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77. How many diagonals does a convex polygon with n sides
have? (Recall that a polygon is convex if every line seg-
ment connecting two points in the interior or boundary of
the polygon lies entirely within this set and that a diago-
nal of a polygon is a line segment connecting two vertices
that are not adjacent.)

78. Data are transmitted over the Internet in datagrams,
which are structured blocks of bits. Each datagram con-
tains header information organized into a maximum of 14
different fields (specifying many things, including the
source and destination addresses) and a data area that
contains the actual data that are transmitted. One of the
14 header fields is the header length field (denoted by
HLEN), which is specified by the protocol to be 4 bits
long and that specifies the header length in terms of 32-
bit blocks of bits. For example, if HLEN = 0110, the
header is made up of six 32-bit blocks. Another of the 14
header fields is the 16-bit-long total length field (denoted

by TOTAL LENGTH), which specifies the length in bits
of the entire datagram, including both the header fields
and the data area. The length of the data area is the total
length of the datagram minus the length of the header.
a) The largest possible value of TOTAL LENGTH

(which is 16 bits long) determines the maximum
total length in octets (blocks of 8 bits) of an Internet
datagram. What is this value?

b) The largest possible value of HLEN (which is 4 bits
long) determines the maximum total header length in
32-bit blocks. What is this value? What is the maxi-
mum total header length in octets?

c) The minimum (and most common) header length is
20 octets. What is the maximum total length in octets
of the data area of an Internet datagram?

d) How many different strings of octets in the data area
can be transmitted if the header length is 20 octets
and the total length is as long as possible?

6.2 The Pigeonhole Principle
6.2.1 Introduction
Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost. Because there are
20 pigeons but only 19 pigeonholes, a least one of these 19 pigeonholes must have at least twoLinks

pigeons in it. To see why this is true, note that if each pigeonhole had at most one pigeon in it,
at most 19 pigeons, one per hole, could be accommodated. This illustrates a general principle
called the pigeonhole principle, which states that if there are more pigeons than pigeonholes,
then there must be at least one pigeonhole with at least two pigeons in it (see Figure 1). This
principle is extremely useful; it applies to much more than pigeons and pigeonholes.

THEOREM 1 THE PIGEONHOLE PRINCIPLE If k is a positive integer and k + 1 or more objects
are placed into k boxes, then there is at least one box containing two or more of the objects.

(a) (b) (c)

FIGURE 1 There are more pigeons than pigeonholes.
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Proof: We prove the pigeonhole principle using a proof by contraposition. Suppose that none of
the k boxes contains more than one object. Then the total number of objects would be at most k.
This is a contradiction, because there are at least k + 1 objects.

The pigeonhole principle is also called the Dirichlet drawer principle, after the nineteenth-
century German mathematician G. Lejeune Dirichlet, who often used this principle in his work.
(Dirichlet was not the first person to use this principle; a demonstration that there were at least
two Parisians with the same number of hairs on their heads dates back to the 17th century—
see Exercise 35.) It is an important additional proof technique supplementing those we have
developed in earlier chapters. We introduce it in this chapter because of its many important
applications to combinatorics.

We will illustrate the usefulness of the pigeonhole principle. We first show that it can be
used to prove a useful corollary about functions.

COROLLARY 1 A function f from a set with k + 1 or more elements to a set with k elements is not one-to-one.

Proof: Suppose that for each element y in the codomain of f we have a box that contains all
elements x of the domain of f such that f (x) = y. Because the domain contains k + 1 or more
elements and the codomain contains only k elements, the pigeonhole principle tells us that one
of these boxes contains two or more elements x of the domain. This means that f cannot be
one-to-one.

Examples 1–3 show how the pigeonhole principle is used.
EXAMPLE 1 Among any group of 367 people, there must be at least two with the same birthday, because

there are only 366 possible birthdays. ◂

EXAMPLE 2 In any group of 27 English words, there must be at least two that begin with the same letter,
because there are 26 letters in the English alphabet. ◂

EXAMPLE 3 How many students must be in a class to guarantee that at least two students receive the same
score on the final exam, if the exam is graded on a scale from 0 to 100 points?
Solution: There are 101 possible scores on the final. The pigeonhole principle shows that among
any 102 students there must be at least 2 students with the same score. ◂
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G. LEJEUNE DIRICHLET (1805–1859) G. Lejeune Dirichlet was born into a Belgian family living near
Links

Cologne, Germany. His father was a postmaster. He became passionate about mathematics at a young age.
He was spending all his spare money on mathematics books by the time he entered secondary school in
Bonn at the age of 12. At 14 he entered the Jesuit College in Cologne, and at 16 he began his studies at
the University of Paris. In 1825 he returned to Germany and was appointed to a position at the Univer-
sity of Breslau. In 1828 he moved to the University of Berlin. In 1855 he was chosen to succeed Gauss at
the University of Göttingen. Dirichlet is said to be the first person to master Gauss’s Disquisitiones Arith-
meticae, which appeared 20 years earlier. He is said to have kept a copy at his side even when he trav-
eled. Dirichlet made many important discoveries in number theory, including the theorem that there are in-
finitely many primes in arithmetical progressions an + b when a and b are relatively prime. He proved the
n = 5 case of Fermat’s last theorem, that there are no nontrivial solutions in integers to x5 + y5 = z5. Dirichlet

also made many contributions to analysis. Dirichlet was considered to be an excellent teacher who could explain ideas with great
clarity. He was married to Rebecka Mendelssohn, one of the sisters of the composer Felix Mendelssohn.
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The pigeonhole principle is a useful tool in many proofs, including proofs of surprising
results, such as that given in Example 4.

EXAMPLE 4 Show that for every integer n there is a multiple of n that has only 0s and 1s in its decimal
expansion.

Extra 
Examples Solution: Let n be a positive integer. Consider the n + 1 integers 1, 11, 111,… , 11… 1 (where

the last integer in this list is the integer with n + 1 1s in its decimal expansion). Note that there
are n possible remainders when an integer is divided by n. Because there are n + 1 integers in
this list, by the pigeonhole principle there must be two with the same remainder when divided
by n. The larger of these integers less the smaller one is a multiple of n, which has a decimal
expansion consisting entirely of 0s and 1s. ◂

6.2.2 The Generalized Pigeonhole Principle
The pigeonhole principle states that there must be at least two objects in the same box when
there are more objects than boxes. However, even more can be said when the number of objects
exceeds a multiple of the number of boxes. For instance, among any set of 21 decimal digits
there must be 3 that are the same. This follows because when 21 objects are distributed into
10 boxes, one box must have more than 2 objects.

THEOREM 2 THE GENERALIZED PIGEONHOLE PRINCIPLE If N objects are placed into k
boxes, then there is at least one box containing at least ⌈N∕k⌉ objects.

Proof: We will use a proof by contraposition. Suppose that none of the boxes contains more
than ⌈N∕k⌉ − 1 objects. Then, the total number of objects is at most

k
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⌉
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)
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k
+ 1

)
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)
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where the inequality ⌈N∕k⌉ < (N∕k) + 1 has been used. Thus, the total number of objects is
less than N. This completes the proof by contraposition.

A common type of problem asks for the minimum number of objects such that at least r
of these objects must be in one of k boxes when these objects are distributed among the boxes.
When we have N objects, the generalized pigeonhole principle tells us there must be at least
r objects in one of the boxes as long as ⌈N∕k⌉ ≥ r. The smallest integer N with N∕k > r − 1,
namely, N = k(r − 1) + 1, is the smallest integer satisfying the inequality ⌈N∕k⌉ ≥ r. Could a
smaller value of N suffice? The answer is no, because if we had k(r − 1) objects, we could put
r − 1 of them in each of the k boxes and no box would have at least r objects.

When thinking about problems of this type, it is useful to consider how you can avoid having
at least r objects in one of the boxes as you add successive objects. To avoid adding a rth object
to any box, you eventually end up with r − 1 objects in each box. There is no way to add the
next object without putting an rth object in that box.

Examples 5–8 illustrate how the generalized pigeonhole principle is applied.
EXAMPLE 5 Among 100 people there are at least ⌈100∕12⌉ = 9 who were born in the same month. ◂

EXAMPLE 6 What is the minimum number of students required in a discrete mathematics class to be sure
that at least six will receive the same grade, if there are five possible grades, A, B, C, D, and F?
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Solution: The minimum number of students needed to ensure that at least six students receiveExtra 
Examples the same grade is the smallest integer N such that ⌈N∕5⌉ = 6. The smallest such integer is

N = 5 ⋅ 5 + 1 = 26. If you have only 25 students, it is possible for there to be five who have
received each grade so that no six students have received the same grade. Thus, 26 is the
minimum number of students needed to ensure that at least six students will receive the same
grade. ◂

EXAMPLE 7 a) How many cards must be selected from a standard deck of 52 cards to guarantee that at least
three cards of the same suit are selected?

A standard deck of 52
cards has 13 kinds of
cards, with four cards of
each of kind, one in
each of the four suits,
hearts, diamonds,
spades, and clubs.

b) How many must be selected from a standard deck of 52 cards to guarantee that at least three
hearts are selected?
Solution: a) Suppose there are four boxes, one for each suit, and as cards are selected they are
placed in the box reserved for cards of that suit. Using the generalized pigeonhole principle,
we see that if N cards are selected, there is at least one box containing at least ⌈N∕4⌉ cards.
Consequently, we know that at least three cards of one suit are selected if ⌈N∕4⌉ ≥ 3. The
smallest integer N such that ⌈N∕4⌉ ≥ 3 is N = 2 ⋅ 4 + 1 = 9, so nine cards suffice. Note that if
eight cards are selected, it is possible to have two cards of each suit, so more than eight cards are
needed. Consequently, nine cards must be selected to guarantee that at least three cards of one
suit are chosen. One good way to think about this is to note that after the eighth card is chosen,
there is no way to avoid having a third card of some suit.
b) We do not use the generalized pigeonhole principle to answer this question, because we want
to make sure that there are three hearts, not just three cards of one suit. Note that in the worst
case, we can select all the clubs, diamonds, and spades, 39 cards in all, before we select a single
heart. The next three cards will be all hearts, so we may need to select 42 cards to get three
hearts. ◂

EXAMPLE 8 What is the least number of area codes needed to guarantee that the 25 million phones in a state
can be assigned distinct 10-digit telephone numbers? (Assume that telephone numbers are of
the form NXX-NXX-XXXX, where the first three digits form the area code, N represents a digit
from 2 to 9 inclusive, and X represents any digit.)
Solution: There are eight million different phone numbers of the form NXX-XXXX (as shown in
Example 8 of Section 6.1). Hence, by the generalized pigeonhole principle, among 25 million
telephones, at least ⌈25,000,000∕8,000,000⌉ = 4 of them must have identical phone numbers.
Hence, at least four area codes are required to ensure that all 10-digit numbers are different. ◂

Example 9, although not an application of the generalized pigeonhole principle, makes use
of similar principles.

EXAMPLE 9 Suppose that a computer science laboratory has 15 workstations and 10 servers. A cable can be
used to directly connect a workstation to a server. For each server, only one direct connection to
that server can be active at any time. We want to guarantee that at any time any set of 10 or fewer
workstations can simultaneously access different servers via direct connections. Although we
could do this by connecting every workstation directly to every server (using 150 connections),
what is the minimum number of direct connections needed to achieve this goal?
Solution: Suppose that we label the workstations W1, W2,… , W15 and the servers S1, S2,… , S10.
First, we would like to find a way for there to be far fewer than 150 direct connections between
workstations and servers to achieve our goal. One promising approach is to directly connect
Wk to Sk for k = 1, 2,… , 10 and then to connect each of W11, W12, W13, W14, and W15 to all


