The Binomial Distribution

October 20, 2010

Bernoulli Trials

Definition

A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure.
(1) Tossing a coin and considering heads as success and tails as failure.

Bernoulli Trials

Definition

A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure.
(1) Tossing a coin and considering heads as success and tails as failure.
(2) Checking items from a production line: success $=$ not defective, failure $=$ defective.

Bernoulli Trials

Definition

A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure.
(1) Tossing a coin and considering heads as success and tails as failure.
(2) Checking items from a production line: success $=$ not defective, failure $=$ defective.
(3) Phoning a call centre: success $=$ operator free; failure $=$ no operator free.

Bernoulli Random Variables

A Bernoulli random variable X takes the values 0 and 1 and

$$
\begin{aligned}
& P(X=1)=p \\
& P(X=0)=1-p
\end{aligned}
$$

It can be easily checked that the mean and variance of a Bernoulli random variable are

$$
\begin{aligned}
E(X) & =p \\
V(X) & =p(1-p)
\end{aligned}
$$

Binomial Experiments

Consider the following type of random experiment:
(1) The experiment consists of n repeated Bernoulli trials - each trial has only two possible outcomes labelled as success and failure;

Binomial Experiments

Consider the following type of random experiment:
(1) The experiment consists of n repeated Bernoulli trials - each trial has only two possible outcomes labelled as success and failure;
(2) The trials are independent - the outcome of any trial has no effect on the probability of the others;

Binomial Experiments

Consider the following type of random experiment:
(1) The experiment consists of n repeated Bernoulli trials - each trial has only two possible outcomes labelled as success and failure;
(2) The trials are independent - the outcome of any trial has no effect on the probability of the others;
(3) The probability of success in each trial is constant which we denote by p.

Definition

The random variable X that counts the number of successes, k, in the n trials is said to have a binomial distribution with parameters n and p, written $\operatorname{bin}(k ; n, p)$.

The probability mass function of a binomial random variable X with parameters n and p is

The Binomial Distribution

Definition

The random variable X that counts the number of successes, k, in the n trials is said to have a binomial distribution with parameters n and p, written $\operatorname{bin}(k ; n, p)$.

The probability mass function of a binomial random variable X with parameters n and p is

$$
f(k)=P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for $k=0,1,2,3, \ldots, n$.

The Binomial Distribution

Definition

The random variable X that counts the number of successes, k, in the n trials is said to have a binomial distribution with parameters n and p, written $\operatorname{bin}(k ; n, p)$.

The probability mass function of a binomial random variable X with parameters n and p is

$$
f(k)=P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for $k=0,1,2,3, \ldots, n$.
$\binom{n}{k}$ counts the number of outcomes that include exactly k successes and $n-k$ failures.

Binomial Distribution - Examples

Example

A biased coin is tossed 6 times. The probability of heads on any toss is 0.3 . Let X denote the number of heads that come up. Calculate:
(i) $P(X=2)$
(ii) $P(X=3)$
(iii) $P(1<X \leq 5)$.

Binomial Distribution - Examples

Example

(i) If we call heads a success then this X has a binomial distribution with parameters $n=6$ and $p=0.3$.

$$
P(X=2)=\binom{6}{2}(0.3)^{2}(0.7)^{4}=0.324135
$$

Binomial Distribution - Examples

Example

(i) If we call heads a success then this X has a binomial distribution with parameters $n=6$ and $p=0.3$.

$$
P(X=2)=\binom{6}{2}(0.3)^{2}(0.7)^{4}=0.324135
$$

(ii)

$$
P(X=3)=\binom{6}{3}(0.3)^{3}(0.7)^{3}=0.18522
$$

(iii) We need $P(1<X \leq 5)$

Binomial Distribution - Examples

Example

(i) If we call heads a success then this X has a binomial distribution with parameters $n=6$ and $p=0.3$.

$$
P(X=2)=\binom{6}{2}(0.3)^{2}(0.7)^{4}=0.324135
$$

(ii)

$$
P(X=3)=\binom{6}{3}(0.3)^{3}(0.7)^{3}=0.18522
$$

(iii) We need $P(1<X \leq 5)$

$$
\begin{aligned}
& P(X=2)+P(X=3)+P(X=4)+P(X=5) \\
= & 0.324+0.185+0.059+0.01 \\
= & 0.578
\end{aligned}
$$

Binomial Distribution - Example

Example

A quality control engineer is in charge of testing whether or not 90% of the DVD players produced by his company conform to specifications. To do this, the engineer randomly selects a batch of 12 DVD players from each day's production. The day's production is acceptable provided no more than 1 DVD player fails to meet specifications. Otherwise, the entire day's production has to be tested.
(i) What is the probability that the engineer incorrectly passes a day's production as acceptable if only 80% of the day's DVD players actually conform to specification?
(ii) What is the probability that the engineer unnecessarily requires the entire day's production to be tested if in fact 90% of the DVD players conform to specifications?

Example

Example

(i) Let X denote the number of DVD players in the sample that fail to meet specifications. In part (i) we want $P(X \leq 1)$ with binomial parameters $n=12, p=0.2$.

$$
\begin{aligned}
P(X \leq 1) & =P(X=0)+P(X=1) \\
& =\binom{12}{0}(0.2)^{0}(0.8)^{12}+\binom{12}{1}(0.2)^{1}(0.8)^{11} \\
& =0.069+0.206=0.275
\end{aligned}
$$

Example

Example

(ii) We now want $P(X>1)$ with parameters $n=12, p=0.1$.

$$
\begin{aligned}
P(X \leq 1) & =P(X=0)+P(X=1) \\
& =\binom{12}{0}(0.1)^{0}(0.9)^{12}+\binom{12}{1}(0.1)^{1}(0.9)^{11} \\
& =0.659
\end{aligned}
$$

So $P(X>1)=0.341$.

Binomial Distribution - Mean and Variance

(1) Any random variable with a binomial distribution X with parameters n and p is a sum of n independent Bernoulli random variables in which the probability of success is p.

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

Binomial Distribution - Mean and Variance

(1) Any random variable with a binomial distribution X with parameters n and p is a sum of n independent Bernoulli random variables in which the probability of success is p.

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

(2) The mean and variance of each X_{i} can easily be calculated as:

$$
E\left(X_{i}\right)=p, V\left(X_{i}\right)=p(1-p)
$$

Binomial Distribution - Mean and Variance

(1) Any random variable with a binomial distribution X with parameters n and p is a sum of n independent Bernoulli random variables in which the probability of success is p.

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

(2) The mean and variance of each X_{i} can easily be calculated as:

$$
E\left(X_{i}\right)=p, V\left(X_{i}\right)=p(1-p)
$$

(3) Hence the mean and variance of X are given by (remember the X_{i} are independent)

$$
E(X)=n p, V(X)=n p(1-p)
$$

Binomial Distribution - Examples

Example

Bits are sent over a communications channel in packets of 12 . If the probability of a bit being corrupted over this channel is 0.1 and such errors are independent, what is the probability that no more than 2 bits in a packet are corrupted?
If 6 packets are sent over the channel, what is the probability that at least one packet will contain 3 or more corrupted bits?

Let X denote the number of packets containing 3 or more corrupted bits. What is the probability that X will exceed its mean by more than 2 standard deviations?

Binomial Distribution - Examples

Example

Let C denote the number of corrupted bits in a packet. Then in the first question, we want

$$
P(C \leq 2)=P(C=0)+P(C=1)+P(C=2)
$$

Binomial Distribution - Examples

Example

Let C denote the number of corrupted bits in a packet. Then in the first question, we want

$$
P(C \leq 2)=P(C=0)+P(C=1)+P(C=2)
$$

$$
P(C=0)=\binom{12}{0}(0.1)^{0}(0.9)^{12}=0.282
$$

Binomial Distribution - Examples

Example

Let C denote the number of corrupted bits in a packet. Then in the first question, we want

$$
\begin{aligned}
P(C \leq 2)=P(C=0) & +P(C=1)+P(C=2) \\
P(C=0) & =\binom{12}{0}(0.1)^{0}(0.9)^{12}=0.282 \\
P(C=1) & =\binom{12}{1}(0.1)^{1}(0.9)^{11}=0.377 \\
P(C=2) & =\binom{12}{2}(0.1)^{2}(0.9)^{10}=0.23
\end{aligned}
$$

Binomial Distribution - Examples

Example

Let C denote the number of corrupted bits in a packet. Then in the first question, we want

$$
\begin{aligned}
P(C \leq 2)=P(C=0) & +P(C=1)+P(C=2) \\
P(C=0) & =\binom{12}{0}(0.1)^{0}(0.9)^{12}=0.282 \\
P(C=1) & =\binom{12}{1}(0.1)^{1}(0.9)^{11}=0.377 \\
P(C=2) & =\binom{12}{2}(0.1)^{2}(0.9)^{10}=0.23
\end{aligned}
$$

So $P(C \leq 2)=0.282+0.377+0.23=0.889$.

Binomial Distribution - Examples

Example

The probability of a packet containing 3 or more corrupted bits is $1-0.889=0.111$.
Let X be the number of packets containing 3 or more corrupted bits. X can be modelled with a binomial distribution with parameters $n=6, p=0.111$. The probability that at least one packet will contain 3 or more corrupted bits is:

Binomial Distribution - Examples

Example

The probability of a packet containing 3 or more corrupted bits is $1-0.889=0.111$.
Let X be the number of packets containing 3 or more corrupted bits. X can be modelled with a binomial distribution with parameters $n=6, p=0.111$. The probability that at least one packet will contain 3 or more corrupted bits is:

$$
1-P(X=0)=1-\binom{6}{0}(0.111)^{0}(0.889)^{6}=0.494
$$

Binomial Distribution - Examples

Example

The probability of a packet containing 3 or more corrupted bits is $1-0.889=0.111$.
Let X be the number of packets containing 3 or more corrupted bits. X can be modelled with a binomial distribution with parameters $n=6, p=0.111$. The probability that at least one packet will contain 3 or more corrupted bits is:

$$
1-P(X=0)=1-\binom{6}{0}(0.111)^{0}(0.889)^{6}=0.494
$$

The mean of X is $\mu=6(0.111)=0.666$ and its standard deviation is $\sigma=\sqrt{6(0.111)(0.889)}=0.77$.

Binomial Distribution - Examples

So the probability that X exceeds its mean by more than 2 standard deviations is $P(X-\mu>2 \sigma)=P(X>2.2)$.

As X is discrete, this is equal to

Binomial Distribution - Examples

So the probability that X exceeds its mean by more than 2 standard deviations is $P(X-\mu>2 \sigma)=P(X>2.2)$.

As X is discrete, this is equal to

$$
P(X \geq 3)
$$

Binomial Distribution - Examples

So the probability that X exceeds its mean by more than 2 standard deviations is $P(X-\mu>2 \sigma)=P(X>2.2)$.

As X is discrete, this is equal to

$$
P(X \geq 3)
$$

$$
\begin{aligned}
& P(X=1)=\binom{6}{1}(0.111)^{1}(0.889)^{5}=0.37 \\
& P(X=2)=\binom{6}{2}(0.111)^{2}(0.889)^{4}=0.115
\end{aligned}
$$

So $P(X \geq 3)=1-(.506+.37+.115)=0.009$.

