Chapter 7
ARIMA Models

A generalization of ARMA models which incorporates a widess of nonstation-
ary TS is obtained by introducing the differencing into thedal. The simplest
example of a nonstationary process which reduces to a sgayiomne after dif-
ferencing is Random Walk. As we have seen in Section 4.5.2i&tar\WWalk is a
nonstationary AR(1) process with the value of the paramgegual to 1, that is
the model is given by

X, =X, 1+ Z, whereZ, ~WN(0,0%).
Its autocovariances depend on time as well as on lag. Howtéedlirst difference
VXt - Xt - Xt—l

IS a stationary process, as it is just the White NdfseSo, if we include WN in
the ARMA class theivV X, is an ARMA(0,0) process, or in ARIMA notation it is
ARIMA(0,1,0) process as it is obtained after first ordereti@ncing ofX;,.

More generally, consider a TS model
Xy =my + Y,

wherem, is a polynomial of ordet andY; is a stationary process. Thex,
Is nonstationary (having a polynomial trend). However, vaa detrend such a
process by calculating the difference of ordefFor a polynomial

we have, see Section 2.1.3,
VFX, = kB, + VFY,,

137



138 CHAPTER 7. ARIMA MODELS

whereV*Y; is a linear combination of a stationary process, so it isestaty.

For example, letn, = [y + pit. Then differencing of order 1 will produce a
stationary process

VX, =Xi — Xy =00+b5it+Y,— o — it —1) =Yy =51+ VY.

Hence we obtain a stationary process with méaW X;) = 3, which can be
modelled as an ARMA time series.

This leads to a wider family of models which are ARMA modatter differenc-
ing. Below is the formal definition.
Definition 7.1. A process {X;} is said to follow an Integrated ARMA model,
denoted by ARIMA(p,d,q), if
ViX, = (1 - B)'X, (7.1)
iISARMA(p,q). We write the model as
#(B)(1— B)!'X, =0(B)Z;, Z; ~WN(0,0%). (7.2)
The integration parameter d is a nonnegative integer.
Remark 7.1 Whend = 0 we have the usual ARMA model, that is
ARIMA(p,0,q) = ARM A(p, q).
Remark 7.2 If E(V?X,) = pu # 0, then we can write the model as
¢(B)(1 — B)'X, = a + 0(B)Z,

wherea = (1 — ¢1 — ... — ¢,).
Remark 7.3. The associated polynomial

o(2)(1 — 2)*

has a unit root with multiplicity/, so even if all the roots af(z) are different than
1, the process, is nonstationary, howevar?Xx, is stationary.
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7.1 Building ARIMA Models

The basic steps in fitting ARIMA models to TS data are

Plotting the Data Plottingx; versust and inspecting the graph may reveal some
unusual features, outstanding observations, may indiicéte series is sta-
tionary and/or seasonal and if the variance is stable.

Transforming the Data Ifitis necessary to transform the data, we may use Box-
Cox power transformation

zi‘—l :
y=4 5 TAFO,
Inz,, if A=0.

MINITAB calculates optimum\ for a simpler version of the transformation,

namel
Y B x?, if A#0,
=91 In xg, 1FA=0.

It finds lambda value which minimizes the standard deviatifoastandard-
ized transformed variable.

Identifying the Orders (p,d,q) of the Model Inspection of the TS plot may help
to identify the differencing ordef, while inspection of the ACF and PACF
of the differenced dat&z, may help to identify the AR order and MA
orderq. Differencing has to be done with care as it may unnecegsaril
introduce correlation; for example #; is uncorrelatedV 27, = Z, — Z;,

Is correlated.

Estimation of the Model Parameters¢ and @ This can be performed using Yule-
Walker equations, the Maximum Likelihood method or the le&guares
method. The estimates are usually calculated numericidkye we could
also calculate confidence intervals for the parameters.

Residuals Diagnosticslif the diagnostics, such as graphs of the residuals’ ACF,
PACF, Q-Q plot, histogram do not indicate a Gaussian Whites®&owe
should repeat the model estimation for another set of orger ¢). In
addition to the visual inspection of the graphs MINITAB ofé¢he Ljung-
Box-Pierce statistic

k  ~
Pe(T)
Q =n(n+2) Z n—r Xz—p—q
T=1

for testing the hypothesis that the group of autocorretestig1) to p(k) is
nonsignificant.
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Having the model well fitting to the TS data we may perform preon of future
values.

7.2 Seasonal ARMA

Let us assume that there is seasonality in the data, but nd.tfEhen we could
model the data as
Xi= s+ Y, (7.3)

whereyY; is a stationary process. The seasonality component is Bath t
St = St—h,

whereh denotes the length of the period and

h
Z S = 0.
k=1

In Section 2.2.3 we have discussed removing the seasorat &bm the data by
differencing at lag:. We have introduced the lag-h operator

ViXi =X, — Xy =X, — B"X, = (1-B"X,,
which, for (7.3), gives
ViXe =5 +Y, — s — Y = V)Y, (7.4)

Hence, this operation removes the seasonality effect.fabiseads to introducing
theseasonal ARMA mode) denoted byARM A(P, Q);, which is of the form

d(B"X, =0(B" 7, (7.5)
where
®B"=1-®,B" - &,B*" — ... — ®pB™",
and
O(B") =1+60,B"+0,B* + ...+ 0B
are, respectively, the seasonal AR operator and the sdddd@naperator, with
seasonal period of length

Remark 7.4. Analogously toARM A(p, q), the ARM A(P, Q);, model is causal
only when the roots of(z") lie outside the unit circle, and it is invertible only
when the roots 00 (z") lie outside the unit circle.
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Example 7.1 SeasonaHRM A(1,1)s.
Such a model can be written as

(1-®B*)X, = (1+6B%)Z,
or
X =Xy 19=2,+0OZ_12,
which is a generalization of (7.4).

When written as
Xi =PX; 19+ 2y + OL; 19,

and compared tel RM A(1,1)
Xy =0Xe 1+ 2+ 02,

we see that the seasonal ARMA presents the series in teriisgpafst values at lag
equal to the length of the period (here h=12), while the nessenal ARMA does

itin terms of its past values at lag 1. Seasonal ARMA incoapes the seasonality
into the model.

Similarly as for the non-seasonal ARMA, here too, we reqiire< 1 for the
causality and®| < 1 for invertibility of the model.

Remark 7.5. Note that seasonad RM A(0, Q), is a seasonall A(Q),, and sea-
sonalARM A(P,0), is a seasonall R(P),.

Example 7.2 ACF of M A(1)15
A seasonal MA model with the period length= 12 can be written as

Xt - Zt + @Zt712-

It is a zero mean stationary model and it is easy to calcutatautocovariance,
namely

V(1) = cov[Zy + OZi 19, Zyyr + O Ly 112
=E[(Z + ©Z1-12)(Zt47 + OZ1y7-12)]
=E(ZiZ117) + OB(Z1Z11712) + OE(Zi19Z115) + O’ E(Zi 12714+ 12)
(1+6%*0? forT =0,
=4 O0° for 7 = +12,
0 otherwise



142 CHAPTER 7. ARIMA MODELS

Thus, the only non-zero correlations af®) = 1 and

)
P =g

which is of the same form gg+1) for a non-seasonal MA(1).

Example 7.3. ACF of AR(1),
Using the techniques for calculating ACVF and ACF of the seasonal AR(1)
we obtain

2
5z forT =0,
Y1) =14 22 for T =+hk, k=1,2,...,

0 otherwise
This give the ACF similar to the ACF of a non-seasonal AR(&mnely
1 forrt=0,

p(t) =< @F forr=+hk k=1,2,...,
0 otherwise

The following table summarizes the behaviour of the ACF ai@fPof the causal
and invertible seasonal ARMA models (see R.H.Shumway aoifie${2000)).

AR(P)n MA(Q)n ARMA(P, Q)n
ACF Tails off at lagsth, Cuts off after lag)h Tails off at lagskh
PACF Cuts off after lag”h  Tails off at lagskh ~ Tails off at lagskh

whereh is the length of the seasonal peridd= 1,2, ... and the values of ACF
and PACF are zero at non-seasonal lags kh.

7.2.1 Mixed Seasonal ARMA

When we combine seasonal and non-seasonal operators vie @htadel
O(B")6(B)X, = O(B"I(B)Z.
which is callednixed seasonal ARMAand it is denoted by
ARMA(p, q) x (P, Q).

The behavior of the ACF and PACF for such models is a comlanatf behavior
of the seasonal and nonseasonal parts of the model.
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Figure 7.1: Simulatedl RM A(0,1)(1,0);, process.
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Figure 7.2: ACF and PACF of the abovig? M A(0, 1)(1,0),2 process.

Such a model has the following form
Xy —PXy_19=2;+07Z;_4,
where|®| < 1 and|f| < 1. Here we obtain

PF forr =12k, k=1,2,...,
p(1) = 1fwop’f forr=12k+1, k=1,2,...,
0 otherwise

7.2.2 Seasonal ARIMA

Mixed seasonal ARMA is a stationary process. In practicedvawvwe often have

nonstationary processes. Seasonal nonstationarity camw aden the process
is nearly periodic in the season and the seasonal compoagas\slowly from
period to period (say from year to year) according to a randatk, that is

St = S¢—p + V4,
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whereV; is a white noise. We can subtract the effect of the seasonn(eegh)
using the backshift operatd” to obtain seasonal stationarity

X, — X, =(1-B"X,.

This is a seasonal difference of order 1. In general we defsgasonal difference
of orderD as
VPX, = (1-B"PX,

whereD = 1,2,.... UsuallyD = 1 is sufficient to obtain seasonal stationarity.
This leads to a very generatasonal autoregressive integrated moving average
(SARIMA) model written as follows

B(B")$(B)VHVIX, = a + O(B")0(B)Z,, (7.6)

and denoted by ARIM A(p,d, q) x (P, D, Q)p.

Example7.5. The modelARIMA(0,1,1)x (0,1, 1)1 with o = 0 is often applied
for various economic data. Using formula (7.6) we obtain

(1-B")(1-B)X;=(1+60B"%)(1+0B)Z,
or, when expanded, we get the following form
(1-B- B2+ BY)X,=(1+60B+06B"”+00B"%)Z,

or
X=X+ X0 X3+ 2, + 02,1 +OZ,_10+00Z;,_33.
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