
CLASS AND OBJECTS

Chapter 3

An Introduction to classes

 A class is a building block of OOP. It is the way

to bind the data and its logically related

functions together.

 An abstract data type that can be treated like

any other built in data type.

Class definition

 Class head class name_of_class.

 Class body {

data members;

member functions;

};

Example

Class test

{

private :

int a;

int b;

public:

void set_data(int x, int y)

{

a=x;

b=y;

}

int big()

{

if (a > b)

return a;

else

return b;

}

};

Characteristics of access specifiers

(private,public and protected)

 Private section of a class can have both data
members and member functions, usually data
members are made private for data security.

 It is not mandatory that private section has to
declared first in the class and then the public
section.

 If no member access specifier is specified then by
default the members are private for the class.

 There may be any number of private, public or
protected section in a class declaration.

 Protected specifier is used for declaring the class
members which can be accessed by its own class
and its derived class.

Member Function

 Member function’s name is visible outside the

class.

 It can be defined inside or outside the class.

 It can have access to private, public and

protected data members of its class, but

cannot access private data members of

another class.

Introduction to objects

 Object is an abstraction of real wold entity.

 Objects are the variables/instances of classes.

 Syntax for declaring objects is as follows :

<class name>

<obj_name1>,<obj_name2>, …, <obj_name1>

;

Example: for class test the objects can be

created as follows:

test t1,t2,…tn;

Characteristics of objects:

 It can have its own copy of data members.

 The scope of an object is determined by the

place in which the object is defined.

 It can be passed to a function like normal

variables.

 The members of the class can accessed by

the object using the object to member access

operator or dot operator(.).

Example:

Class test cout<<“enter the two numbers” << endl;

{ cin>> a >> b;

private : t.set_data(a,b);

int a; cout<<“the largest number is ” << t.big() << endl;

int b; }

public:

void set_data(int x, int y)

{

a=x;

b=y;

}

int big()

{

if (a > b)

return a;

else

return b;

}

};

void main()

{

test t;

int a,b;

Definition of function outside a

class.

 The syntax for defining function outside a
class is as follows:

<data type> <class name> :: <function name> ()

{

// member function definition

}

Data type return type

Class name the class to which the member
function belongs.

Function name name of member function.

Example:

Class test

{

private :

int a;

int b;

public:

void set_data(int , int);

int big();

};

void test :: set_data(int x, int y)

{

a=x;

b=y;

}

int test :: big()

{

if (a > b)

return a;

else

return b;

The Arrow operator

 It is also called as pointer to member access

operator.

 It is used when member functions or member

data has to access through a pointer which is

pointing to an object of a class.

 Syntax for using arrow operator is :

Pointer_to_object -> class_member;

Example of arrow operator

Class test1

{

private :

int a;

int b;

public:

void add(int , int);

};

void test1 :: add(int

x, int y)

{

a=x;

b=y;

return (a+b);

}

void main()

{

int sum;

test1 t;

sum = t.add(4,9)

cout<< sum << endl;

test1 *t1 = &t;

sum = t1 -> add(2,7);

cout<< sum<<endl;

}

Output:

13

9

This operator

 It is a keyword used to store the address of the

object that invokes a member function.

 When each member function is invoked this

pointer implicitly holds the address of the

object itself.

 It is defined internally.

 When an object is used to invoked a class

member function then the address of that

object is automatically assigned to the this

pointer.

Example showing the explicit use

of this pointer :

#include<iostream>

class simple

{

int a;

public:

void set_data(int x)

{

this -> a = x;

}

void display()

{

cout<<this -> a<<endl;

cout<<“address of the object is =”<<

this<<endl;

}

};

void main()

{

simple s;

s.set_data(7);

s.display();

}

Output:

7

address of the object

is = 0X8feeff4

