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39. A computer network consists of six computers. Each
computer is directly connected to zero or more of the
other computers. Show that there are at least two com-
puters in the network that are directly connected to the
same number of other computers. [Hint: It is impossible
to have a computer linked to none of the others and a
computer linked to all the others.]

40. Find the least number of cables required to connect eight
computers to four printers to guarantee that for every
choice of four of the eight computers, these four com-
puters can directly access four different printers. Justify
your answer.

41. Find the least number of cables required to connect 100
computers to 20 printers to guarantee that every subset
of 20 computers can directly access 20 different printers.
(Here, the assumptions about cables and computers are
the same as in Example 9.) Justify your answer.

∗42. Prove that at a party where there are at least two people,
there are two people who know the same number of other
people there.

43. An arm wrestler is the champion for a period of 75 hours.
(Here, by an hour, we mean a period starting from an ex-
act hour, such as 1 P.M., until the next hour.) The arm
wrestler had at least one match an hour, but no more than
125 total matches. Show that there is a period of consec-
utive hours during which the arm wrestler had exactly 24
matches.

∗44. Is the statement in Exercise 43 true if 24 is replaced by
a) 2? b) 23? c) 25? d) 30?

45. Show that if f is a function from S to T , where S and T are
nonempty finite sets and m = ⌈|S| / |T|⌉, then there are at

least m elements of S mapped to the same value of T . That
is, show that there are distinct elements s1, s2,… , sm of S
such that f (s1) = f (s2) = ⋯ = f (sm).

46. There are 51 houses on a street. Each house has an ad-
dress between 1000 and 1099, inclusive. Show that at
least two houses have addresses that are consecutive in-
tegers.

∗47. Let x be an irrational number. Show that for some positive
integer j not exceeding the positive integer n, the absolute
value of the difference between jx and the nearest integer
to jx is less than 1/n.

48. Let n1, n2,… , nt be positive integers. Show that if
n1 + n2 +⋯ + nt − t + 1 objects are placed into t boxes,
then for some i, i = 1, 2,… , t, the ith box contains at least
ni objects.

∗49. An alternative proof of Theorem 3 based on the general-
ized pigeonhole principle is outlined in this exercise. The
notation used is the same as that used in the proof in the
text.
a) Assume that ik ≤ n for k = 1, 2,… , n2 + 1. Use the

generalized pigeonhole principle to show that there
are n + 1 terms ak1 , ak2 ,… , akn+1 with ik1 = ik2 = ⋯ =
ikn+1 , where 1 ≤ k1 < k2 < ⋯ < kn+1.

b) Show that akj
> akj+1 for j = 1, 2,… , n. [Hint: As-

sume that akj
< akj+1 , and show that this implies that

ikj
> ikj+1 , which is a contradiction.]

c) Use parts (a) and (b) to show that if there is no increas-
ing subsequence of length n + 1, then there must be a
decreasing subsequence of this length.

6.3 Permutations and Combinations
6.3.1 Introduction
Many counting problems can be solved by finding the number of ways to arrange a specified
number of distinct elements of a set of a particular size, where the order of these elements
matters. Many other counting problems can be solved by finding the number of ways to select
a particular number of elements from a set of a particular size, where the order of the elements
selected does not matter. For example, in how many ways can we select three students from a
group of five students to stand in line for a picture? How many different committees of three
students can be formed from a group of four students? In this section we will develop methods
to answer questions such as these.

6.3.2 Permutations
We begin by solving the first question posed in the introduction to this section, as well as related
questions.

EXAMPLE 1 In how many ways can we select three students from a group of five students to stand in line for
a picture? In how many ways can we arrange all five of these students in a line for a picture?
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Solution: First, note that the order in which we select the students matters. There are five waysExtra 
Examples to select the first student to stand at the start of the line. Once this student has been selected,

there are four ways to select the second student in the line. After the first and second students
have been selected, there are three ways to select the third student in the line. By the product
rule, there are 5 ⋅ 4 ⋅ 3 = 60 ways to select three students from a group of five students to stand
in line for a picture.

To arrange all five students in a line for a picture, we select the first student in five ways,
the second in four ways, the third in three ways, the fourth in two ways, and the fifth in one
way. Consequently, there are 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120 ways to arrange all five students in a line for
a picture. ◂

Example 1 illustrates how ordered arrangements of distinct objects can be counted. This leads
to some terminology.

A permutation of a set of distinct objects is an ordered arrangement of these objects. We
Links also are interested in ordered arrangements of some of the elements of a set. An ordered ar-

rangement of r elements of a set is called an r-permutation.
EXAMPLE 2 Let S = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation of S. The ordered arrange-

ment 3, 2 is a 2-permutation of S. ◂

The number of r-permutations of a set with n elements is denoted by P(n, r). We can find P(n, r)
using the product rule.

EXAMPLE 3 Let S = {a, b, c}. The 2-permutations of S are the ordered arrangements a, b; a, c; b, a; b, c; c, a;
and c, b. Consequently, there are six 2-permutations of this set with three elements. There are
always six 2-permutations of a set with three elements. There are three ways to choose the first
element of the arrangement. There are two ways to choose the second element of the arrange-
ment, because it must be different from the first element. Hence, by the product rule, we see that
P(3, 2) = 3 ⋅ 2 = 6. the first element. By the product rule, it follows that P(3, 2) = 3 ⋅ 2 = 6. ◂

We now use the product rule to find a formula for P(n, r) whenever n and r are positive integers
with 1 ≤ r ≤ n.

THEOREM 1 If n is a positive integer and r is an integer with 1 ≤ r ≤ n, then there are
P(n, r) = n(n − 1)(n − 2)⋯ (n − r + 1)

r-permutations of a set with n distinct elements.

Proof: We will use the product rule to prove that this formula is correct. The first element of the
permutation can be chosen in n ways because there are n elements in the set. There are n − 1
ways to choose the second element of the permutation, because there are n − 1 elements left
in the set after using the element picked for the first position. Similarly, there are n − 2 ways
to choose the third element, and so on, until there are exactly n − (r − 1) = n − r + 1 ways to
choose the rth element. Consequently, by the product rule, there are

n(n − 1)(n − 2)⋯ (n − r + 1)
r-permutations of the set.
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Note that P(n, 0) = 1 whenever n is a nonnegative integer because there is exactly one way to
order zero elements. That is, there is exactly one list with no elements in it, namely the empty list.

We now state a useful corollary of Theorem 1.

COROLLARY 1 If n and r are integers with 0 ≤ r ≤ n, then P(n, r) = n!
(n − r)! .

Proof: When n and r are integers with 1 ≤ r ≤ n, by Theorem 1 we have

P(n, r) = n(n − 1)(n − 2)⋯ (n − r + 1) = n!
(n − r)!

Because n!
(n − 0)! =

n!
n!

= 1 whenever n is a nonnegative integer, we see that the formula
P(n, r) = n!

(n − r)! also holds when r = 0.
By Theorem 1 we know that if n is a positive integer, then P(n, n) = n!. We will illustrate

this result with some examples.
EXAMPLE 4 How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize

winner from 100 different people who have entered a contest?
Solution: Because it matters which person wins which prize, the number of ways to pick the
three prize winners is the number of ordered selections of three elements from a set of 100
elements, that is, the number of 3-permutations of a set of 100 elements. Consequently, the
answer is

P(100, 3) = 100 ⋅ 99 ⋅ 98 = 970,200. ◂

EXAMPLE 5 Suppose that there are eight runners in a race. The winner receives a gold medal, the second-
place finisher receives a silver medal, and the third-place finisher receives a bronze medal. How
many different ways are there to award these medals, if all possible outcomes of the race can
occur and there are no ties?
Solution: The number of different ways to award the medals is the number of 3-permutations of
a set with eight elements. Hence, there are P(8, 3) = 8 ⋅ 7 ⋅ 6 = 336 possible ways to award the
medals. ◂

EXAMPLE 6 Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a spec-
ified city, but she can visit the other seven cities in any order she wishes. How many possible
orders can the saleswoman use when visiting these cities?
Solution: The number of possible paths between the cities is the number of permutations of
seven elements, because the first city is determined, but the remaining seven can be ordered
arbitrarily. Consequently, there are 7! = 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 5040 ways for the saleswoman
to choose her tour. If, for instance, the saleswoman wishes to find the path between the cities
with minimum distance, and she computes the total distance for each possible path, she must
consider a total of 5040 paths! ◂
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EXAMPLE 7 How many permutations of the letters ABCDEFGH contain the string ABC ?
Solution: Because the letters ABC must occur as a block, we can find the answer by finding the
number of permutations of six objects, namely, the block ABC and the individual letters D, E,
F, G, and H. Because these six objects can occur in any order, there are 6! = 720 permutations
of the letters ABCDEFGH in which ABC occurs as a block. ◂

6.3.3 Combinations
We now turn our attention to counting unordered selections of objects. We begin by solving a
question posed in the introduction to this section of the chapter.

EXAMPLE 8 How many different committees of three students can be formed from a group of four students?
Solution: To answer this question, we need only find the number of subsets with three ele-
ments from the set containing the four students. We see that there are four such subsets, one
for each of the four students, because choosing three students is the same as choosing one of
the four students to leave out of the group. This means that there are four ways to choose the
three students for the committee, where the order in which these students are chosen does not
matter. ◂

Example 8 illustrates that many counting problems can be solved by finding the number of
subsets of a particular size of a set with n elements, where n is a positive integer.

An r-combination of elements of a set is an unordered selection of r elements from the set.
Links

Thus, an r-combination is simply a subset of the set with r elements.
EXAMPLE 9 Let S be the set {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from S. (Note that {4, 1, 3} is the

same 3-combination as {1, 3, 4}, because the order in which the elements of a set are listed does
not matter.) ◂

The number of r-combinations of a set with n distinct elements is denoted by C(n, r). Note
that C(n, r) is also denoted by (n

r

) and is called a binomial coefficient. We will learn where this
terminology comes from in Section 6.4.

EXAMPLE 10 We see that C(4, 2) = 6, because the 2-combinations of {a, b, c, d} are the six subsets {a, b},
{a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. ◂

We can determine the number of r-combinations of a set with n elements using the formula
for the number of r-permutations of a set. To do this, note that the r-permutations of a set can be
obtained by first forming r-combinations and then ordering the elements in these combinations.
The proof of Theorem 2, which gives the value of C(n, r), is based on this observation.

THEOREM 2 The number of r-combinations of a set with n elements, where n is a nonnegative integer and
r is an integer with 0 ≤ r ≤ n, equals

C(n, r) = n!
r! (n − r)! .
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Proof: The P(n, r) r-permutations of the set can be obtained by forming the C(n, r)
r-combinations of the set, and then ordering the elements in each r-combination, which can
be done in P(r, r) ways. Consequently, by the product rule,

P(n, r) = C(n, r) ⋅ P(r, r).
This implies that

C(n, r) = P(n, r)
P(r, r) =

n!∕(n − r)!
r!∕(r − r)! = n!

r! (n − r)! .

We can also use the division rule for counting to construct a proof of this theorem. Because the
order of elements in a combination does not matter and there are P(r, r) ways to order r elements
in an r-combination of n elements, each of the C(n, r) r-combinations of a set with n elements
corresponds to exactly P(r, r) r-permutations. Hence, by the division rule, C(n, r) = P(n,r)

P(r,r) , which
implies as before that C(n, r) = n!

r! (n−r)! .

The formula in Theorem 2, although explicit, is not helpful when C(n, r) is computed for
large values of n and r. The reasons are that it is practical to compute exact values of factorials
exactly only for small integer values, and when floating point arithmetic is used, the formula in
Theorem 2 may produce a value that is not an integer. When computing C(n, r), first note that
when we cancel out (n − r)! from the numerator and denominator of the expression for C(n, r)
in Theorem 2, we obtain

C(n, r) = n!
r! (n − r)! =

n(n − 1)⋯ (n − r + 1)
r!

.

Consequently, to compute C(n, r) you can cancel out all the terms in the larger factorial in the
denominator from the numerator and denominator, then multiply all the terms that do not cancel
in the numerator and finally divide by the smaller factorial in the denominator. [When doing this
calculation by hand, instead of by machine, it is also worthwhile to factor out common factors in
the numerator n(n − 1)⋯ (n − r + 1) and in the denominator r!.] Note that many computational
programs can be used to find C(n, r). [Such functions may be called choose(n, k) or binom(n, k).]

Example 11 illustrates how C(n, k) is computed when k is relatively small compared to n
and when k is close to n. It also illustrates a key identity enjoyed by the numbers C(n, k).

EXAMPLE 11 How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how
many ways are there to select 47 cards from a standard deck of 52 cards?
Solution: Because the order in which the five cards are dealt from a deck of 52 cards does not
matter, there are

C(52, 5) = 52!
5!47!

different hands of five cards that can be dealt. To compute the value of C(52, 5), first divide the
numerator and denominator by 47! to obtain

C(52, 5) = 52 ⋅ 51 ⋅ 50 ⋅ 49 ⋅ 48
5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 .

This expression can be simplified by first dividing the factor 5 in the denominator into the
factor 50 in the numerator to obtain a factor 10 in the numerator, then dividing the factor 4 in
the denominator into the factor 48 in the numerator to obtain a factor of 12 in the numerator,
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then dividing the factor 3 in the denominator into the factor 51 in the numerator to obtain a factor
of 17 in the numerator, and finally, dividing the factor 2 in the denominator into the factor 52 in
the numerator to obtain a factor of 26 in the numerator. We find that

C(52, 5) = 26 ⋅ 17 ⋅ 10 ⋅ 49 ⋅ 12 = 2,598,960.
Consequently, there are 2,598,960 different poker hands of five cards that can be dealt from a
standard deck of 52 cards.

Note that there are

C(52, 47) = 52!
47!5!

different ways to select 47 cards from a standard deck of 52 cards. We do not need to compute
this value because C(52, 47) = C(52, 5). (Only the order of the factors 5! and 47! is different in
the denominators in the formulae for these quantities.) It follows that there are also 2,598,960
different ways to select 47 cards from a standard deck of 52 cards. ◂

In Example 11 we observed that C(52, 5) = C(52, 47). This is not surprising because se-
lecting five cards out of 52 is the same as selecting the 47 that we leave out. The identity
C(52, 5) = C(52, 47) is a special case of the useful identity for the number of r-combinations of
a set given in Corollary 2.

COROLLARY 2 Let n and r be nonnegative integers with r ≤ n. Then C(n, r) = C(n, n − r).

Proof: From Theorem 2 it follows that

C(n, r) = n!
r! (n − r)!

and

C(n, n − r) = n!
(n − r)! [n − (n − r)]! =

n!
(n − r)! r!

.

Hence, C(n, r) = C(n, n − r).
We can also prove Corollary 2 without relying on algebraic manipulation. Instead, we can

use a combinatorial proof. We describe this important type of proof in Definition 1.

Definition 1 A combinatorial proof of an identity is a proof that uses counting arguments to prove that
both sides of the identity count the same objects but in different ways or a proof that is based
on showing that there is a bijection between the sets of objects counted by the two sides of
the identity. These two types of proofs are called double counting proofs and bijective proofs,
respectively.

Many identities involving binomial coefficients can be proved using combinatorial proofs. We
now show how to prove Corollary 2 using a combinatorial proof. We will provide both a double
counting proof and a bijective proof, both based on the same basic idea.

Combinatorial proofs
are almost always much
shorter and provide
more insights than
proofs based on
algebraic manipulation.
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Proof: We will use a bijective proof to show that C(n, r) = C(n, n − r) for all integers n and
r with 0 ≤ r ≤ n. Suppose that S is a set with n elements. The function that maps a subset A
of S to A is a bijection between subsets of S with r elements and subsets with n − r elements
(as the reader should verify). The identity C(n, r) = C(n, n − r) follows because when there is a
bijection between two finite sets, the two sets must have the same number of elements.

Alternatively, we can reformulate this argument as a double counting proof. By definition,
the number of subsets of S with r elements equals C(n, r). But each subset A of S is also deter-
mined by specifying which elements are not in A, and so are in A. Because the complement of
a subset of S with r elements has n − r elements, there are also C(n, n − r) subsets of S with r
elements. It follows that C(n, r) = C(n, n − r).

EXAMPLE 12 How many ways are there to select five players from a 10-member tennis team to make a trip to
a match at another school?

Extra 
Examples Solution: The answer is given by the number of 5-combinations of a set with 10 elements. By

Theorem 2, the number of such combinations is

C(10, 5) = 10!
5! 5! = 252.

◂

EXAMPLE 13 A group of 30 people have been trained as astronauts to go on the first mission to Mars. How
many ways are there to select a crew of six people to go on this mission (assuming that all crew
members have the same job)?
Solution: The number of ways to select a crew of six from the pool of 30 people is the number
of 6-combinations of a set with 30 elements, because the order in which these people are chosen
does not matter. By Theorem 2, the number of such combinations is

C(30, 6) = 30!
6! 24! =

30 ⋅ 29 ⋅ 28 ⋅ 27 ⋅ 26 ⋅ 25
6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 593,775.

◂

EXAMPLE 14 How many bit strings of length n contain exactly r 1s?
Solution: The positions of r 1s in a bit string of length n form an r-combination of the set
{1, 2, 3,… , n}. Hence, there are C(n, r) bit strings of length n that contain exactly r 1s. ◂

EXAMPLE 15 Suppose that there are 9 faculty members in the mathematics department and 11 in the com-
puter science department. How many ways are there to select a committee to develop a discrete
mathematics course at a school if the committee is to consist of three faculty members from the
mathematics department and four from the computer science department?
Solution: By the product rule, the answer is the product of the number of 3-combinations
of a set with nine elements and the number of 4-combinations of a set with 11 elements. By
Theorem 2, the number of ways to select the committee is

C(9, 3) ⋅ C(11, 4) = 9!
3!6! ⋅

11!
4!7! = 84 ⋅ 330 = 27,720.

◂



6.3 Permutations and Combinations 435

Exercises

1. List all the permutations of {a, b, c}.
2. How many different permutations are there of the set

{a, b, c, d, e, f, g}?
3. How many permutations of {a, b, c, d, e, f, g} end with a?
4. Let S = {1, 2, 3, 4, 5}.

a) List all the 3-permutations of S.
b) List all the 3-combinations of S.

5. Find the value of each of these quantities.
a) P(6, 3) b) P(6, 5)
c) P(8, 1) d) P(8, 5)
e) P(8, 8) f ) P(10, 9)

6. Find the value of each of these quantities.
a) C(5, 1) b) C(5, 3)
c) C(8, 4) d) C(8, 8)
e) C(8, 0) f ) C(12, 6)

7. Find the number of 5-permutations of a set with nine el-
ements.

8. In how many different orders can five runners finish a
race if no ties are allowed?

9. How many possibilities are there for the win, place, and
show (first, second, and third) positions in a horse race
with 12 horses if all orders of finish are possible?

10. There are six different candidates for governor of a state.
In how many different orders can the names of the can-
didates be printed on a ballot?

11. How many bit strings of length 10 contain
a) exactly four 1s?
b) at most four 1s?
c) at least four 1s?
d) an equal number of 0s and 1s?

12. How many bit strings of length 12 contain
a) exactly three 1s?
b) at most three 1s?
c) at least three 1s?
d) an equal number of 0s and 1s?

13. A group contains n men and n women. How many ways
are there to arrange these people in a row if the men and
women alternate?

14. In how many ways can a set of two positive integers less
than 100 be chosen?

15. In how many ways can a set of five letters be selected
from the English alphabet?

16. How many subsets with an odd number of elements does
a set with 10 elements have?

17. How many subsets with more than two elements does a
set with 100 elements have?

18. A coin is flipped eight times where each flip comes up
either heads or tails. How many possible outcomes
a) are there in total?
b) contain exactly three heads?
c) contain at least three heads?
d) contain the same number of heads and tails?

19. A coin is flipped 10 times where each flip comes up either
heads or tails. How many possible outcomes
a) are there in total?
b) contain exactly two heads?
c) contain at most three tails?
d) contain the same number of heads and tails?

20. How many bit strings of length 10 have
a) exactly three 0s?
b) more 0s than 1s?
c) at least seven 1s?
d) at least three 1s?

21. How many permutations of the letters ABCDEFG contain
a) the string BCD?
b) the string CFGA?
c) the strings BA and GF?
d) the strings ABC and DE?
e) the strings ABC and CDE?
f ) the strings CBA and BED?

22. How many permutations of the letters ABCDEFGH con-
tain
a) the string ED?
b) the string CDE?
c) the strings BA and FGH?
d) the strings AB, DE, and GH?
e) the strings CAB and BED?
f ) the strings BCA and ABF?

23. How many ways are there for eight men and five women
to stand in a line so that no two women stand next to each
other? [Hint: First position the men and then consider
possible positions for the women.]

24. How many ways are there for 10 women and six men to
stand in a line so that no two men stand next to each other?
[Hint: First position the women and then consider possi-
ble positions for the men.]

25. How many ways are there for four men and five women
to stand in a line so that
a) all men stand together?
b) all women stand together?

26. How many ways are there for three penguins and six
puffins to stand in a line so that
a) all puffins stand together?
b) all penguins stand together?

27. One hundred tickets, numbered 1, 2, 3,… , 100, are sold
to 100 different people for a drawing. Four different
prizes are awarded, including a grand prize (a trip to
Tahiti). How many ways are there to award the prizes if
a) there are no restrictions?
b) the person holding ticket 47 wins the grand prize?
c) the person holding ticket 47 wins one of the prizes?
d) the person holding ticket 47 does not win a prize?
e) the people holding tickets 19 and 47 both win prizes?
f ) the people holding tickets 19, 47, and 73 all win

prizes?


