
CLASS AND OBJECTS

Chapter 3

An Introduction to classes

 A class is a building block of OOP. It is the way

to bind the data and its logically related

functions together.

 An abstract data type that can be treated like

any other built in data type.

Class definition

 Class head class name_of_class.

 Class body {

data members;

member functions;

};

Example

Class test

{

private :

int a;

int b;

public:

void set_data(int x, int y)

{

a=x;

b=y;

}

int big()

{

if (a > b)

return a;

else

return b;

}

};

Characteristics of access specifiers

(private,public and protected)

 Private section of a class can have both data
members and member functions, usually data
members are made private for data security.

 It is not mandatory that private section has to
declared first in the class and then the public
section.

 If no member access specifier is specified then by
default the members are private for the class.

 There may be any number of private, public or
protected section in a class declaration.

 Protected specifier is used for declaring the class
members which can be accessed by its own class
and its derived class.

Member Function

 Member function’s name is visible outside the

class.

 It can be defined inside or outside the class.

 It can have access to private, public and

protected data members of its class, but

cannot access private data members of

another class.

Introduction to objects

 Object is an abstraction of real wold entity.

 Objects are the variables/instances of classes.

 Syntax for declaring objects is as follows :

<class name>

<obj_name1>,<obj_name2>, …, <obj_name1>

;

Example: for class test the objects can be

created as follows:

test t1,t2,…tn;

Characteristics of objects:

 It can have its own copy of data members.

 The scope of an object is determined by the

place in which the object is defined.

 It can be passed to a function like normal

variables.

 The members of the class can accessed by

the object using the object to member access

operator or dot operator(.).

Example:

Class test cout<<“enter the two numbers” << endl;

{ cin>> a >> b;

private : t.set_data(a,b);

int a; cout<<“the largest number is ” << t.big() << endl;

int b; }

public:

void set_data(int x, int y)

{

a=x;

b=y;

}

int big()

{

if (a > b)

return a;

else

return b;

}

};

void main()

{

test t;

int a,b;

Definition of function outside a

class.

 The syntax for defining function outside a
class is as follows:

<data type> <class name> :: <function name> ()

{

// member function definition

}

Data type return type

Class name the class to which the member
function belongs.

Function name name of member function.

Example:

Class test

{

private :

int a;

int b;

public:

void set_data(int , int);

int big();

};

void test :: set_data(int x, int y)

{

a=x;

b=y;

}

int test :: big()

{

if (a > b)

return a;

else

return b;

The Arrow operator

 It is also called as pointer to member access

operator.

 It is used when member functions or member

data has to access through a pointer which is

pointing to an object of a class.

 Syntax for using arrow operator is :

Pointer_to_object -> class_member;

Example of arrow operator

Class test1

{

private :

int a;

int b;

public:

void add(int , int);

};

void test1 :: add(int

x, int y)

{

a=x;

b=y;

return (a+b);

}

void main()

{

int sum;

test1 t;

sum = t.add(4,9)

cout<< sum << endl;

test1 *t1 = &t;

sum = t1 -> add(2,7);

cout<< sum<<endl;

}

Output:

13

9

This operator

 It is a keyword used to store the address of the

object that invokes a member function.

 When each member function is invoked this

pointer implicitly holds the address of the

object itself.

 It is defined internally.

 When an object is used to invoked a class

member function then the address of that

object is automatically assigned to the this

pointer.

Example showing the explicit use

of this pointer :

#include<iostream>

class simple

{

int a;

public:

void set_data(int x)

{

this -> a = x;

}

void display()

{

cout<<this -> a<<endl;

cout<<“address of the object is =”<<

this<<endl;

}

};

void main()

{

simple s;

s.set_data(7);

s.display();

}

Output:

7

address of the object

is = 0X8feeff4

