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Chapter 470 

The Box-Jenkins 
Method 
Introduction 
Box - Jenkins Analysis refers to a systematic method of identifying, fitting, checking, and using integrated 
autoregressive, moving average (ARIMA) time series models. The method is appropriate for time series of 
medium to long length (at least 50 observations). 

In this chapter we will present an overview of the Box-Jenkins method, concentrating on the how-to parts rather 
than on the theory. Most of what is presented here is summarized from the landmark book on time series analysis 
written by George Box and Gwilym Jenkins (1976). 

A time series is a set of values observed sequentially through time. The series may be denoted by X X X t1 2, , , , 
where t refers to the time period and X refers to the value. If the X’s are exactly determined by a mathematical 
formula, the series is said to be deterministic. If future values can be described only by their probability 
distribution, the series is said to be a statistical or stochastic process. 

A special class of stochastic processes is a stationary stochastic process. A statistical process is stationary if the 
probability distribution is the same for all starting values of t. This implies that the mean and variance are constant 
for all values of t. A series that exhibits a simple trend is not stationary because the values of the series depend on 
t. A stationary stochastic process is completely defined by its mean, variance, and autocorrelation function. One 
of the steps in the Box - Jenkins method is to transform a non-stationary series into a stationary one. 

Autocorrelation Function 
The stationary assumption allows us to make simple statements about the correlation between two successive 
values, X t  and X t k+ . This correlation is called the autocorrelation of lag k of the series. The autocorrelation 
function displays the autocorrelation on the vertical axis for successive values of k on the horizontal axis. The 
following figure shows the autocorrelation function of the sunspot data. 
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Since a stationary series is completely specified by its mean, variance, and autocorrelation function, one of the 
major (and most subjective) tasks in Box-Jenkins analysis is to identify an appropriate model from the sample 
autocorrelation function. Although the sample autocorrelations contains random fluctuations, for moderate sample 
sizes they are fairly accurate in signaling the order of the ARIMA model. 

The ARMA Model 
The ARMA (autoregressive, moving average) model is defined as follows: 

X X X a a at t p t p t t q t q= + + + − − −− − − −φ φ θ θ1 1 1 1   

where the φ ' s (phis) are the autoregressive parameters to be estimated, the θ ' s  (thetas) are the moving average 
parameters to be estimated, the X’s are the original series, and the a’s are a series of unknown random errors (or 
residuals) which are assumed to follow the normal probability distribution. 

Box-Jenkins use the backshift operator to make writing these models easier. The backshift operator, B, has the 
effect of changing time period t to time period t-1. Thus BX Xt t= −1 and B X Xt t

2
2= − . Using this backshift 

notation, the above model may be rewritten as: 

( ) ( )1 11 1− − − = − − −φ φ θ θB B X B B ap
p

t q
q

t   

This may be abbreviated even further by writing: 

( ) ( )φ θp t q tB X B a=  

where 

( ) ( )φ φ φp p
pB B B= − − −1 1   

and 

( ) ( )θ θ θq q
qB B B= − − −1 1   
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These formulas show that the operators ( )φ p B and ( )θ q B are polynomials in B of orders p and q respectively. One 
of the benefits of writing models in this fashion is that we can see why several models may be equivalent. 

For example, consider the model 

X X X at t t t t= − + −− − −0 8 0 15 0 3a1 2 1. . .  

This could be rewritten in the form of (8.3) as: 

( ) ( )1 0 8 0 15 1 0 32− + = −. . .B B X B at t  

Notice that the polynomial on the left may be factored, so that we can rewrite the model as 

( )( ) ( )1 0 5 1 0 3 1 0 3− − = −. . .B B X B at t  

Finally, canceling the (1 - 0.3B) from both sides leaves the simpler, but equivalent, model 

( )1 0 5− =. B X at t  

or 

X X at t t= +−0 5 1.  

Note that this is a much simpler model! 

This type of model rearrangement is used by experienced Box-Jenkins forecasters to obtain the simplest models 
possible. The Theoretical ARIMA program displays the roots of the two polynomials, ( )φ p B and ( )θ q B , so you 
can see possible model simplifications. 

Nonstationary Models 
Many time series encountered in practice exhibit nonstationary behavior. Usually, the nonstationarity is due to a 
trend, a change in the local mean, or seasonal variation. Since the Box-Jenkins methodology is for stationary 
models only, we have to make some adjustments before we can model these nonstationary series. 

We use one of two methods for reducing a nonstationary series with trend to a stationary series (without trend): 

1. Use the first differences of the series, W X Xt t t= − −1 . Note that this can be rewritten as ( )W B Xt t= −1 . 
A more general form of this equation is: 

( )( ) ( )φ θp
d

t q tB B X B a1− =  

 where d is the order of differencing. This is known as the ARIMA(p,d,q) model. 

2. Fit a least squares trend and fit the Box-Jenkins model to the residuals. 

If the model exhibits an occasional change of mean, first differences will result in a stationary model. 

For seasonal series, Box-Jenkins provided a modification to this equation that will be the subject of the next 
section. 
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Seasonal Time Series 
To deal with series containing seasonal fluctuations, Box-Jenkins recommend the following general model: 

( ) ( )( ) ( ) ( ) ( )φ θp P
d s D

t q Q
s

tB B B B X B B aΦ Θ1 1− − =  

where d is the order of differencing, s is the number of seasons per year, and D is the order of seasonal 
differencing. The operator polynomials are 

( ) ( )φ φ φp p
pB B B= − − −1 1   

( ) ( )θ θ θq q
qB B B= − − −1 1   

( ) ( )Φ Φ ΦP
s s

p
spB B B= − − −1 1   

( ) ( )Θ Θ ΘQ
s s

Q
sQB B B= − − −1 1   

Note that ( )1− = − −B X X Xs
t t t s . 

Box-Jenkins explain that the maximum value of d, D, p, q, P, and Q is two. Hence, these operator polynomials are 
usually simple expressions. 

Partial Autocorrelation Function 
We previously discussed the autocorrelation function, which gives the correlations between different lags of a 
series. The Partial Autocorrelation Function is a second function that expresses information useful in determining 
the order of an ARIMA model.  

This function is constructed by calculating the partial correlation between X t and Xt−1 , X t and Xt−2 , and so on, 
statistically adjusting out the influence of intermediate lags. For example, the partial autocorrelation of lag four is 
the partial correlation between X t and Xt−4 after statistically removing the influence of Xt−1 , Xt−2 , and Xt−3 from 
both Xt and Xt−4 . 

The autoregressive order, p, is estimated as the lag of the last large partial autocorrelation. For example, suppose 
the partial autocorrelations were 

 
Lag Partial Autocorrelation 
1 0.55 
2 0.21 
3 0.11 
4 0.72 
5 0.06 
6 0.09 
7 0.13 

 
We would conclude that a reasonable value for p is four, since the partial autocorrelations are relatively small 
after the fourth lag. 
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Box-Jenkins Methodology – An Overview 
The Box-Jenkins method refers to the iterative application of the following three steps: 

1. Identification. Using plots of the data, autocorrelations, partial autocorrelations, and other information, a 
class of simple ARIMA models is selected. This amounts to estimating appropriate values for p, d, and q. 

2. Estimation. The phis and thetas of the selected model are estimated using maximum likelihood 
techniques, backcasting, etc., as outlined in Box-Jenkins (1976). 

3. Diagnostic Checking. The fitted model is checked for inadequacies by considering the autocorrelations of 
the residual series (the series of residual, or error, values). 

These steps are applied iteratively until step three does not produce any improvement in the model.  We will now 
go over these steps in detail. 

Model Identification 
Assuming for the moment that there is no seasonal variation, the objective of the model identification step is to 
select values of d and then p and q in the ARIMA(p,d,q) model. When the series exhibits a trend, we may either fit 
and remove a deterministic trend or difference the series. Box-Jenkins seem to prefer differencing, while several 
other authors prefer the deterministic trend removal. 

The first step, in either case, is to look at the plots of the autocorrelations and partial autocorrelations. A series 
with a trend will have an autocorrelation patterns similar to the following: 

  
We notice that the large autocorrelations persist even after several lags. This indicates that either a trend should be 
removed or that the series should be differenced. The next step would be to difference the series.  
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When the series is differenced, the autocorrelation plots might appear as follows: 

 

  
 

Differencing usually reduces the number of large autocorrelations considerably. If the differenced series still does 
not appear stationary, we would have to difference it again. 

It is often useful to determine the magnitude of a large autocorrelation and partial autocorrelation coefficient. An 
autocorrelation must be at least 2 / N , in absolute value to be statistically significant. The following list gives 
some common values of significant autocorrelations for various sample sizes. Note that even though an 
autocorrelation is statistically significant, it may not be large enough to worry about.  
 
N Large Autocorrelation 
25 0.40 
50 0.28 
75 0.23 
100 0.23 
200 0.14 
500 0.09 
1000 0.06 

 
By considering the patterns of the autocorrelations and the partial autocorrelations, we can guess a reasonable 
model for the data. The following chart shows the autocorrelation patterns that are produced by various types of 
ARMA models. 

 
Model Autocorrelations Partial Autocorrelations 
ARIMA(p,d,0) Infinite. Tails off. Finite. Cuts off after p lags. 

ARIMA(0,d,q) Finite. Cuts off  Infinite. Tails off. 
 after q lags. 

ARIMA(p,d,q) Infinite. Tails off. Infinite. Tails off. 

 

The identification phase determines the values of d (differencing), p (autoregressive order), and q (moving 
average order). By studying the two autocorrelation plots, you estimate these values.  

Differencing 
The level of differencing is estimated by considering the autocorrelation plots. When the autocorrelations die out 
quickly, the appropriate value of d has been found. 
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Value of p 
The value of p is determined from the partial autocorrelations of the appropriately differenced series. If the partial 
autocorrelations cut off after a few lags, the last lag with a large value would be the estimated value of p. If the 
partial autocorrelations do not cut off, you either have a moving average model (p=0) or an ARIMA model with 
positive p and q. 

Value of q 
The value of q is found from the autocorrelations of the appropriately differenced series.  If the autocorrelations 
cut off after a few lags, the last lag with a large value would be the estimated value of q. If the autocorrelations do 
not cut off, you either have an autoregressive model (q=0) or an ARIMA model with a positive p and q. 

Mixed Model 
When neither the autocorrelations or the partial autocorrelations cut off, a mixed model is suggested. In an 
ARIMA(p,d,q) model, the autocorrelation function will be a mixture of exponential decay and damped sine waves 
after the first q-p lags. The partial autocorrelation function have the same pattern after p-q lags. By studying the 
first few correlations of each plot, you may be able to obtain reasonable guesses for p and q. 

Our experience has been that directly identifying the values of p and q in mixed models is very difficult. Instead, 
we use a trial and error approach in which successively more complex models are fit until the residuals show no 
further structure (large autocorrelations). Usually, we try fitting an ARIMA(1,d,0), an ARIMA(2,d,1), and an 
ARMA(4,3). We would select the simplest model that had a reasonably good fit. (We have found that the 
ARIMA(2,d,1) often works well and we usually begin with it.) 

Identification of a seasonal series is much more difficult. Box-Jenkins describe methods for model identification, 
but the user must be very skilled and experienced to successfully identify the model order. We have found that 
trial and error must usually be used. Usually, you want to keep the number of parameters to a minimum, so the 
values of p, P, q, Q, d, and D that you select should be less than or equal to two. 

As you can see, the identification step is subjective. One of the frequent objections about the Box-Jenkins method 
is that two trained forecasters will arrive at different forecasting models, even though they are using the same 
software. However, as we showed earlier, often models that appear to be very different on the surface are actually 
quite similar. 

Model Estimation and Diagnostic Checking 

Maximum Likelihood Estimation 
Once you have guestimated values of p, d, and q, you are ready to estimate the phis and thetas. This program 
follows the maximum likelihood estimation process outlined in Box-Jenkins (1976).  The maximum likelihood 
equation is solved by nonlinear function maximization. Backcasting is used to obtain estimates of the initial 
residuals. The estimation process is calculation intensive and iterative, so it often takes a few seconds to obtain a 
solution. 

Diagnostic Checking 
Once a model has been fit, the final step is the diagnostic checking of the model.  The checking is carried out by 
studying the autocorrelation plots of the residuals to see if further structure (large correlation values) can be 
found.  If all the autocorrelations and partial autocorrelations are small, the model is considered adequate and 
forecasts are generated. If some of the autocorrelations are large, the values of p and/or q are adjusted and the 
model is re-estimated. 
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This process of checking the residuals and adjusting the values of p and q continues until the resulting residuals 
contain no additional structure. Once a suitable model is selected, the program may be used to generate forecasts 
and associated probability limits. 

Example 1 – Chemical Process Concentrations 
To complete this chapter, we will construct forecasts for two example problems. The first example we consider is 
called Series A by Box-Jenkins, and is from their book. This is a set of 197 concentration values from a chemical 
process taken at two-hour intervals. The data are stored in the SeriesA dataset. If you want to follow along, you 
should open this dataset now. The following figure shows a plot of the data.  

Time Series Data Plot 
 

  
 

Notice that although the series moves around, it does not seem to follow a definite trend. The autocorrelation 
charts are shown next. 
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Series Autocorrelation Plots 
 

       
 

The autocorrelations seem to die down fairly regularly after lag 1. The partial autocorrelations seem to be small 
after the first one, so we decide to fit an ARIMA(1,0,1) to these data.  

Model Estimation Reports 
The following output shows the results of fitting the model. 

 
Model Description Section 
Series SERIESA-MEAN 
Model Regular(1,0,1)    Seasonal(No seasonal parameters) 
Mean 1.706244 
 
Observations 197 
Iterations 11 
Pseudo R-Squared 38.477242 
Residual Sum of Squares 0.1922096 
Mean Square Error 9.856902E-04 
Root Mean Square 0.0313957 

  
 Model Estimation Section 

 
Parameter Parameter Standard  Prob 
Name Estimate Error T-Value Level 
AR(1) 0.9208993 4.111259E-02 22.3994 0.000000 
MA(1) 0.5958619 8.240521E-02 7.2309 0.000000 
 

The final step is to make the diagnostic checks of our model. The autocorrelation plot of the residuals are shown 
next. 
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Autocorrelation of Residuals Plot 
  

  
 

No action here. Finally, we take a look at the Portmanteau test results. 

Portmanteau Test Report 
  

  Portmanteau Prob  
Lag DF Test Value Level Decision (0.05) 
13 11 15.55 0.158664 Adequate Model 
14 12 17.75 0.123437 Adequate Model 
15 13 20.40 0.085570 Adequate Model 
16 14 20.43 0.117064 Adequate Model 
17 15 21.19 0.130966 Adequate Model 
18 16 22.93 0.115544 Adequate Model 
19 17 23.24 0.141718 Adequate Model 
20 18 25.13 0.121460 Adequate Model 
21 19 26.60 0.114351 Adequate Model 
22 20 26.62 0.146230 Adequate Model 
23 21 27.07 0.168631 Adequate Model 
24 22 27.56 0.190707 Adequate Model 
 

The diagnostic checking reveals no new patterns, so we can assume that our model is adequate. We generate the 
forecasts for the next few periods. These are shown next.  

http://www.ncss.com/


NCSS Statistical Software NCSS.com   
The Box-Jenkins Method 

470-11 
 © NCSS, LLC. All Rights Reserved. 

Time Series Plot Including Forecasts 
 

  
 

Example 2 – Carbon Dioxide Above Mauna Loa, Hawaii 
This example will an approach to data with a linear trend and seasonal variation. We will consider 216 monthly 
carbon dioxide measurements above Mauna Loa, Hawaii. The data was obtained from Newton (1988). It is stored 
in the data base named MLCO2.  

Time Series Data Plot 
 

  
 

Note that the data are nonstationary on two counts: they show a trend and an annual cycle. The next step is to 
study the autocorrelations. The autocorrelation charts are shown next. 
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Series Autocorrelation Plots 
 

       
 

Notice that the autocorrelations do not die out and they show a cyclical pattern. This points to nonstationarity in 
the data. The partial autocorrelations point to a value of 2 for p. However, because of the obvious nonstationarity, 
we first want to look at the autocorrelation functions of the first differences. Because these are monthly data, we 
use seasonal differences of length twelve. We also remove the trend in the data. 
 

       
 

The autocorrelations die out fairly quickly. The partial autocorrelations are large around lags one and twelve. This 
suggests the multiplicative seasonal model: ARIMA(1,0,0) x (1,1,0)12. 

Model Estimation Reports 
Following are the results of fitting this model.  
  

Model Description Section 
Series MLCO2-TREND 
Model Regular(1,0,1)    Seasonal(1,1,0) Seasons = 12 
Trend Equation (14.07418)+(7.830546E-02)x(date) 
 
Observations 216 
Iterations 13 
Pseudo R-Squared 99.500042 
Residual Sum of Squares 30.3262 
Mean Square Error 0.1508766 
Root Mean Square 0.3884284 
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 Model Estimation Section 

 
Parameter Parameter Standard  Prob 
Name Estimate Error T-Value Level 
AR(1) 0.9836381 1.274416E-02 77.1834 0.000000 
SAR(1) -0.4927093 5.991305E-02 -8.2237 0.000000 
MA(1) 0.3183001 6.915411E-02 4.6028 0.000004 
 

Everything appears fine here. The final step is to make the diagnostic checks of our model. The autocorrelation 
plot of the residuals is shown next. 

Autocorrelation of Residuals Plot 
  

  
 

There appear to be some persistent autocorrelations at lag 25. We take a look at the Portmanteau test results. 

Portmanteau Test Report 
  

  Portmanteau Prob  
Lag DF Test Value Level Decision (0.05) 
13 10 32.78 0.000296 Inadequate Model 
14 11 32.79 0.000570 Inadequate Model 
15 12 32.79 0.001045 Inadequate Model 
16 13 33.21 0.001585 Inadequate Model 
17 14 37.13 0.000704 Inadequate Model 
18 15 37.57 0.001044 Inadequate Model 
19 16 40.51 0.000656 Inadequate Model 
20 17 43.17 0.000453 Inadequate Model 
21 18 45.72 0.000326 Inadequate Model 
22 19 46.73 0.000391 Inadequate Model 
23 20 52.17 0.000108 Inadequate Model 
24 21 77.62 0.000000 Inadequate Model 
 

The test points to additional information in the residual autocorrelations. We should refine our model further. We 
tried several other models, but could not find one that worked a lot better. Finally, we generate the forecasts from 
this model.   
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Time Series Plot Including Forecasts 
 

  
 

As an exercise, you might try fitting this data with the Winters exponential smoothing algorithm. 
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