CLASS AND OBJECTS

An Introduction to classes

A class is a building block of OOP. It Is the way
to bind the data and its logically related
functions together.

An abstract data type that can be treated like
any other built in data type.

Class definition

Class head class name of class.
Class body {
data members;
member functions;

%

Example
S

Class test
{
private :
int a;
int b;
public:
void set_data(int x, int y)
{
a=x;
b=y;
}
int big()
{
if (@>Dh)
return a;
else
return b;
}

Characteristics of access specifiers
(private,public and protected)

Private section of a class can have both data
members and member functions, usually data
members are made private for data security.

It Is not mandatory that private section has to
declared first in the class and then the public
section.

If no member access specifier is specified then by
default the members are private for the class.

There may be any number of private, public or
protected section in a class declaration.

Protected specifier is used for declaring the class
members which can be accessed by its own class
and Iits derived class.

Member Function

Member function’s name is visible outside the
class.

t can be defined inside or outside the class.

t can have access to private, public and
orotected data members of its class, but
cannot access private data members of
another class.

Introduction to objects

Object is an abstraction of real wold entity.
Objects are the variables/instances of classes.
Syntax for declaring objects is as follows :

<class name>
<obj_name1>,<obj name2>, ..., <obj _name1>

Example: for class test the objects can be
created as follows:

test t1,12,...tn;

Characteristics of objects:

It can have its own copy of data members.

The scope of an object is determined by the
place in which the object is defined.

It can be passed to a function like normal
variables.

The members of the class can accessed by
the object using the object to member access
operator or dot operator(.).

Example:
S =

Class test cout<<“enter the two numbers” << endl;
{ cin>>a >> b;
private : t.set_data(a,b);
int a; cout<<“the largest number is ” << t.big() << endl;
int b; }
public:
void set_data(int x, int y)
{
a=x;
b=y;
}
int big()
{
if (a>b)
return a;
else
return b;
}
%
void main()
{
testt;

int a,b;

Definition of function outside a
class.

The syntax for defining function outside a
class is as follows:
<data type> <class name> :: <function name> ()

{

/I member function definition

}
Data type return type

Class name the class to which the member
function belongs.

Function name name of member function.

Example:
S =

Class test
{
private :
int a;
int b;
public:
void set_data(int, int);
int big();

h
void test :: set_data(int x, inty)
{
a=x;
b=y;
}
int test :: big()
{
if (a > b)
return a;
else
return b;

The Arrow operator

It Is also called as pointer to member access
operator.

It is used when member functions or member
data has to access through a pointer which is
pointing to an object of a class.

Syntax for using arrow operator Is :
Pointer _to object -> class_member;

Example of arrow operator
S =

Class testl
¢ void main()
private : {
int a: int sum;
_ testlt;
int b; sum = t.add(4,9)
public: cout<< sum << endl;

testl *t1 = &t;
sum = t1 -> add(2,7);
cout<< sum<<endl;

void add(int, int);

. }
’ Output:
void testl :: add(int 13
X, inty) 9
{
a=x;
b=y;

return (a+b);

This operator

It Is a keyword used to store the address of the
object that invokes a member function.

When each member function is invoked this
pointer implicitly holds the address of the
object itself.

It Is defined internally.

When an object is used to invoked a class
member function then the address of that
object is automatically assigned to the this
pointer.

Example showing the explicit use

of this Eointer :
]

#include<iostream>

class simple _ _
void main()

{ {
int a; simple s;
s.set_data(7);

s.display();
void set_data(int x) }

{

public:

_ Output:
this -> a =x; 7

} address of the object

void display() is = OX8feeff4

{
cout<<this -> a<<endl;

cout<<"address of the object is ="<<
this<<end!;

}

