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Linear Time Series Analysis
and Its Applications1

For basic concepts of linear time series analysis see

• Box, Jenkins, and Reinsel (1994, Chapters 2-3), and

• Brockwell and Davis (1996, Chapters 1-3)

The theories of linear time series discussed include

• stationarity

• dynamic dependence

• autocorrelation function

• modeling

• forecasting

1Tsay (2010), Chapter 2.
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The econometric models introduced include

(a) simple autoregressive models,
(b) simple moving-average models,
(b) mixed autoregressive moving-average models,
(c) seasonal models,
(d) unit-root nonstationarity,
(e) regression models with time series errors, and
(f) fractionally differenced models for long-range
dependence.
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Strict stationarity

The foundation of time series analysis is stationarity.

A time series {rt} is said to be strictly stationary if the joint
distribution of (rt1 , . . . , rtk) is identical to that of
(rt1+t, . . . , rtk+t) for all t, where k is an arbitrary positive
integer and (t1, . . . , tk) is a collection of k positive integers.

The joint distribution of (rt1 , . . . , rtk) is invariant under time
shift.

This is a very strong condition that is hard to verify
empirically.

4 / 40



Stationarity

ACF

Ljung-Box
test

White noise

AR models

Example

PACF

AIC/BIC

Forecasting

MA models

Summary

Weak stationarity

A time series {rt} is weakly stationary if both the mean of rt
and the covariance between rt and rt−l are time invariant,
where l is an arbitrary integer.

More specifically, {rt} is weakly stationary if
(a) E(rt) = µ, which is a constant, and
(b) Cov(rt, rt−l) = γl, which only depends on l.

In practice, suppose that we have observed T data points
{rt|t = 1, . . . , T}. The weak stationarity implies that the
time plot of the data would show that the T values fluctuate
with constant variation around a fixed level.

In applications, weak stationarity enables one to make
inference concerning future observations (e.g., prediction).
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Properties

The covariance
γ = Cov(rt, rt−l)

is called the lag-l autocovariance of rt.

It has two important properties:
(a) γ0 = V ar(rt), and (b) γ−l = γl.

The second property holds because

Cov(rt, rt−(−l)) = Cov(rt−(−l), rt)

= Cov(rt+l, rt)

= Cov(rt1 , rt1 − l),

where t1 = t+ l.
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Autocorrelation function

The autocorrelation function of lag l is

ρl =
Cov(rt, rt−l)√
V ar(rt)V ar(rt−l)

=
Cov(rt, rt−l)

V ar(rt)
=
γl
γ0

where the property V ar(rt) = V ar(rt−l) for a weakly
stationary series is used.

In general, the lag-l sample autocorrelation of rt is defined as

ρ̂l =

∑T
t=l+1(rt − r̄)(rt−l − r̄)∑T

t=1(rt − r̄)2
0 ≤ l < T − 1.
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Portmanteau test

Box and Pierce (1970) propose the Portmanteau statistic

Q∗(m) = T

m∑
l=1

ρ̂2l

as a test statistic for the null hypothesis

H0 : ρ1 = · · · = ρm = 0

against the alternative hypothesis

Ha : ρi 6= 0 for some i ∈ {1, . . . ,m}.

Under the assumption that {rt} is an iid sequence with
certain moment conditions, Q∗(m) is asymptotically χ2

m.
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Ljung and Box (1978)

Ljung and Box (1978) modify the Q∗(m) statistic as below
to increase the power of the test in finite samples,

Q(m) = T (T + 2)

m∑
l=1

ρ̂2l
T − l

.

The decision rule is to reject H0 if Q(m) > q2α, where q2α
denotes the 100(1− α)th percentile of a χ2

m distribution.
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# Load data

da = read.table("http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/m-ibm3dx2608.txt",

header=TRUE)

# IBM simple returns and squared returns

sibm=da[,2]

sibm2 = sibm^2

# ACF

par(mfrow=c(1,2))

acf(sibm)

acf(sibm2)

# Ljung-Box statistic Q(30)

Box.test(sibm,lag=30,type="Ljung")

Box.test(sibm2,lag=30,type="Ljung")

> Box.test(sibm,lag=30,type="Ljung")

Box-Ljung test

data: sibm

X-squared = 38.241, df = 30, p-value = 0.1437

> Box.test(sibm2,lag=30,type="Ljung")

Box-Ljung test

data: sibm2

X-squared = 182.12, df = 30, p-value < 2.2e-16
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White noise

A time series rt is called a white noise if {rt} is a sequence
of independent and identically distributed random variables
with finite mean and variance.

All the ACFs are zero.

If rt is normally distributed with mean zero and variance σ2,
the series is called a Gaussian white noise.
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Linear Time Series
A time series rt is said to be linear if it can be written as

rt = µ+

∞∑
i=0

ψiat−i,

where µ is the mean of rt, ψ0 = 1, and {at} is white noise.

at denotes the new information at time t of the time series
and is often referred to as the innovation or shock at time t.

If rt is weakly stationary, we can obtain its mean and
variance easily by using the independence of {at} as

E(rt) = µ, V (rt) = σ2a

∞∑
i=0

ψ2
i ,

where σ2a is the variance of at.
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The lag-l aucovariance of rt is

γl = Cov(rt, rt−l)

= E

( ∞∑
i=0

ψiat−i

) ∞∑
j=0

ψjat−l−j


= E

 ∞∑
i,j=0

ψiψjat−iat−l−j


=

∞∑
i=0

ψj+lψjE(a2t−l−j) = σ2a

∞∑
j=0

ψjψj+l,

so

ρl =
γl
γ0

=

∑∞
i=0 ψiψi+l

1 +
∑∞

i=1 ψ
2
i
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AR(1)

Linear time series models are econometric and statistical
models used to describe the pattern of the ψ weights of rt.
For instance, an stationary AR(1) model can be written as

rt − µ = φ1(rt−1 − µ) + at

where {at} is white noise. It is easy to see that

rt − µ =

∞∑
i=0

φi1at−i,

and

V (rt) =
σ2a

1− φ21
,

provided that φ21 < 1. In other words, the weak stationarity
of an AR(1) model implies that |φ1| < 1.
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Using φ0 = (1− φ1)µ, one can rewrite a stationary AR(1)
model as

rt = φ0 + φ1rt−1 + at,

such that φ1 measures the persistence of the dynamic
dependence of an AR(1) time series.

The ACF of the AR(1) is

γl = φ1γl−1 l > 0,

where γ0 = φ1γ1 + σ2a and γl = γ−l.

Also,
ρl = φl1,

i.e., the ACF of a weakly stationary AR(1) series decays
exponentially with rate φ1 and starting value ρ0 = 1.
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AR(2)

An AR(2) model assumes the form

rt = φ0 + φ1rt−1 + φ2rt−2 + at,

where

E(rt) = µ =
φ0

1− φ1 − φ2
,

provided that φ1 + φ2 6= 1.

It is easy to see that

γl = φ1γl−1 + φ2γl−2, for l > 0,

and that
ρl = φ1ρl−1 + φ2ρl−2, l ≥ 2,

with ρ1 = φ1/(1− φ2).
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US real GNP

As an illustration, consider the quarterly growth rate of U.S.
real gross national product (GNP), seasonally adjusted,
from the second quarter of 1947 to the first quarter of 1991.

Here we simply employ an AR(3) model for the data.
Denoting the growth rate by rt the fitted model is

rt = 0.0047 + 0.348rt−1 + 0.179rt−2 − 0.142rt−3 + at,

with σ̂a = 0.0097.
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Alternatively,

rt − 0.348rt−1 − 0.179rt−2 + 0.142rt−3 = 0.0047 + at,

with the corresponding third-order difference equation

(1− 0.348B − 0.179B2 + 0.142B3) = 0

or
(1 + 0.521B)(1− 0.869B + 0.274B2) = 0

The first factor
(1 + 0.521B)

shows an exponentially decaying feature of the GNP.
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Business cycles
The second factor (1− 0.869B + 0.274B2) confirms the existence
of stochastic business cycles. For an AR(2) model with a pair of
complex characteristic roots, the average length of the stochastic
cycles is

k =
2π

cos−1[φ1/(2
√
−φ2)]

or k = 10.62 quarters, which is about 3 years.

Fact: If one uses a nonlinear model to separate U.S. economy into
“expansion” and “contraction” periods, the data show that the
average duration of contraction periods is about 3 quarters and
that of expansion periods is about 12 quarters.

The average duration of 10.62 quarters is a compromise between
the two separate durations. The periodic feature obtained here is
common among growth rates of national economies. For example,
similar features can be found for many OECD countries.
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R code
gnp=scan(file="http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/dgnp82.txt")

# To create a time-series object

gnp1=ts(gnp,frequency=4,start=c(1947,2))

par(mfrow=c(1,1))

plot(gnp1)

points(gnp1,pch="*")

# Find the AR order

m1=ar(gnp,method="mle")

m1$order

m2=arima(gnp,order=c(3,0,0))

m2

# In R, intercept denotes the mean of the series.

# Therefore, the constant term is obtained below:

(1-.348-.1793+.1423)*0.0077

# Residual standard error

sqrt(m2$sigma2)

# Characteristic equation and solutions

p1=c(1,-m2$coef[1:3])

roots = polyroot(p1)

# Compute the absolute values of the solutions

Mod(roots)

[1] 1.913308 1.920152 1.913308

# To compute average length of business cycles:

k=2*pi/acos(1.590253/1.913308)
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AR(p)
The results of the AR(1) and AR(2) models can readily be
generalized to the general AR(p) model:

rt = φ0 + φ1rt−1 + · · ·+ φprt−p + at,

where p is a nonnegative integer and {at} is white noise.

The mean of a stationary series is

E(rt) =
φ0

1− φ1 − · · · − φp
provided that the denominator is not zero.

The associated characteristic equation of the model is

1− φ1x− φ2x2 − · · · − φpxp = 0.

If all the solutions of this equation are greater than 1 in
modulus, then the series rt is stationary.
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Partial ACF

The PACF of a stationary time series is a function of its
ACF and is a useful tool for determining the order p of an
AR model. A simple, yet effective way to introduce PACF is
to consider the following AR models in consecutive orders:

rt = φ0,1 + φ1,1rt−1 + e1,t,

rt = φ0,2 + φ1,2rt−1 + φ2,2rt−2 + e2,t,

rt = φ0,3 + φ1,3rt−1 + φ2,3rt−2 + φ3,3rt−3 + e3,t,

...

The estimate φ̂i,i the ith equation is called the lag-i sample
PACF of rt.
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For a stationary Gaussian AR(p) model, it can be shown
that the sample PACF has the following properties:

• φ̂p,p → φp as T →∞.

• φ̂l,l → 0 for all l > p.

• V (φ̂l,l)→ 1/T for l > p.

These results say that, for an AR(p) series, the sample
PACF cuts off at lag p.
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AIC

The well-known Akaike information criterion (AIC) (Akaike,
1973) is defined as

AIC = − 2

T
log(likelihood)︸ ︷︷ ︸

goodness of fit

+
2

T
(number of parameters)︸ ︷︷ ︸

penalty function

,

where the likelihood function is evaluated at the
maximum-likelihood estimates and T is the sample size.

For a Gaussian AR(l) model, AIC reduces to

AIC(l) = log(σ̃2l ) +
2l

T

where σ̃2l is the maximum-likelihood estimate of σ2a, which is
the variance of at and T is the sample size.
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BIC

Another commonly used criterion function is the
SchwarzBayesian information criterion (BIC).

For a Gaussian AR(l) model, the criterion is

BIC(l) = log(σ̃2l ) +
l log(T )

T

The penalty for each parameter used is 2 for AIC and log(T )
for BIC.

Thus, BIC tends to select a lower AR model when the
sample size is moderate or large.
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Forecasting

For the AR(p) model, suppose that we are at the time index
h and are interested in forecasting rh+l where l ≥ 1.

The time index h is called the forecast origin and the
positive integer l is the forecast horizon.

Let r̂h(l) be the forecast of rh+l using the minimum squared
error loss function, i.e.

E{[rh+l − r̂h(l)]2|Fh} ≤ min
g
E[(rh+l − g)2|Fh],

where g is a function of the information available at time h
(inclusive), that is, a function of Fh.

We referred to r̂h(l) as the l-step ahead forecast of rt at the
forecast origin h.
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1-step-ahead forecast

It is easy to see that

r̂h(1) = E(rh+1|Fh) = φ0 +

p∑
i=1

φirh+1−i,

and the associated forecast error is

eh(1) = rh+1 − r̂h(1) = ah+1,

and
V (eh(1)) = V (ah+1) = σ2a.
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2-step-ahead forecast

Similarly,

r̂h(2) = φ0 + φ1r̂h(1) + φ2rh + · · ·+ φprh+2−p,

with
eh(2) = ah+2 + φ1ah+1

and
V (eh(2)) = (1 + φ21)σ

2
a.
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Multistep-ahead forecast

In general,

rh+l = φ0 +

p∑
i=1

φirh+l−i + ah+l,

and

r̂h(l) = φ0 +

p∑
i=1

φir̂h(l − i),

where r̂h(i) = rh+i if i ≤ 0.
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Mean reversion

It can be shown that for a stationary AR(p) model,

r̂h(l)→ E(rt) mboxas l→∞,

meaning that for such a series long-term point forecast
approaches its unconditional mean.

This property is referred to as the mean reversion in the
finance literature.

For an AR(1) model, the speed of mean reversion is
measured by the half-life defined as

half-life =
log(0.5)

log(|φ1|)
.
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MA(1) model

There are several ways to introduce MA models.

One approach is to treat the model as a simple extension of
white noise series.

Another approach is to treat the model as an infinite-order
AR model with some parameter constraints.

We adopt the second approach.

31 / 40



Stationarity

ACF

Ljung-Box
test

White noise

AR models

Example

PACF

AIC/BIC

Forecasting

MA models

Summary

We may entertain, at least in theory, an AR model with
infinite order as

rt = φ0 + φ1rt−1 + φ2rt−2 + · · ·+ at.

However, such an AR model is not realistic because it has
infinite many parameters.

One way to make the model practical is to assume that the
coefficients φi’s satisfy some constraints so that they are
determined by a finite number of parameters.

A special case of this idea is

rt = φ0 − θ1rt−1 − θ21rt−2 − θ31rt−3 − · · ·+ at.

where the coefficients depend on a single parameter θ1 via
φi = −θi1 for i ≥ 1.
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Obviously,

rt + θ1rt−1 + θ21rt−2 + θ31rt−3 + · · · = φ0 + at

θ1(rt−1 + θ1rt−2 + θ21rt−3 + θ31rt−4 + · · · ) = θ1(φ0 + at−1)

so
rt = φ0(1− θ1) + at − θ1at−1,

i.e., rt is a weighted average of shocks at and at−1.

Therefore, the model is called an MA model of order 1 or
MA(1) model for short.
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MA(q)

The general form of an MA(q) model is

rt = c0 −
q∑
i=1

θiat−i,

or
rt = c0 + (1− θ1B − · · · − θqBq)at,

where q > 0.

Moving-average models are always weakly stationary
because they are finite linear combinations of a white noise
sequence for which the first two moments are time invariant.

E(rt) = c0

V (rt) = (1 + θ21 + θ22 + · · ·+ θ2q)σ
2
a.
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ACF of an MA(1)

Assume that c0 = 0 for simplicity. Then,

rt−lrt = rt−lat − θ1rt−lat−1.

Taking expectation, we obtain

γ1 = −θ1σ2a and γl = 0, for l > 1.

Since V (rt) = (1 + θ21)σ2a, it follows that

ρ0 = 1, ρ1 = − θ1
1 + θ21

, ρl = 0, for l > 1.
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ACF of an MA(2)

For the MA(2) model, the autocorrelation coefficients are

ρ1 =
−θ1 + θ1θ2
1 + θ21 + θ22

, ρ2 =
−θ2

1 + θ21 + θ22
, ρl = 0, for l > 2.

Here the ACF cuts off at lag 2.

This property generalizes to other MA models.

For an MA(q) model, the lag-q ACF is not zero, but ρl = 0
for l > q.

an MA(q) series is only linearly related to its first q-lagged
values and hence is a “finite-memory” model.
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Estimation

Maximum-likelihood estimation is commonly used to
estimate MA models. There are two approaches for
evaluating the likelihood function of an MA model.

The first approach assumes that at = 0 for t ≤ 0, so
a1 = r1 − c0, a2 = r2 − c0 + θ1a1, etc. This approach is
referred to as the conditional-likelihood method.

The second approach treats at = 0 for t ≤ 0, as additional
parameters of the model and estimate them jointly with
other parameters. This approach is referred to as the
exact-likelihood method.
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Forecasting an MA(1)

For the 1-step-ahead forecast of an MA(1) process, the
model says

rh+1 = c0 + ah+1 − θ1ah.

Taking the conditional expectation, we have

r̂h(1) = E(rh+1|Fh) = c0 − θ1ah,
eh(1) = rh+1 − r̂h(1) = ah+1

with V [eh(1)] = σ2a.

Similarly,

r̂h(2) = E(rh+1|Fh) = c0

eh(2) = rh+2 − r̂h(2) = ah+2 − θ1ah+1

with V [eh(2)] = (1 + θ21)σ2a.
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Forecasting an MA(2)

Similarly, for an MA(2) model, we have

rh+l = c0 + ah+l − θ1ah+l−1 − θ2ah+l−2,

from which we obtain

r̂h(1) = c0 − θ1ah − θ2ah−1,
r̂h(2) = c0 − θ2ah,
r̂h(l) = c0, for l > 2.
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Summary

A brief summary of AR and MA models is in order. We
have discussed the following properties:

• For MA models, ACF is useful in specifying the order
because ACF cuts off at lag q for an MA(q) series.

• For AR models, PACF is useful in order determination
because PACF cuts off at lag p for an AR(p) process.

• An MA series is always stationary, but for an AR series
to be stationary, all of its characteristic roots must be
less than 1 in modulus.

Carefully read Section 2.6 of Tsay (2010) about
ARMA models.
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