
Chapter 7

ARIMA Models

A generalization of ARMA models which incorporates a wide class of nonstation-
ary TS is obtained by introducing the differencing into the model. The simplest
example of a nonstationary process which reduces to a stationary one after dif-
ferencing is Random Walk. As we have seen in Section 4.5.2 Random Walk is a
nonstationary AR(1) process with the value of the parameterφ equal to 1, that is
the model is given by

Xt = Xt−1 + Zt, whereZt ∼ WN(0, σ2).

Its autocovariances depend on time as well as on lag. However, the first difference

∇Xt = Xt − Xt−1

is a stationary process, as it is just the White NoiseZt. So, if we include WN in
the ARMA class then∇Xt is an ARMA(0,0) process, or in ARIMA notation it is
ARIMA(0,1,0) process as it is obtained after first order differencing ofXt.

More generally, consider a TS model

Xt = mt + Yt,

wheremt is a polynomial of orderk andYt is a stationary process. ThenXt

is nonstationary (having a polynomial trend). However, we can detrend such a
process by calculating the difference of orderk. For a polynomial

m(t) = β0 + β1t + . . . + βkt
k

we have, see Section 2.1.3,

∇kXt = k!βk + ∇kYt,
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where∇kYt is a linear combination of a stationary process, so it is stationary.

For example, letmt = β0 + β1t. Then differencing of order 1 will produce a
stationary process

∇Xt = Xt − Xt−1 = β0 + β1t + Yt − β0 − β1(t − 1) − Yt−1 = β1 + ∇Yt.

Hence we obtain a stationary process with meanE(∇Xt) = β1 which can be
modelled as an ARMA time series.

This leads to a wider family of models which are ARMA modelsafter differenc-
ing. Below is the formal definition.

Definition 7.1. A process {Xt} is said to follow an Integrated ARMA model,
denoted by ARIMA(p,d,q), if

∇dXt = (1 − B)dXt (7.1)

is ARMA(p,q). We write the model as

φ(B)(1 − B)dXt = θ(B)Zt, Zt ∼ WN(0, σ2). (7.2)

The integration parameter d is a nonnegative integer.

Remark 7.1. Whend = 0 we have the usual ARMA model, that is

ARIMA(p, 0, q) ≡ ARMA(p, q).

Remark 7.2. If E(∇dXt) = µ 6= 0, then we can write the model as

φ(B)(1 − B)dXt = α + θ(B)Zt,

whereα = µ(1 − φ1 − . . . − φp).

Remark 7.3. The associated polynomial

φ(z)(1 − z)d

has a unit root with multiplicityd, so even if all the roots ofφ(z) are different than
1, the processXt is nonstationary, however∇dXt is stationary.
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7.1 Building ARIMA Models

The basic steps in fitting ARIMA models to TS data are

Plotting the Data Plottingxt versust and inspecting the graph may reveal some
unusual features, outstanding observations, may indicateif the series is sta-
tionary and/or seasonal and if the variance is stable.

Transforming the Data If it is necessary to transform the data, we may use Box-
Cox power transformation

yt =

{
xλ

t
−1

λ
, if λ 6= 0,

ln xt, if λ = 0.

MINITAB calculates optimumλ for a simpler version of the transformation,
namely

yt =

{
xλ

t , if λ 6= 0,
ln xt, if λ = 0.

It finds lambda value which minimizes the standard deviationof a standard-
ized transformed variable.

Identifying the Orders (p,d,q) of the Model Inspection of the TS plot may help
to identify the differencing orderd, while inspection of the ACF and PACF
of the differenced data∇dxt may help to identify the AR orderp and MA
order q. Differencing has to be done with care as it may unnecessarily
introduce correlation; for example ifZt is uncorrelated,∇Zt = Zt − Zt−1

is correlated.

Estimation of the Model Parametersφ and θ This can be performed using Yule-
Walker equations, the Maximum Likelihood method or the Least Squares
method. The estimates are usually calculated numerically.Here we could
also calculate confidence intervals for the parameters.

Residuals DiagnosticsIf the diagnostics, such as graphs of the residuals’ ACF,
PACF, Q-Q plot, histogram do not indicate a Gaussian White Noise, we
should repeat the model estimation for another set of orders(p, d, q). In
addition to the visual inspection of the graphs MINITAB offers the Ljung-
Box-Pierce statistic

Q = n(n + 2)

k∑

τ=1

ρ̂2
e(τ)

n − τ
∼ χ2

k−p−q

for testing the hypothesis that the group of autocorrelationsρ(1) to ρ(k) is
nonsignificant.
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Having the model well fitting to the TS data we may perform prediction of future
values.

7.2 Seasonal ARMA

Let us assume that there is seasonality in the data, but no trend. Then we could
model the data as

Xt = st + Yt, (7.3)

whereYt is a stationary process. The seasonality component is such that

st = st−h,

whereh denotes the length of the period and

h∑

k=1

sk = 0.

In Section 2.2.3 we have discussed removing the seasonal effect from the data by
differencing at lagh. We have introduced the lag-h operator

∇hXt = Xt − Xt−h = Xt − BhXt = (1 − Bh)Xt,

which, for (7.3), gives

∇hXt = st + Yt − st−h − Yt−h = ∇hYt. (7.4)

Hence, this operation removes the seasonality effect. Thisfact leads to introducing
theseasonal ARMA model, denoted byARMA(P, Q)h, which is of the form

Φ(Bh)Xt = Θ(Bh)Zt, (7.5)

where
Φ(Bh) = 1 − Φ1B

h − Φ2B
2h − . . . − ΦP BPh,

and
Θ(Bh) = 1 + Θ1B

h + Θ2B
2h + . . . + ΘQBQh

are, respectively, the seasonal AR operator and the seasonal MA operator, with
seasonal period of lengthh.

Remark 7.4. Analogously toARMA(p, q), theARMA(P, Q)h model is causal
only when the roots ofΦ(zh) lie outside the unit circle, and it is invertible only
when the roots ofΘ(zh) lie outside the unit circle.
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Example 7.1. SeasonalARMA(1, 1)12.
Such a model can be written as

(1 − ΦB12)Xt = (1 + ΘB12)Zt,

or
Xt − ΦXt−12 = Zt + ΘZt−12,

which is a generalization of (7.4).

When written as
Xt = ΦXt−12 + Zt + ΘZt−12,

and compared toARMA(1, 1)

Xt = φXt−1 + Zt + θZt−1

we see that the seasonal ARMA presents the series in terms of its past values at lag
equal to the length of the period (here h=12), while the non-seasonal ARMA does
it in terms of its past values at lag 1. Seasonal ARMA incorporates the seasonality
into the model.

Similarly as for the non-seasonal ARMA, here too, we require|Φ| < 1 for the
causality and|Θ| < 1 for invertibility of the model.

Remark 7.5. Note that seasonalARMA(0, Q)h is a seasonalMA(Q)h, and sea-
sonalARMA(P, 0)h is a seasonalAR(P )h.

Example 7.2. ACF of MA(1)12

A seasonal MA model with the period lengthh = 12 can be written as

Xt = Zt + ΘZt−12.

It is a zero mean stationary model and it is easy to calculate its autocovariance,
namely

γ(τ) = cov[Zt + ΘZt−12, Zt+τ + ΘZt+τ−12]

= E[(Zt + ΘZt−12)(Zt+τ + ΘZt+τ−12)]

= E(ZtZt+τ ) + Θ E(ZtZt+τ−12) + Θ E(Zt−12Zt+τ ) + Θ2 E(Zt−12Zt+τ−12)

=






(1 + Θ2)σ2 for τ = 0,
Θσ2 for τ = ±12,
0 otherwise
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Thus, the only non-zero correlations areρ(0) = 1 and

ρ(±12) =
Θ

1 + Θ2
,

which is of the same form asρ(±1) for a non-seasonal MA(1).

Example 7.3. ACF of AR(1)h

Using the techniques for calculating ACVF and ACF of the non-seasonal AR(1)
we obtain

γ(τ) =






σ2

1−Φ2 for τ = 0,
σ2Φk

1−Φ2 for τ = ±hk, k = 1, 2, . . . ,

0 otherwise.

This give the ACF similar to the ACF of a non-seasonal AR(1), namely

ρ(τ) =






1 for τ = 0,
Φk for τ = ±hk, k = 1, 2, . . . ,
0 otherwise.

The following table summarizes the behaviour of the ACF and PACF of the causal
and invertible seasonal ARMA models (see R.H.Shumway and Stoffer (2000)).

AR(P )h MA(Q)h ARMA(P, Q)h

ACF Tails off at lagskh, Cuts off after lagQh Tails off at lagskh

PACF Cuts off after lagPh Tails off at lagskh Tails off at lagskh

whereh is the length of the seasonal period,k = 1, 2, . . . and the values of ACF
and PACF are zero at non-seasonal lagsτ 6= kh.

7.2.1 Mixed Seasonal ARMA

When we combine seasonal and non-seasonal operators we obtain a model

Φ(Bh)φ(B)Xt = Θ(Bh)θ(B)Zt,

which is calledmixed seasonal ARMAand it is denoted by

ARMA(p, q) × (P, Q)h.

The behavior of the ACF and PACF for such models is a combination of behavior
of the seasonal and nonseasonal parts of the model.
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Figure 7.1: SimulatedARMA(0, 1)(1, 0)12 process.
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Figure 7.2: ACF and PACF of the aboveARMA(0, 1)(1, 0)12 process.

Example 7.4. ARMA(0, 1) × (1, 0)12

Such a model has the following form

Xt − ΦXt−12 = Zt + θZt−1,

where|Φ| < 1 and|θ| < 1. Here we obtain

ρ(τ) =






Φk for τ = 12k, k = 1, 2, . . . ,
θ

1+θ2 Φ
k for τ = 12k ± 1, k = 1, 2, . . . ,

0 otherwise.

7.2.2 Seasonal ARIMA

Mixed seasonal ARMA is a stationary process. In practice however we often have
nonstationary processes. Seasonal nonstationarity can occur when the process
is nearly periodic in the season and the seasonal component varies slowly from
period to period (say from year to year) according to a randomwalk, that is

st = st−h + Vt,
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whereVt is a white noise. We can subtract the effect of the season (saymonth)
using the backshift operatorBh to obtain seasonal stationarity

Xt − Xt−h = (1 − Bh)Xt.

This is a seasonal difference of order 1. In general we define aseasonal difference
of orderD as

∇D
h Xt = (1 − Bh)DXt,

whereD = 1, 2, . . .. UsuallyD = 1 is sufficient to obtain seasonal stationarity.
This leads to a very generalseasonal autoregressive integrated moving average
(SARIMA) model written as follows

Φ(Bh)φ(B)∇D
H∇

dXt = α + Θ(Bh)θ(B)Zt, (7.6)

and denoted byARIMA(p, d, q) × (P, D, Q)h.

Example 7.5. The modelARIMA(0, 1, 1)×(0, 1, 1)12 with α = 0 is often applied
for various economic data. Using formula (7.6) we obtain

(1 − B12)(1 − B)Xt = (1 + ΘB12)(1 + θB)Zt,

or, when expanded, we get the following form

(1 − B − B12 + B13)Xt = (1 + θB + ΘB12 + ΘθB13)Zt,

or
Xt = Xt−1 + Xt−12 − Xt−13 + Zt + θZt−1 + ΘZt−12 + ΘθZt−13.
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