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Akaike information criterion 

The Kullback-Liebler (K-L) distance (Kullback & Liebler, 1951) is a 
measure of the reduction in likelihood obtained by using an incorrect 
model in place of the ‘true’ model.  The expected K-L distance can be 
estimated in phylogenetics by using the Akaike information criterion, 
AIC (Akaike 1974): 

AIC = -2logL + 2K 

Where logL is the maximised log-likelihood and K is the parameter 
richness of the model.  As parameter richness is increased, logL is 
expected to decrease while the ‘penalty term’ increases so the model 
with the lowest AIC will be a balance between parameter richness and 
the informativeness of additional parameters. 

The AIC, as applied in Modeltest (Posada & Crandall 1998), can be 



expressed more usefully in terms of the weight of support for each of a 
hierarchical series of models.  The Akaike weight, w, for the ith model in 
a set of models R is: 

 

Cumulative Akaike weights for each of the R models (in order of highest 
w) can be used to determine the 95% set of models that minimise K-
L.  This provides a way to quantify model selection uncertainty. 

Bayesian information criterion 

The Bayesian information criterion, BIC, (Schwartz 1978) approximates 
marginal LogL for a candidate models: 

BIC = -2logL + K log n 

Where n is the sample size (in phylogenetics, n ≈ the number of 
characters in the alignment).  Since the BIC approximates marginal logL, 
the difference between two BIC estimates provides an approximation to 
Bayes factors (see Bayes factors below) with considerably less 
computational effort. 

Likelihood ratio tests 

Hierarchical likelihood ratio tests, hLRTs, (Frati et al. 1997; Huelsebeck 
& Crandall 1997) require that the hypotheses under investigation be 
nested and can be tested against the χ2 distribution (Goldman 
1993).  Non-hierarchical LRTs are also possible using the rule of thumb 
that two logLs constitutes a significant difference (Edwards 1972; Pagel 
1999) to avoid computationally intensive Monte Carlo methods 
(Goldman 1993).  The LRT test statistic for model 1 over null model 0 
is: 



LRT = 2(logL1 – logL0) 

This is a hierarchical LRT if the null model is a special case of model 
1.  In phylogenetic model testing, the one-parameter JC69 model can be 
obtained from the two-parameter K80 model by assuming that transitions 
and transversions occur at the same rate so JC69 is nested within 
K80.  Further nesting levels are shown in Figure 5 below.  LRTs are 
perceived to be more accurate than the approximate AIC and BIC 
approaches as they allow comparison of actual maximum likelihoods 
from analyses under different models.  LRTs are also convenient as they 
can be applied after analyses have been performed.  There are, however, 
problems with the LRT approach (Sanderson & Kim 2000): (i) the non-
hierarchical LRT method for non-nested models can only provide an 
approximate result; (ii) situations exist for which an optimal model 
cannot be selected by hLRTs; (iii) the starting point can affect the model 
selection procedure; and (iv) hLRTs involve performing multiple tests 
with the same data which may lead to false positives. 

 

Figure 5. Modeltest hLRT hierarchy (after Posada and Crandall 2001) 

Bayes factors 



Bayes factors, B, were introduced by Kass & Raftery (1995) as a 
Bayesian equivalent to LRTs.  Comparison between competing models 
Mi and Mj takes the form: 

 

Bayes factors compare marginal log-likelihoods and support for Mi over 
Mj can be quantified using the criteria of Kass and Raftery (1995): Bij < 
1, negative (support for Mj); 1 < Bij < 3, barely worth mentioning; 3 < Bij 
< 12, positive; 12 < Bij < 150, strong; and Bij > 150, very strong.  Bayes 
factors have the advantage that, unlike LRTs, the same test can 
theoretically be applied to both nested and non-nested data.  The major 
drawback is that the ‘critical value’ for strong evidence of support for Mi 
over Mj, which is typically simplified to Bij > 10 (e.g. Irestedt et al. 2004) 
should, according to Kass & Raftery (1995) be set at Bij > 20 in 
phylogenetics to reduce the occurrence of false positives.  Results of 
studies using Bayes factors should, therefore, be interpreted with caution. 

Model averaging 

Within a Bayesian framework, it is possible to extend the model testing 
approach from selection of a single best model to model averaging over 
the set of candidate models.  In practise this is very straightforward as 
parameter estimates for each candidate models can be sampled from the 
stationary phase of a MCMC run in proportion to the probability of that 
model (see Example below).  Probabilities for each model (or more 
sensibly the 95% set) can be obtained through AIC or BIC weights (as 
described above for AIC weights) or through Bayes factors by 
determining the posterior probability for each candidate model.  For R 
candidate models, the posterior probability of the ith model is: 

 



While the use of posterior probabilities is the ‘purest’ Bayesian approach 
to model averaging, uncertainty in prior specification can affect the 
posterior probability assigned to each model (see Choosing and using 
Bayesian priors below; this is also an issue in use of BIC) so AIC 
weights are often the best guide to model probabilities for use in 
Bayesian model averaging. 

Example 
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