 27, for the simplicity of the formulas. Of
course, periodic functions in applications will generally have other periods. However, we
now show that the transition from period p = 27 to a period 2L is quite simple. The
notation p = 2L is practical because L will be the length of a violin string (Sec. 12.2) or
the length of a rod in heat conduction (Sec. 12.5), and so on.

The idea is simply to find and use a change of scale that gives from a function g(v) of
period 27 a function of period 2L. Now from (5) and (6) in the last section with g{v)
instead of f(x) we have the Fourier series

(1) g) = ag + 2 (a, cos nv + b, sin nv)

n=1

with coefficients

_ 1 f”‘ J
ao =5~ | gw)dv

l k12
(2) Uy = P f_wg(v) cos nu dv

b n .

—T

We can now write the change of scale as v = kx with k such that the old period v = 2o
gives for the new variable x the new period x = 2L. Thus, 277 = k2L. Hence k = /L and

3) v = kx = mx/L.

This implies dv = (w/L) dx, which upon substitution into (2) cancels 1/27r and 1/7 and
gives instead the factors 1/2L and 1/L. Writing

4) g) = f(v),

we thus obtain from (1) the Fourier series of the function f(x) of period 2L

nir R

(5) f(x) = ag + El (an COS A x + b, sin A x)

with the Fourier coefficients of f(x) given by the Euler formulas

1 L
@  a= | ferar

_ if‘ nITx _
(6) b)) a,= 3 ;Lf(x) cos — dx n=12 -

1 * . nmx
(C) bn - I f_Lf(X) S1n T dx n= l, 2’ R
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EXAMPLE 1

EXAMPLE 2

CHAP. 11 Fourier Series, Integrals, and Transforms

Just as in Sec. 11.1, we continue to call (5) with any coefficients a trigonometric series.
And we can integrate from 0 to 2L or over any other interval of length p = 2L.

Periodic Rectangular Wave
Find the Fourier series of the function (Fig. 259)
0 if —2<x<~—1I
F)y =<k if —l<x< 1 p=2d=4, L=2,

0 if l<x< 2

Solution. From (6a) we obtain aq = k/2 (verify!). From (6b) we obtain

2 1
IJ' nwx IJ' nX 2k | nw
.rz,,,——2 _zf(x)cos 5 dx = > ﬁlkcos 2 dx = — sin 5
Thus a,, = 0 if n is even and
a, = 2kinmr if n=1,59,+--, a, = —2kinm if n=3711,---.
From (6¢) we find that b, = Q0 forn = 1, 2, - + - . Hence the Fourier series is
k 2k T 1 3w 1 5w
f(x)—a—l-?(cos—z—'x—-gcos2.\:+Scoszx——+---) [ |

fx)

} |
-2 -1 0 1 2 X

Fig. 259. Example

Periodic Rectangular Wave

Find the Fourier series of the function (Fig. 260)

-k If —2<x<0
f(x)={ p=2L=4, L=2
k if 0<x<?2

Solution. ay = 0 from (6a). From (6b), with 1/L = 1/2,

™ .0 2
a, = f (—k)cosmdx-i-fkcosﬂdx]
2 2 0

2
2
}=0‘
0

b —

0 2k, nmx
+ — sin —

-2 2

|

dkfnm if n=13---
= — (I — cosnm— cosnmw + l)={
na 0 if n=24.--,

2k | nwmx
— — sin
nar 2

W -

so that the Fourier series has no cosine terms. From (6¢),

2k nawx
- —— C0§ —
) na 2

bp=— | — cos

| 2k nax |®
2 nw 2
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Hence the Fourier series of f(x) is
T 2 3 2 5 2

4k (. 1 . 3w 1 | 57
fy=—|Isin —x 4+ — sin —xa+ —sip —x+---].

Tt is interesting that we could have derived this from (8) in Sec. 11.1, namely, by the scale change (3). Indeed,
writing ¢ instead of x, we have in (8), Sec. 11.1,

4k 1 |
— {sipy 4+ — sin3v 4+ —sinSy + -+ ).
T 3 5

Since the period 247 in v corresponds to 21 = 4, we have k = #/L = /2 and v = kx = m/2 in (3); hence we

obtain the Fourier series of f(x), as before, [ |
flx)
—_— k
ult)
T, i
- /\I ; v/_\
—nlw 0 xlw t
Fig. 260. Example 2 Fig. 261. Half-wave rectifier

EXAMPLE 3 Half-Wave Rectifier

A sinusoidal voltage E sin w!t, where ¢ is time, is passed through a half-wave rectifier that clips the negative
portion of the wave (Fig. 261). Find the Fourier series of the resulting periodic function

0 if —L<t<0, 2ar
u(t) = p=2L=

—_—, L=
Esinwt if 0<t<L w

gl

Solution. Since u = 0 when —L < ¢t < 0, we obtain from (6a), with ¢ instead of x,

il

w
ag = — Esinordr= —
0 2w J, T

and from (6b), by using formula (11) in App. A3.1 with x = w! and y = nwt,
Tl 7l
w . wE . ]
ap = — f Esinwicosnwt dt = — f [sin (I + nw? + sin (1 — nowit] 41
T Jy 2 J,

If n = 1, the integral on the right is zero, and if n = 2, 3, - + +, we readily obtain

o = wE cos (I + w)wt cos (1 — nw! wlw
o 27 (1 -+ n)w (1 —nme |o

_E [ —cos(l +nm)ymt+1 + —cos (1 — n)m + 1
T 27 l+n 1—n ’

If n is odd, this is equal to zero, and for even n we have

_E (2 2 )__ 2E _,
= or \T+n l—nrn)  (=-D@+ Dx (n=2,4,-4.

In a similar fashion we find from (6c) that &; = Ef2 and by =0forn =23, --. Consequently,

u(r)*£+£s‘ ! 2E I 1
;s T psne w \ 1.3 c082wr+§-gcos4wt+~-- . n
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1-11| FOURIER SERIES FOR PERIOD p = 2L 14. Obtain the series in Prob. 7 from that in Prob. 8.

Find the Fourier series of the function £(x}, of period p = 2L, 15. Obtain the series in Prob. 6 from that in Prob. 5.

and sketch or graph the first three partial sums. (Show the 16. Obtain the series in Prob. 3 from that in Prob. 21 of
details of your work.) Problem Set 11.1.

Lf@=-1(2<x<0,f®=10<x<2),p=4 17. Using Prob. 3, show that

2. f)=0(-2<x<0),f)=40<x<2),p=4 ~ 14l L4 ... =1ln2
fy =3 (-l<x<l), p=2 'S 116 1, .1 " ‘1
4 fo) = w2 (—l<x<ly, p=2 18. Show that 1 + 1+ 1+ L+ =172
5. f() =sinawx (0<x<1), p=1 19. CAS PROJECT. Fourier Series of 2L-Periodic
6. f(x) = cos mx (- % < x < 12 ), p=1 Functions. (a) .Write.a program for obtaining partial
7. fx) = |-‘-| (~l<x<l), p=2 sums of a Fouaner series (1).

1 +xif—=1l<x<0 (b) Apply the program to Probs. 25, graphing the first
8. f(x) = {I —xif 0<x<1, P7 2 few partial sums of each of the four series on common
9. f)=1—2x% (—ml<x<1), p=2 axes. Choose the first five or more partial suins until

they approximate the given function reasonably well.
Compare and comment.

ot
o

fR)=0(2<x<0),fx)=x0<x<2),p=4
f@E e (C1<x<0)., fy=x O<x<1),

foy=1 (1<x<3), p=4 20. CAS EXPERIMENT. Gibbs Phenomenon. The
partial sums s,,(x) of a Fourier series show oscillations
near a discontinuity point. These oscillations do not
disappear as n increases but instead become sharp

 amd
o

—t
o

. (Rectifier) Find the Fourier series of the function
obtained by passing the voltage v(f) = V, cos 10077

through a half-wave rectifier. “spikes.” They were explained mathematically by

13. Show that the familiar identities J. W. Gibbs®. Graph s,,(x) in Prob. 10. When n = 50,
cos®x = § cos x +  cos 3x and say, you will see those oscillations quite distinctly.
sin®x = £ sinx — % sin 3x can be interpreted as Consider other Fourier series of your choice in a similar
Fourier series expansions. Develop cos® x. way. Compare.

11.3 Even and Odd Functions.
Half-Range Expansions

The function in Example 1, Sec. 11.2, is even, and its Fourier series has only cosine
terms. The function in Example 2, Sec. 11.2, is odd, and its Fourier series has only sine
terms.

Recall that g is even if g(—x) = g(x), so that its graph is symmetric with respect to the
vertical axis (Fig. 262). A function A is odd if A(—x) = —h(x) (Fig. 263).

Now the cosine terms in the Fourier series (5), Sec. 11.2, are even and the sine terms
are odd. So it should not be a surprise that an even function is given by a series of
cosine terms and an odd function by a series of sine terms, Indeed, the following holds.

3JOSIAH WILLARD GIBBS (1839-1903), American mathematician, professor of mathematical physics at
Yale from 1871 on, one of the founders of vector calculus [another being O. Heaviside (see Sec. 6.1)],
mathematical thermodynamics, and statistical mechanics. His work was of great importance to the development
of mathematical physics.



SEC.11.3 Even and Odd Functions. Half-Range Expansions 491

[\
T\J x

Fig. 262. Even function Fig. 263. Odd function

THEOREM 1 Fourier Cosine Series, Fourier Sine Series

The Fourier series of an even function of period 2L is a “Fourier cosine series”

(D f(x) = a4 + 2 a, cos LEE X (f even)
n=1

with coefficients (note: integration from 0 to L only!)

nmwx

1 - 2
(2) afo = z‘ ff(x) dx, an = E J;Lf(x) cos T dx, n= 1, 2, . v
0

The Fourier series of an odd function of period 2L is a “Fourier sine series”

@) f6) = 3 by sin - x (f odd)
rn=1

with coefficients

L

2 . nTX
@) be = - fo £ sin 27

PROOF Since the definite integral of a function gives the area under the curve of the function
between the limits of integration, we have

L L
f gix)dx =12 f g(x) dx for even g
L 0

f h(x) dx = 0 for odd h

as is obvious from the graphs of g and 4. (Give a formal proof.) Now let f be even. Then
(6a), Sec. 11.2, gives ag in (2). Also, the integrand in (6b), Sec. 11.2, is even (a product
of even functions is even), so that (6b) gives «,, in (2). Furthermore, the integrand in (6¢),
Sec. 11.2, is the even f times the odd sine, so that the integrand (the product) is odd, the
integral is zero, and there are no sine terms in (1).
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THEOREM 2

EXAMPLE 1

EXAMPLE 2

CHAP. 11 Fourier Series, Integrals, and Transforms

Similarly, if f is odd, the integrals for ¢4 and a,, in (6a) and (6b), Sec. 11.2, are zero,
f times the sine in (6¢) is even, (6¢) implies (4), and there are no cosine terms in (3). W

The Case of Period 2o, If L = 7, then f(x) = ap + 2 ., cos nx (f even) with
coefficients n=1

" w

(2%) Clo:—:;ff(x)dx, aﬂ=—2~ff(x)cosnxdx, n=12---

0 T Y0

and f(x) = D, b, sin nx (f odd) with coefficients

n=1

2 aw
(4%) by = = | f0) sinnx dx, n=1,2,--.
T Y0

For instance, f(x) in Example I, Sec. 11.1, is odd and is represented by a Fourier sine
series.

Further simplifications result from the following property, whose very simple proof is
left to the student,

Sum and Scalar Multiple

The Fourier coefficients of a sum f1 + fo are the sums of the corresponding Fourier

coefficients of f1 and f..
The Fourier coefficients of cf are c times the corresponding Fourier coefficients

of f.

Rectangular Pulse

The function f*(x) in Fig. 264 is the sum of the function f(x) in Example | of Sec 11.1 and the constant 4.
Hence, from that example and Theorem 2 we conclude that

4k f I 1
F¥x) =k + — [sinx+ — sin3x+ —sinSx+ ). ]
T 3 5

Half-Wave Rectifier

The function u(f) in Example 3 of Sec, 11.2 has a Fourier cosine series plus a single term v(f) = (E/2) sin wt.
We conclude from this and Theorem 2 that u(f) — v() must be an ever function. Verify this graphically. (See
Fig. 265.)

¥
[ 0.5
2k —
[l
- 0 T 2% 37 ar x - 0 Tt

Fig. 264. Example 1 Fig. 265. wu(t) —v(t)withE=1, w =1
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EXAMPLE 3 Sawtooth Wave
Find the Fourier series of the function (Fig. 266)

f)=x+m if —w<x<mw and fix + 27 = f(x).
f(x)
r =z | x
(@) The function f{x)

(b) Pariial sums S, Sg, S3, Sgg
Fig. 266. Example 3

Solution, Wehave f = f; + fo, where f; = x and f3 = . The Fourier coefficients of f5 are zero, except
for the first one (the constant term), which is 7. Hence, by Theorem 2, the Fourier coefficients a,,, b, are those
of fy, except for ag, which is 7. Since fy isodd, a,, =0forn=1,2,---,and

™

w
2 2
by = - fo F16x) sinnx edx = P fo x sin nx dx.

Integrating by parts, we obtain

2 l:—xcosnx o J‘W J 2
bpy=—|——| 4+ — | cosnxdx| = — — cosnm.
™ n 0 n 0 n
Hence by = 2, by = —2/2, bg = 2/3, by = —2/4, -+ - - , and the Fourier series of f(x) is
X 1. 1.
fox) =@+ 2 |sinx — Esmz.t-i-gsm&\:— SRR I |

Half-Range Expansions

Half-range expansions are Fourier series. The idea is simple and useful. Figure 267
explains it. We want to represent f(x) in Fig. 267a by a Fourier series, where f(x) may
be the shape of a distorted violin string or the temperature in a metal bar of length L, for
example. (Corresponding problems will be discussed in Chap. 12.) Now comes the idea.
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£ I/-\

L x

{a) The given function f(x)

Mf\/\/\

_L 7 %

{b) f(x) extended as an even periodic function of period 2L

f%)

(¢) f(x)extended as an odd periodic function of period 2L

Fig. 267. (a) Function f(x) glvenon an interval 0 = x =1L

(b) Even extension to the full “range” (interval) —L = x = L (heavy curve)
and the periodic extension of period 2L to the x-axis

(¢) Odd extension to —L = x = L (heavy curve) and the periodic extension
of period 2L to the x-axis

We could extend f(x) as a function of period L and develop the extended function into a
Fourier series. But this series would in general contain both cosine and sine terms. We
can do better and get simpler series. Indeed, for our given f we can calculate Fourier
coefficients from (2) or from (4) in Theorem 1. And we have a choice and can take what
seems more practical. If we use (2), we get (1). This is the even periodic extension f;
of f in Fig. 267b. If we choose (4) instead, we get (3), the odd periodic extension f, of
f in Fig. 267c.

Both extensions have period 2L. This motivates the name half-range expansions: f is
given (and of physical interest) only on half the range, half the interval of periodicity of
length 2L.

Let us illustrate these ideas with an example that we shall also need in Chap. 12.

EXAMPLE 4 “Triangle” and Its Half-Range Expansions

Find the two half-range expansions of the function (Fig. 268)

kl/\
2k o L
- ! -IT,\’ if 0<X<2

0 L2 L = JG) =
. . 2k P
Fig. 268. The given —(@L—-x if -<x<L
o L 2
function in Example 4

Solution. (a) Even periodic extension. From (2) we obtain
L2

L
_ ! Ef . l"f _k
ao—LI:L oxd.x+L sz(L x)d.{l—z,

L2 L
a =2 E{C-J‘ cos —— d-l—-%k—f L T xdr
nST|T ), X C0§ T X dx 7 sz( X) cos L .
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We consider a,,. For the first integral we obtain by integration by parts

Li2
nir Lx | nw

L2 L Li2
f Xcos —xdy = — sin —x
0

, A
- — sin — x dx
0 nir Jg L

L nar L

>  nw 2 ( nar )

sin + cos — — |
2 2 n2a 2

Similarly, for the second integral we obtain
L

©L—2 nw J L L—1s nw " L L J’L L
—x)cos —xdr= — (L—x)sin —x - — sin — x
L nw L e nw Jdre L

~ (o L . L\ . nw L2 nr

We insert these two results into the formula for a,,. The sine terms cancel and so does a factor L2, This gives

(s os BT o {
a, = PR cos 5 cos nwr .

L2

Thus,

g = — [61(;’(227]'2), ag = _]6!{/(62772)! 10 =~ — 161(/(102q1-2). T

and a, = 0if n # 2, 6, 10, 14, - - -, Hence the first half-range expansion of f(x) is (Fig. 26%a)

_ Kk 16k(l 271-'_1 '61r+ )

Jix) = 7 2\ 2 Cos L X > cos L X

This Fourier cosine series represents the even periodic extension of the given function f(x), of period 2L.
(b) Odd periodic extension. Similarly, from (4) we obtain

5 b_Sk . nw
(5) .,4,,—”2‘“_231:12

Hence the other half-range expansion of f(x) is (Fig. 269b)

8k O ' I 3#x 1 5w
f) = ? -l? smzx— 3—2- sme+ 5—2 sip ——x — +eer).
This series represents the odd periodic extension of f(x), of period 2L.
Basic applications of these resulis will be shown in Secs. 12.3 and 12.5. |
Y]
-L 0 L x

(a) Even extension

™~ ad

-1, 0 L\/ x

(h) 0dd extension
Fig. 269. Periodic extensions of f(x) in Example 4
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1-9{ EVEN AND ODD FUNCTIONS
Are the following functions even, odd, or neither even nor
odd?
L. |x|. x2 sin ax, x + x%, e~ Inx, x cosh x
2. sin (¥®), sin® x, x sinh x, |x3], ™, xe, tan 2x, x/(1 + x?)
Are the following functions, which are assumed to be
periodic of period 24, even, odd, or neither even nor odd?
3.f) =52 (—wm<x< W
4, f(x) = x? (—7/2 < x < 37/2)
5. fx) =™ (—m<x<
6. f(y=x3siny (—7r<x< W
7
8
9

f@) =3 X (< x< W

f) =1 —x+a2—x° (<< W

CFO =+ if—r<x<0. fix)=—1/1 + 2%
f0o<x<w

10. PROJECT. Even and Odd Functions. (a) Are the
following expressions even or odd? Suims and products
of even functions and of odd functions. Products of
even times odd functions. Absolute values of odd
functions. f(x) + f(—x) and F(x) — f(—x) for arbitrary
S
(b) Write &%, 1/(1 — x), sin {x + k). cosh (x + k) as
sums of an even and an odd function.

(c) Find all functions that are both even and odd.

(d) Is cos®x even or odd? sin®x? Find the Fourier
series of these functions, Do you recognize familiar

identities?
11-16 FOURIER SERIES OF EVEN AND ODD
FUNCTIONS

Is the given function even or odd? Find its Fourier series.
Sketch or graph the function and some partial sums. (Show
the details of your work.)

1L f(x) =7 — x| (—w<x<m

11.4 Complex Fourier Series.

12, f(xy = 2xfx| (—1<x <)
X if —afl2<x< /2
13, f(x) = {
a—x if w2 < x < 3u/2
me ¥ if—w7w <x<0
14. f(x) = [
e if 0 <x<

2 if-2<x<90

15.f(x)=[
0 if 0 <x<2

1 — 3] if —2<x<2
16. f(x)={ _ (p=8)
0 if 2<x<6

17-25| HALF-RANGE EXPANSIONS

Find (a) the Fourier cosine series, (b) the Fourier sine series.
Sketch f(x) and its two periodic extensions. (Show the
details of your work.)

17. fy =1 (0<x<2)
18. fx) =x (O<ax<P
0 fx)=2—x 0<x<?2)

0 (0<ax<?)
20.f(x)={

1 @<x<4)

1 0<ax<l)
21. f(x)={

2 (1 <x<?2)

X (0 < x < 7w/2)
22.f(x)={

w2 (w2 < x < @)
2. fx)=x O<x <L)
2. f(x) =x% (0<x<L)

25. f(x)=7—x (0O<x< m

26. Illustrate the formulas in the proof of Theorem 1 with
examples. Prove the formulas.

Optional

In this optional section we show that the Fourier series

(H F() = ag + 2, (G, cos nx + by, sin nx)

n=1

can be written in complex form, which sometimes simplifies calculations (see Example 1,
on page 498). This complex form can be obtained because in complex, the exponential
function ¢ and cos ¢ and sin t are related by the basic Euler formula (see (11) in Sec. 2.2)

(2) e =cost+ isint. Thus e =cost — isint.
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Conversely, by adding and subtracting these two formulas, we obtain

1 . i 1 . .
(3) (a) cost= 5(8“ + e, (b) sint= ?(enﬁ —e™).
i
From (3), using 1// = —i in sin f and setting + = nx in both formulas, we get

1 ) i 1 x i
a,, cos nx + b, sin nx = £y ap(e™ + 7™ + % b (™" — e~
I
1 : inx L : —ing
=3 (a,, — ib,)e™™ + 2 (a, + iby)e ™.

We insert this into (1). Writing ao = o, 3(an — iby) = Cno and  3(a, + iby) = ky,
we get from (1)

@) FX) = co + D) (€™ + kpe™™).

n=1

The coefficients ¢y, ¢,, - -+, and &y, %,, * - - are obtained from (6b), (6¢c) in Sec. 11.1 and
then (2) above with t = nx,

Cn _12 (a, — i lef (X  si ) lﬂf ) i dx
= Gn — thy) = f(x)(cos nx — i sin nx) dx 2 fx)e
&)

_i( -I-'b)—if ) r + i si )dx—ij‘w Ty
k, = o (an + ibp) = —— _wf(x(cosm i sin nx = o _wf(x)e :

Finally, we can combine (5) into a single formula by the trick of writing k,, = ¢_,,. Then
(4). (§), and ¢g = aq in (6a) of Sec. 11.1 give (summation from —oo!)

FO) =2 cpe™,

(6)

1 w

Cp = Py f fx)e ™= dx, n=20,=x1,%+2,---

This is the so-called complex form of the Fourier series or, more briefly, the complex
Fourier series, of f(x). The c,, are called the complex Fourier coefficients of f(x).
For a function of period 2L our reasoning gives the complex Fourier series

o0

fO) =2, cpe™iE,
n=——0o0

)

L
Cp = —[— f flx)e~ il gy n=0,x1,*2,+--.
2L J_g
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EXAMPLE 1
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Complex Fourier Series

Find the complex Fourier series of f(x} = & if —w < x < mand f(x + 27} = f(x) and obtain from it the vsual
Fourier series.

Solution. Since sin nmr = 0 for integer n, we have

] P
™ = cos nar i sin nr = cos nwr = (—1)"™.

With this we obtain from (6) by integration

w

Cp = + f €%e P gy = =S ! & ine i = L ! (™ — X1
n 2w J_ 2a 1 —in PO 20 | —in )
On the right,
1 I +in 1 4+ in - e
_ = — ¢ 7 =2 sinhm
L—in (L —im( +in) | +n° and e sinf
Hence the complex Fourier series is
sinh w7 . b+in
8 e’ = ~h"* e —r<x < m,
(8) — m}‘,_w( I EC (= )
From this let us derive the real Fourier series, Using (2) with ¢t = nx and i2 = —1, we have in (8)

(1 + in)eim’ = (I + in)}(cos nx + i sinnx) = (cos nx — n sin nx) + i(n cos nx 4 sin nx).

Now (8) also has a corresponding term with —n instead of n. Since cos (—nx) = cos nx and
sin (—nx) = —sin nx, we obtain in this term

(1 — in)e™ ™ = (1 — in)(cos mx — i sin nx) = (cos nx — n sin nx) — i(n cos nx + sin nx).
If we add these two expressions, the imaginary parts cancel. Hence their sum is
2(cos nx — n sin nx), n=1,2---

For n = 0 we get | (not 2) because there is only one term. Hence the real Fourter series is

9) z 2simhm ) 1 ! ( inx) + (cos Zx — 2 sin 2x) — +
( e - 2 L+ 12 cOs x — sinx 1+ 22 cos sin 2x) .
In Fig. 270 the poor approximation near the jumps at *4r is a case of the Gibbs phenomenon (see CAS
Experiment 20 in Problem Set 11.2), |
y
25}~

Fig. 270. Partial sum of (9), terms from n = 0 to 50
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1. (Calculus review) Review complex numbers,

2. (Even and odd functions) Show that the complex
Fouriet coefficients of an even function are real and
those of an odd function are pure imaginary.

3, (Fourier coefficients) Show that
Qg = Cgs Ap = Cp F+ Copy by = i(cy — Cp).

4. Verify the calculations in Example 1.

5. Find further terms in (9) and graph partial sums with
your CAS,

6. Obtain the real series in Example | directly from the
Euler formulas in Sec. 11.

7-13 COMPLEX FOURIER SERIES
Find the complex Fourier series of the following functions,
(Show the details of your work.)
7. f) = —-1if—7<x<0,fx)=1Hf0<x< 7
8. Convert the series in Prob. 7 to real form.
9, f(x) =x (—mw<x<m

11.5 Forced Oscillations
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10. Convert the series in Prob. 9 to real form.
1L f(x) = x%2 (—w<x < 7

12. Convert the series in Prob. 11 to real form.
13. fx) =x (0 < x < 27)

14. PROJECT. Complex Fourier Coefficients. It is very
interesting that the ¢,, in (6) can be derived directly by
a method similar to that for a,, and b,, in Sec, 11.1. For
this, multiply the series in (6) by e~ with fixed
integer m, and integrate termwise from — to 7 on
both sides (allowed, for instance, in the case of uniform
convergence) to get

T on ks

f Jc(x)e-—imn: dx = 2 Cn f eHn—mx dx.
—ar ==t —Tr

Show that the integral on the right equals 27 when

n = m and 0 when n # m [use (3b)], so that you get
the coefficient formula in (6).

Fourier series have important applications in connection with ODEs and PDEs. We show
this for a basic problem modeled by an ODE. Various applications to PDEs will follow
in Chap. 12. This will show the enormous usefulness of Euler’s and Fourier’s ingenious
idea of splitting up periodic functions into the simplest ones possible.

From Sec. 2.8 we know that forced oscillations of a body of mass m on a spring of
modulus & are governed by the ODE

oy

my” + ¢y’ + ky = r(@)

where y = y(¢) is the displacement from rest, ¢ the damping constant, & the spring constant
(spring modulus), and r(z) the external force depending on time 7. Figure 271 shows the
model and Fig. 272 its electrical analog, an RLC-circuit governed by

Exterpal
force r{(¢)

Fig. 271.
consideration

Vibrating system under

O s
E(e)

Fig. 272. Electrical analog of the
system in Fig. 271 (RLC-circuit)
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1
(1%) LI" + RI' + el I=E® (Sec. 2.9).

We consider (1). If r(¢) is a sine or cosine function and if there is damping (¢ > 0),
then the steady-state solution is a harmonic oscillation with frequency equal to that of r(¥).
However, if r(t) is not a pure sine or cosine function but is any other periodic function,
then the steady-state solution will be a superposition of harmonic oscillations with
frequencies equal to that of r(z) and integer multiples of the latter. And if one of these
frequencies is close to the (practical) resonant frequency of the vibrating system (see
Sec. 2.8), then the corresponding oscillation may be the dominant part of the response of
the system to the external force. This is what the use of Fourier series will show us. Of
course, this is quite surprising to an observer unfamiliar with Fourier series, which are
highly important in the study of vibrating systems and resonance. Let us discuss the entire
situation in terms of a typical example.

Forced Oscillations under a Nonsinusoidal Periodic Driving Force

In (1), let mr = 1 (gm), ¢ = 0.05 (gm/sec), and k = 25 (gm/sec™), so that (1) becomes
(2) y' + 0,05y + 25y = r()
where r() is measured in gm - cm/sec?. Let (Fig. 273)

t—l-%'_ if —o <t<0,

r@) = ) r(t + 2m) = r().
mw
-t 4 'E if 0<1<m,

Find the steady-stale solution y(2).

r(t)
w2

ol

Fig. 273. Force in Example 1

Solution. We represent r(1) by a Fourier series, finding
4 | I
(3} r(t)=; cost+?cos3t+5—2c055t+---

(take the answer to Prob. 11 in Problem Set 11.3 minus $7r and write ¢ for x). Then we consider the ODE

4
4) vy 4+ 005y + 25y = 5 COs At mn=13-9
n“m

whose right side is a single term of the series (3). From Sec. 2.8 we know that the steady-state solution y,(¢)
of (4) is of the form

(3) Y = Ay cOs at + B, sin nt,
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By substituting this into (4) we find that

425 — n® 0.2 2,2 2
(6) Ay = nz—-ern— . B, = waD, where D, = (25 — nz) 4+ (0.0am)".

Since the ODE (2) is linear, we may expect the steady-state solution to be
7 y=yr+yg+ys+---

where y,, is given by (3) and (6). In fact, this follows readily by substituting (7) into (2) and using the Fourier
series of #(f), provided that termwise differentiation of (7) is permissible. (Readers already famjliar with the notion
of uniform convergence [Sec. 15.5] may prove that (7) may be differentiated term by term.)

From (6) we find that the amphtude of (5) is (a factor V' D,, cancels, out)

4
C,=Vaj2+B2l=———.
75 “n 7 "211',‘ /Dn
Numeric values are
C1 = 0.0531
C3 = (.0088
Cs = 0.2037
Cy; = 0.0011
Cg = 0.0003.

Figure 274 shows the input (multiplied by 0.1) and the output. For » = 5 the quantity D,, is very small, the
denominator of Cs is small, and Cj is so large that y5 is the dominating term in (7). Hence the oufput is almost
a harmonic oscillation of five times the frequency of the driving force, 2 littte distorted due to the term y4, whose
amplitude is about 25% of that of y5. You could make the situation still more extreme by decreasing the damping
constant ¢, Try it.

Output

-3 |- 13\7 1] \p t
vil Input

1. (Coefficients) Derive the formula for C,, from A,, and B,,. 3. (Damping) In Example 1 change ¢ to 0.02 and discuss

2. (Spring constant) What would happen to the amplitudes how this changes the' output.
C,, In Example 1 (and thus to the form of the vibration) 4. (Input) What would happen in Example i if we
if we changed the spring constant to the value 97 If we replaced r(1) with its derivative (the rectangular wave)?

took a stiffer spring with k = 81? First guess. What is the ratio of the new C,, to the old ones?
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5-11| GENERAL SOLUTION

Find a general solution of the ODE y" + «?y = #(f) with
r(f) as given. (Show the details of your work.)

5. r(t) = cos wt, @ = 0.5,0.8, 1.1, 1.5, 5.0, 10.0

6. 7(t) = cos @t + cos wat (@? # w2, wy?)

N
7.r() =2, a,cosnt, |w|#1,2 ---, N
n=]
8. r(f) = sint + Lsin3r + Lsin5r + Fsin 72
t4+ w if —a<t<0
9. r(t) =
—t+ 7 if 0<t< 7

and r(r+ 2m = r(r), |lw| #0,1,3, -
t f —a2 <r< w/2
10. r(t) = {

T—t if w2 <t < 3nw/2

and r(t + 2m = r(Q1), |w| #1,3,5, -

1L r(r) = ; Isin | if —7 < t < 7 and

r¢t + 2m) = r(t), |wl #0,2.4,---

12. (CAS Program) Write a program for solving the ODE
just considered and for jointly graphing input and
output of an initial value problem involving that ODE.
Apply the program to Probs. 5 and 9 with initial values
of your choice.

13, (Sign of coefficients) Some A,, in Example 1 are positive
and some negative. Is this physically understandable?

Fourier Series, Integrals, and Transforms

14-17| STEADY-STATE DAMPED OSCILLATIONS

Find the steady-state oscillation of ¥y + cy' + y = #()
with ¢ > 0 and r(¢) as given. (Show the details of your

work.)

14. r(r) = a, cos nt

15. r(t) = sin 3¢

it if —a/l2<tr< 7ml2

16. r() = {

a(m —t) o il <t < 3uw/2

and r( + 27 = ()

N
17. r(2) = 2, by sin nt
nwl

18. CAS EXPERIMENT. Maximum QOutput Term.
Graph and discuss outputs of y" + ¢y’ + ky = r(f)
with r(r) as in Example | for various ¢ and k& with
emphasis on the maximum C,, and its ratio to the
second largest |C,,].

19-20| RLC-CIRCUIT

Find the steady-state current I(¢) in the RLC-circuit in
Fig. 272, where R = 100 Q, L = 10 H, C = 1072 F and
E(r) V as follows and periodic with period 2. Sketch or
graph the first four partial sums. Note that the coefficients
of the solution decrease rapidly.

19. E(t) = 2000(7® — &) (—w < t < 7)

100¢mt + 12) if -7 <t<0

20. E(t) = [

100Cat — t2) if O0<r<aas

11.6 Approximation by Trigonometric Polynomials

Fourier series play a prominent role in differential equations. Another field in which they
have major applications is approximation theory, which concerns the approximation of
functions by other (usually simpler) functions. In connection with Fourier series the idea

is as follows.

Let f(x) be a function on the interval —7 = x = 7 that can be represented on this
interval by a Fourier series. Then the Nth partial sum of the series

N

(1) fx) = ag + E (a,, cos nx + b, sin nx)

n=1

is an approximation of the given f(x). It is natural to ask whether (1) is the “best”
approximation of f by a trigonometric polynomial of degree N, that is, by a function

of the form

2) F(x) = A, + O, (A, cos nx + B, sin nx)

N
(N fixed)

n=1

where “best” means that the “error” of the approximation is as small as possible.
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Of course, we must first define what we mean by the error E of such an approximation.
We could choose the maximum of [f — F|. But in connection with Fourier series it is
better to choose a definition that measures the goodness of agreement between f and
F on the whole interval —m = x = &. This seems preferable, in particular if f has jumps:
F in Fig. 275 is a good overall approximation of f, but the maximum of |f — F| (more
precisely, the supremum) is large (it equals at least half the jump of f at x). We choose

3) E=fw(f—F)2clx.

This is called the square error of F relative to the function f on the interval —7 = x = 7.
Clearly, £ = 0.

N being fixed, we want to determine the coefficients in (2) such that £ is minimum.
Since (f — F)2 = f2 — 2fF + F?, we have

w aw ko)
@) E=[ frax—2 fFax+ | Frax
-7 - —r
We square (2), insert it into the [ast integral in (4), and evaluate the occurring integrals.

This gives integrals of cos®nx and sin? nx (n = 1), which equal 7, and integrals of
cos nx, sin nx, and (cos$ nx)(sin mx), which are zero (just as in Sec. 11.1). Thus

2
szdx f |:A9+2(A cosnx-l—B.,,,smm)} dx

= 7240 + A2+ - AN + B2+ - -+ + Byd).

We now insert (2) into the integral of fF in (4). This gives integrals of f cos nx as well
as f sin nx, just as in Euler’s formulas, Sec. 11.1, for 4,, and b,, (each muitiplied by A,,
or B,). Hence

.
[ #F ax = m@Aga0 + Aray + - - - + Anay + Biby + + - + Byby).

With these expressions, (4) becomes

w

N
E= ffd,\:—‘7w|:2Aoao+2(Anan+an)}

nw=l

(5)
+ [moz + > 4,2+ an)J :

n=1

a'*— ~ f .
P \\ ,/
-
F

Fig. 275. Error of approximation
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We now take A,, = a,, and B,, = b,, in (2). Then in (5) the second line cancels half of the
integral-free expression in the first line. Hence for this choice of the coefficients of F the
square error, call it E¥, is

T N
(©) = | fzdx—w{zahz (anz+bn2)}
-7 n=1

We finally subtract (6) from (5). Then the integrals drop out and we get terms
A2 — 2A,a, + a2 = (A, — a,)® and similar terms (B,, — b,)%

N
E-E*=m {2(A0 - ao)z + 2 [(A'n, - a'n,)z + (B, — n)z]} .
n=1

Since the sum of squares of real numbers on the right cannot be negative,
E— E*= 0, thus E = E*,

and E = E* if and only if Ay = ag. * * - , By = by. This proves the following fundamental
minimum property of the partial sums of Fourier series.

Minimum Square Error

The square error of F in (2) (with fixed N) relative to f on the interval —m=x=
is minimum if and only if the coefficients of F in (2) are the Fourier coefficients of
f. This minimum value E* is given by (6).

From (6) we see that £* cannot increase as N increases, but may decrease. Hence with
increasing N the partial sums of the Fourier series of f yield better and better
approximations to f, considered from the viewpoint of the square error.

Since E* = 0 and (6) holds for every N, we obtain from (6) the important Bessel’s
inequality

r

7 2a,2 + i (a,2 + b2 = —-}; f f(x)? dx

n=1

for the Fourier coefficients of any function f for which integral on the right exists. (For
F. W. Bessel see Sec. 5.5.)

It can be shown (see [C12] in App. 1) that for such a function f, Parseval’s theorem
holds; that is, formula (7) holds with the equality sign, so that it becomes Parseval’s
identity®

8) 2a0® + 2 (@, + by®) = —-}; | for ax.

=1

*MARC ANTOINE PARSEVAL (1755-1836), French mathematician. A physical interpretation of the identity
follows in the next section.
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EXAMPLE 1

//\

i 0 % %
Fig. 276. F with
N = 20 in Example 1

Minimum Square Error for the Sawtooth Wave

Compute the minimum square error E* of F(x) with N = 1,2, -+, 10, 20, - - -, 100 and 1000 relative to
fR=x4+7w (—wr<x<m)

on the interval — 7 = x = .

. ' ! I (=Nt .
Solution. F@) = # + 2@inx — ) sin 2x + 3 $in3y — 4+ -+ + —y  sin Nx) by Example 3 in
Sec. 11.3. From this and (6),

W N 1
E"‘r-f (x + W)zdx—‘ﬁ‘(?.‘ﬂ'z-{'tl-z —2).

n=1 n

Numeric values are;

N E* N E* N E* N E*

1 8.1045 6 1.9295 20 0.6129 70 0.1782
2 49629 7 1.6730 30 0.4120 80 0.1561
3 3.5666 8 1.4767 40 0.3103 90 0.1389
4 27812 9 1.3216 50 0.2488 100 0.1250
5 2.2786 10 1.1959 60 0.2077 1000 0.0126

F = 83, Ss. S5 are shown in Pig, 266 in Sec. 11.3, and F = Sy is shown in Fig. 276. Although [f(x) — F ()|
is large at & (how large?), where [ is discontinuous, F approximates f quite well on the whole interval, except
near *4r, where “waves” remain owing to the Gibbs phenomenon (see CAS Experiment 20 in Problem Set
11.2).

Can you think of functions f for which E* decreases more quickly with increasing N? |

This is the end of our discussion of Fourier series, which has emphasized the practical
aspects of these series, as needed in applications. In the last three sections of this chapter
we show how ideas and techniques in Fourier series can be extended to nomperiodic
functions.

PROBEEM-SET Fr6-—————

1-9| MINIMUM SQUARE ERROR ¥ if gwr<x<jzw
Find the trigonometric polynomial F(x) of the form (2) for 8. f@x) = [ f Lo x < 3g
which the square error with respect to the given f(x) on the 2 2"
interval —7 = x 7r is minimums, and compute the 9. fx) =x(x + Mif—m<x <0, f(x) =x(—x + m

minimum value for N = 1, 2, -+ -, 5 (or also for larger

ifo<x<T7

values if you have a CAS).

L f)=x(-m<x<m) 10. CAS EXPERIMENT. Size and Decrease of E*.

2. f)=x*(—w < x< m Compare the size of the minimum square error £* for

f) = (—r<x<m functions of your choice. Find experimentally the

4. fy=x3(—r<x<m factors on which the decrease of E* with N depends.

5 f(x) = |sinx] (-7 < x < @) For each function considered find the smallest N such
that E* < (.1.

6. f(x) = e W (—p < x < @)

—1
7. f(x) ={ .

—r < x <0 11. (Monotonicity) Show that the minimum square error
(6) is a monotone decreasing function of . How can
O0<x<=w you use this in practice?
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12-16 PARSEVAL’S IDENTITY 14 1 + 1 + [ +
Using Parseval's identity, prove that the series have the T 12-32 0 32.52 0 52.72
indicated sums. Compute the first few partial sums 1o see 7 1
that the convergence is rapid. =16 "3 ° 0.11685 0275
| 1 wt (Use Prob. 5, this set,)
12, 1+?+ +?+ %=1.014678032 l I o
15. 1 + 3 + g + -+ = —- = 1082323234
(Use Prob. 15 in Sec, 11.1.) 2 3 90
(Use Prob. 21 in Sec. 11.1.)
B+ =+ = T 133700850 L, 1 ! s
. 32 52 8 . 16.]+‘§g+¥+¥+"'=96—0=1.00]_447078
(Use Prob. 13 in Sec. 11.1.) (Use Prob. 9, this set.)

11.7 Fourier Integral

EXAMPLE 1

Fourier series are powerful tools for problems involving functions that are periodic or are of
interest on a finite interval only. Sections 11.3 and 11.5 first illustrated this, and various further
applications follow in Chap. 12. Since, of course, many problems involve functions that are
nonperiodic and are of interest on the whole x-axis, we ask what can be done to extend the
method of Fourier series to snch functions. This idea will lead to “Fourier integrals.”

In Example 1 we start from a special function f;, of period 2L and see what happens
to its Fourier series if we let L — . Then we do the same for an arbitrary function f;,
of period 2L. This will motivate and suggest the main result of this section, which is an
integral representation given in Theorem 1 (below).

Rectangular Wave

Consider the periodic rectangular wave f(x) of period 2L > 2 given by

0 if - < x< —]
L =4t i —l<x< |
0 if l<x< L.

The left part of Fig. 277 shows this function for 2L = 4, 8, 16 as well as the nonperiodic function f(x), which
we obtain from f, if we let L — ox,

1 if—l1<x<]
f(x) = lim f ()= {
L—to 0

otherwise.

We now explore what happens 10 the Fourier coefficients of fy, as L increases. Since fr, is even, b, = 0 for
all n. For a,, the Euler formulas (6). Sec. 11.2, give

_ 1 10{,_ 1 _ f sn'm _ f X _ 2
ao—-zL _Ix—L. = _1co = cos x—L

sin (na/L)
nalL

This sequence of Fourier coefficients is called the amplitude spectrum of fr, because |a,| is the maximum
amplitude of the wave a,, cos (narx/L). Figure 277 shows this spectrum for the periods 2L = 4, 8§, 16. We see
that for increasing L these amplitudes become more and more dense on the positive w,,-axis, where w,, = na/L.
Indeed, for 2L = 4, 8, 16 we have 1, 3, 7 am;};ﬁlnudes per “hatf-wave” of the function (2 sin wy,)/(Lw,,) (dashed
in the figure). Hence for 2L = 2 we have 2 = | amplitudes per half-wave, so that these amplitudes will
eventually be everywhere dense on the positive w,,-axis (and will decrease to zero).

The outcome of this example gives an intuitive impression of what about to expect if we turn from our special
function to an arbitrary one. as we shall do next. |
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Waveform £, (x) ) Amplitude spectrum a (w,)
\\’/,I:]_ w, = na/L,
‘\
\
fL(x) \‘ n==5a
I I S N o O s e T o O o Y L«’IL/\.
2 0 2 x '\\)— ’ "'j w,
-~ rd
I 2L='-4 I n,=3 n="7T
1
2 ~ n=2
fL(x) S /H=10
T DT — IR N
4 0 2 x L7 =7 u
I":_2L=8‘ﬁ"| n==6 n=14
£ (e}
\ ! 11 L L
-8 0 8 x
fe———2L =16——>
fx)
1]
=101 x

Fig. 277. Waveforms and amplitude spectra in Example 1

From Fourier Series to Fourier Integral

We now consider any periodic function f;(x) of period 2L that can be represented by a
Fourier series

oD
frx) = ag + > (ay, cos w,x + b,, sin w,,x),

n=1

and find out what happens if we let L— . Together with Example 1 the present calculation
will suggest that we should expect an integral (instead of a series) involving cos wx and
sin wx with w no longer restricted to integer multiples w = w,, = n«/L of #/L but taking
all values. We shall also see what form such an integral might have.

If we insert a,, and b,, from the Euler formulas (6), Sec. 11.2, and denote the variable
of integration by v, the Fourier series of f;(x) becomes

o0

1t 1
f =5 | o d+ 43

-L n=1

L
[cos WX f fr(v) cos w,v dv
-L

L
+ sin w,x f frv) sinw,v dv:l .
~L

We now set

na w

_(m+ D7
L L L

AW = Wypyy — Wy
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Then 1/L = Aw/sr, and we may write the Fourier series in the form

=

1 1 L
()  fix)= Py f—LfL(U) dv + P 2 [(cos w,x) Aw f_LfL(v) COS w,v du

n=1

L
+ (sin w,x) Aw f fr@) sin w,v dv] .
—L

This representation is valid for any fixed L, arbitrarily large, but finite.
We now let L — o and assume that the resulting nonperiodic function

flx) = Llfigo frx)

is absolutely integrable on the x-axis; that is, the following (finite!) limits exist:

0 b oo
) Jim [ 560 dx + Jim fu £o)| dx (written | i) clx)

Then 1/L — 0, and the value of the first term on the right side of (1) approaches zero.
Also Aw = /L — 0 and it seems plausible that the infinite series in (1) becomes an
integral from 0 to ¢, which represents f(x), namely,

=

3) fx) = i f [cos wx me(v) cos WU dv + sin wx f- mf(v) sin wu dv:l dw.

0

If we introduce the notations

1 1 = .
4 Aw) = P f_ OQj’(v) COs WU dv, B(w) = g f_wf(v) sin wu dv
we can write this in the form
5) = | [AG) cos wx + B(w) sinwa] dw.
0

This is called a representation of f(x) by a Fourier integral.

It is clear that our naive approach merely suggests the representation (5), but by no
means establishes it; in fact, the limit of the series in (1) as Aw approaches zero is not
the definition of the integral (3). Sufficient conditions for the validity of (5) are as follows.

Fourier Integral

If f(x) is piecewise continuous (see Sec. 6.1) in every finite interval and has a
right-hand derivative and a left-hand derivative at every point (see Sec 11.1) and
if the integral (2) exists, then f(x) can be represented by a Fourier integral (5) with
A and B given by (4). At a point where f(x) is discontinuous the value of the Fourier
integral equals the average of the left- and right-hand limits of f(x) at that point
(see Sec. 11.1). (Proof in Ref. [C12]; see App. 1.)
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Applications of Fourier Integrals

The main application of Fourier integrals is in solving ODEs and PDEs, as we shall see
for PDEs in Sec. 12.6. However, we can also use Fourier integrals in integration and in
discussing functions defined by integrals, as the next examples (2 and 3) 1llustrate.

EXAMPLE 2 Single Pulse, Sine Integral

Find the Fourier integral representation of the function

' 1 i i <1
fix) = [ (Fig, 278).
0 i [J>1
fix)
l— 1
-1 0 1 X

Fig. 278. Example 2

Solution. From (4) we obtain

| = 1t sin wo |* 2sinw
Aw)y= — Jw) coswv dv = — cos wu dv = =
T J_ T J Tw |- W
1ot
B(w)= — f sinwv dv =0
T Ja
and (5) gives the answer
L+.a]
2 COS wx $in w
(6) fxy=— — dw.
aw 0 w

The average of the left- and right-hand limits of f(x) at x = 1 is equal to (1 + 0)/2, that is, /2.
Furthermore. from (6) and Theorem 1 we obtain (multiply by «/2)

w2 if 0=x<],

dw = { ml4 if x=1

m -
cOs wx sin w
) —

o w
0 if x> 1.

We mention that this integral is called Dirichlet’s discontinous factor. (For P. L. Dirichlet see Sec. 10.8.)
The case x = 0 is of particular interest. If x = 0, then (7) gives

LG

sin i1% 7
4 = =
(8%) fo " dw R

We see that this integral is the limit of the so-called sine integral

u .
sSin w
®) Sit) = f dw

0 w

as « — o, The graphs of Si(x) and of the integrand are shown in Fig. 279.

Tn the case of a Fourier series the graphs of the pariial sums are approxXimation curves of the curve of the
periodic function represented by the series. Similarly, in the case of the Fourier integral (5), approximations are
obtained by replacing o by numbers a. Hence the integral
%)

a

2 COS WX SInwW
— — dw
T Yo

W

approximates the right side in (6) and therefore f(x).
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¥
Si(x)
b4 i
2/ T
I
Integrand ! E I
/
/ i E |
0.5 ! | !
i N i
L f TN Y y [,—n,“ l
-Ar-z3zx -2p =Iz O ix_.2r 38~ 4 u
-0.5}
1_.

—

Fig. 279. Sine integral Si(u) and integrand

Figure 280 shows oscillations near the points of discontinuity of f(x). We might expect that these oscillations
disappear as a approaches infinity. But this is not true; with increasing a, they are shifted closer to the points
x = = |, This unexpected behavior, which also occurs in connection with Fourier series, is known as the Gibbs
phenomenon. (See also Problem Set 11.2.) We can explain it by representing (9) in terms of sine integrals as
follows. Using (11) in App. A3.1, we have

a a a
2 COS wx sin w 1 sin (w + wy )| sin (w — wx
—f——dw=—- -——(——)dw—l—— gdw.
w Jg w wm Yo w T Jo w

In the first integral on the right we set w + wx = . Then dwiw = dift, and 0 = w = a4 corresponds to

0=1= (x + a. In the lust imegral we set w — wx = —r. Then dwiw = dift, and 0 = w = 4 corresponds to
0 =1 = (x — 1a. Since sin{—1£) = —sin t, we thus obtain
a . +a (x—-1)a .,
2 COS WX Sin v t sin ¢ 1 sin 7
LA T TIVANR e TIR TN
T J0 w T Jo ! T Jp !

From this and (8) we see that our integral (9) equals
L Si(a[x + 1 1 Si {
— Si(alx + 1]) = — Si(alx — 1))

and the oscillations in Fig. 280 result from those in Fig. 279. The increase of g amounts to-a transformation
of the scale on the axis and causes the shift of the oscillations (the waves) toward the points of discontinuity

-1 and l. m
y Y y
f{wwwwjl
a=8 a=16 a=32
AN N R EVa —tcah 119N Larnll LY,
2 VY1 1Y 2% -2 10 1V 2% 2 Ao 1T ox

Fig. 280. The integral (9) for g = 8, 16, and 32
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EXAMPLE 3

0

Fig. 281. f(x)in
Example 3

Fourier Cosine Integral and Fourier Sine Integral

For an even or odd function the Fourier integral becomes simpler. Just as in the case of
Fourier series (Sec. 11.3), this is of practical interest in saving work and avoiding errors.
The simplifications follow immediately from the formulas just obtained.

Indeed, if f(x) is an even function, then B(w) = 0 in (4) and

2 [ #]
(10) A(w) = — f f() cos wu dv.
T Y0
The Fourier integral (5) then reduces to the Fourier cosine integral
(11) fx) = f A(w) cos wx dw (F even).
0
Similarly, if f(x) is odd, then in (4) we have A(w) = 0 and
2~ .
(12) Bw) = = | $() sinwo do.
T Jo

The Fourier integral (5) then reduces to the Fourier sine integral

o0

(13) fx) = f B(w) sin wx dw ( odd).

0

Evaluation of Integrals

Earlier in this section we pointed out that the main application of the Fourier integral is
in differential equations but that Fourier integral representations also help in evaluating
certain integrals. To see this, we show the method for an important case, the Laplace
integrals.

Laplace Integrals

We shall derive the Fourier cosine and Fourier sine integrals of f(x) = e where x>0 and k>0 (Fig. 281).
The result will be used to evaluate the so-called Laplace integrals,

=0

, 2 -
Solution. (a) From (10) we have A(w) = ; f ¢ ™ cos wu dv. Now, by integration by parts.
0

e cmmare 2t o (2 s+ )
e CoOswb duv = — ¢ — = sin wv COos Wyl .
24P k

If v = 0, the expression on the right equals —&/(k2 + w?), If v approaches infinity. that expression approaches
zero because of the exponential factor. Thus

2k

(14) Alw) = m .

By substituting this into (11) we thus obrain the Fourier cosine integral representation

o0
_ 2k COS WX
f) = e = —

= Jy mdw (x>0, £>0).
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From this representation we see that

oo

cos wx T kg
13) .[, i YT %

o0

2
(b) Similarly, from (12) we have B(w) = P f e~ sinwo dv. By integration by parts,

0

- w - k.
fe ® sinwy do = — 55— e | — sinwv + coswo} .
k= W

This equals —witk® + w2) if v = 0, and approaches 0 as v — . Thus

2wl

(16) B(w) = R

From (13) we thus obtain the Fourier sine integral representation
2 [T wsi
ke 2 f w Sin uw
XxX)=e = — 5 dw
f( ) w o kz + “12
Fromn this we see that

o

17 f w sin wx 4 T _
—_— " gy = — sk
an o K2+ w? " 2 ¢

The integrals (I5) and (17) are called the Laplace integrals.

(x>0, £>0)

(x>0, k>0

1-6| EVALUATION OF INTEGRALS w2 if 0=x<1
Show that the given integral represents the indicated J' * sinw _ . _
4. = { w4 =1
function. Hint. Use (5}, (11), or (13); the integral tells you o W cos xw di w4 i *
which one, and its value tells you what function to consider. 0 if x> 1

(Show the details of your work.)
. /2
0 if x<0 5. f COIS (T:: ) cos xw dw
o _
dw=4{ w/2 if x=0

oo ]
1 f cos xw -+ w sin xw

0 1+ w? Zeosx If 0 < x| < @/2
me ™ if x>0 =
0 if x| = w/2
z.f smw—::cosw sin xw dw * sin 7w sin xw gsinx f 0=x=a
0 W 6. f ) W =
0 I —w 0 if x>
wxl2  0<x<1
_ £ _ 7-12| FOURIER COSINE INTEGRAL
=91 w4 1 x=1
‘ REPRESENTATIONS
0 if x> 1

Represent f(x) as an integral (11).

if 0<x<a

- i
3, f COSIW dw = —e=ifx > 0 7. f(x) = {0
0

I+ w2 2 if xX>aq
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2 if 0<x<a
8. f(x) = .
0 if xX>a

x If 0<x<1
9. f(x) =
0 if x>1

x/2 if 0<x<1
10 f(x) =41 —x/2 if 1 <x<?2

0 if x>2
sinx if O<x<wmw
11, f(x) =
0 x>

e if 0<x<a
12. f(x) =
0 i XxX>a

13. CAS EXPERIMENT. Approximate Fourier Cosine
Integrals, Graph the integrals in Prob. 7, 9, and 11 as
functions of x. Graph approximations obtained by
replacing o with finite upper limits of your choice.
Compare the quality of the approximations. Write a
short report on your empirical results and observations.

14-19| FOURIER SINE INTEGRAL
REPRESENTATIONS

Represent f(x) as an integral (13).

1 if 0<x<a
14-f(x)={
0 if x> a
sinx if 0<x<mw
15.f(x)={
0 if x> a

16. f(x) =

17. f(x) =

18. f(x) =
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{1 2 f 0<x<]

0 x> 1

{w—x if 0<x<an

0 x> @

{cosx if 0<x<nm

X > a7

a—x if 0<x<a
19-f(x)={ ‘

0 if xX>a

20. PROJECT. Properties of Fourier Integrals

(a) Fourier cosine integral. Show that (11) implies

(al) f(ax) = % f A(i) cos xw dw

0 a
(a > 0) (Scale change)

oo

@2) xf(x)= f B*(w) sinxw dw,
0

dA
T = o — 3
B . A as in (10)

==}

@3) £feo) = f A*(w) cos xw dw,
o

d?A

dw®

(b) Solve Prob. 8 by applying (a3) to the result of
Prob. 7.

(c) Verify (a2) for f(x) = 1 f 0 < x < aq and
fx) =01 x> a.

(d) Fourier sine integral. Find formulas for the
Fourier sine integral similar to those in (a).

A¥F = —

11.8 Fourier Cosine and Sine Transforms

An integral transform is a transformation in the form of an integral that produces from
given functions new functions depending on a different variable, These transformations
are of interest mainly as tools for solving ODEs, PDEs, and integral equations, and they
often also help in handling and applying special functions. The Laplace transform
(Chap. 6) is of this kind and is by far the most important integral transform in

engineering.

The next in order of importance are Fourier transforms, We shall see that these
transforms can be obtained from the Fourier integral in Sec. 11.7 in a rather simple fashion.
In this section we consider two of them, which are real, and in the next section a third

one that is complex.
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CHAP. T1  Fourier Series, Integrals, and Transforms

Fourier Cosine Transform

For an even function f(x), the Fourier integral is the Fourier cosine integral
= 2 o

(1) @ £0)=[ Aw)coswxdw. where  (b) AGw)=— | f(o)coswv dv
0 T Yo

[see (10), (11), Sec, 11.7]. We now set A(w) = V2/7m fc(w), where ¢ suggests “cosine.”
Then from (1b), writing v = x, we have

N 2 =
@) Fuw) = \/; fo £(x) cos wx dx

and from (la),

3) f) = % fo £.(w) cos wx dw.

ATTENTION! In (2) we integrate with respect to x and in (3) with respect to w. Formula
(2) gives from f(x) a new function fc(w), called the Fourier cosine fransform of f(x).
Formnla (3) gives us back f(x) from f,(w), and we therefore call f(x) the inverse Fourier
cosine transform of £,(w).

The process of obtaining the transform f, from a given f is also called the Fourier
cosine transform or the Fourier cosine transform method.

Fourier Sine Transform

Similarly, for an odd function f(x), the Fourier integral is the Fourier sine integral [see
(12), (13), Sec. 11.7]

o

4) (@ f&»)= f B(w) sin wx dw, where  (b) B(w) = %_- f f(©) sinwo dv.
0 0

We now set B(w) = V2/m fs(w), where s suggests “sine.” Then from (4b), writing v = x,
we have

. 2 ~
3) fw) = \/; L F(x) sin wx dx.

This is called the Fourier sine transform of f(x). Similarly, from (4a) we have

[2 (=,
(6 fx) = — L f5(w) sin wx dw.

This is called the inverse Fourier sine transform of f,(w). The process of obtaining f,(w)
from f(x) is also called the Fourier sine transform or the Fourier sine transform method.
Other notations are

Fo(f) = fc: F(f) = fs

and &' and F; for the inverses of %, and %, respectively.



