
366 5 / Induction and Recursion

FIGURE 1 A recursively defined picture.

We can use recursion to define sequences, functions, and sets. In Section 2.4, and in most
beginning mathematics courses, the terms of a sequence are specified using an explicit formula.
For instance, the sequence of powers of 2 is given by an = 2n for n = 0, 1, 2,… .Recall from Sec-
tion 2.4 that we can also define a sequence recursively by specifying how terms of the sequence
are found from previous terms. The sequence of powers of 2 can also be defined by giving the
first term of the sequence, namely, a0 = 1, and a rule for finding a term of the sequence from the
previous one, namely, an+1 = 2an for n = 0, 1, 2,… . When we define a sequence recursively by
specifying how terms of the sequence are found from previous terms, we can use induction to
prove results about the sequence.

When we define a set recursively, we specify some initial elements in a basis step and
provide a rule for constructing new elements from those we already have in the recur-
sive step. To prove results about recursively defined sets we use a method called structural
induction.

5.3.2 Recursively Defined Functions
We use two steps to define a function with the set of nonnegative integers as its domain:
BASIS STEP: Specify the value of the function at zero.
RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smallerAssessment integers.
Such a definition is called a recursive or inductive definition. Note that a function f (n) from
the set of nonnegative integers to the set of a real numbers is the same as a sequence a0, a1,… ,
where ai is a real number for every nonnegative integer i. So, defining a real-valued sequence
a0, a1,… using a recurrence relation, as was done in Section 2.4, is the same as defining a
function from the set of nonnegative integers to the set of real numbers.
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EXAMPLE 1 Suppose that f is defined recursively by

Extra 
Examples

f (0) = 3,
f (n + 1) = 2f (n) + 3.

Find f (1), f (2), f (3), and f (4).
Solution: From the recursive definition it follows that

f (1) = 2f (0) + 3 = 2 ⋅ 3 + 3 = 9,
f (2) = 2f (1) + 3 = 2 ⋅ 9 + 3 = 21,
f (3) = 2f (2) + 3 = 2 ⋅ 21 + 3 = 45,
f (4) = 2f (3) + 3 = 2 ⋅ 45 + 3 = 93.

◂

Recursively defined functions are well defined. That is, for every positive integer, the
value of the function at this integer is determined in an unambiguous way. This means
that given any positive integer, we can use the two parts of the definition to find the value
of the function at that integer, and that we obtain the same value no matter how we ap-
ply the two parts of the definition. This is a consequence of the principle of mathemati-
cal induction. (See Exercise 58.) Additional examples of recursive definitions are given in
Examples 2 and 3.

EXAMPLE 2 Give a recursive definition of an, where a is a nonzero real number and n is a nonnegative integer.
Solution: The recursive definition contains two parts. First a0 is specified, namely, a0 = 1. Then
the rule for finding an+1 from an, namely, an+1 = a ⋅ an, for n = 0, 1, 2, 3,… , is given. These
two equations uniquely define an for all nonnegative integers n. ◂

EXAMPLE 3 Give a recursive definition of
n∑

k= 0
ak.

Solution: The first part of the recursive definition is
0∑

k= 0
ak = a0.

The second part is
n+1∑
k= 0

ak =

( n∑
k= 0

ak

)
+ an+1.

◂

In some recursive definitions of functions, the values of the function at the first k positive
integers are specified, and a rule is given for determining the value of the function at larger inte-
gers from its values at some or all of the preceding k integers. That recursive definitions defined
in this way produce well-defined functions follows from strong induction (see Exercise 59).
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Recall from Section 2.4 that the Fibonacci numbers, f0, f1, f2,… , are defined by the equa-
tions f0 = 0, f1 = 1, and

Links
fn = fn−1 + fn−2

for n = 2, 3, 4,…. [We can think of the Fibonacci number fn either as the nth term of the se-
quence of Fibonacci numbers f0, f1,… or as the value at the integer n of a function f (n).]

We can use the recursive definition of the Fibonacci numbers to prove many properties of
these numbers. We give one such property in Example 4.

EXAMPLE 4 Show that whenever n ≥ 3, fn > 𝛼n−2, where 𝛼 = (1 +
√5)∕2.

Solution: We can use strong induction to prove this inequality. Let P(n) be the statementExtra 
Examples fn > 𝛼n−2. We want to show that P(n) is true whenever n is an integer greater than or equal to 3.

BASIS STEP: First, note that

𝛼 < 2 = f3, 𝛼2 = (3 +
√

5)∕2 < 3 = f4,

so P(3) and P(4) are true.
INDUCTIVE STEP: Assume that P(j) is true, namely, that fj > 𝛼j−2, for all integers j with
3 ≤ j ≤ k, where k ≥ 4. We must show that P(k + 1) is true, that is, that fk+1 > 𝛼k−1. Because
𝛼 is a solution of x2 − x − 1 = 0 (as the quadratic formula shows), it follows that 𝛼2 = 𝛼 + 1.
Therefore,

𝛼k−1 = 𝛼2 ⋅ 𝛼k−3 = (𝛼 + 1)𝛼k−3 = 𝛼 ⋅ 𝛼k−3 + 1 ⋅ 𝛼k−3 = 𝛼k−2 + 𝛼k−3.

By the inductive hypothesis, because k ≥ 4, we have

fk−1 > 𝛼k−3, fk > 𝛼k−2.

Therefore, it follows that

fk+1 = fk + fk−1 > 𝛼k−2 + 𝛼k−3 = 𝛼k−1.

Hence, P(k + 1) is true. This completes the proof. ◂

Remark: The inductive step of the proof by strong induction in Example 4 shows that whenever
k ≥ 4, P(k + 1) follows from the assumption that P( j) is true for 3 ≤ j ≤ k. Hence, the inductive
step does not show that P(3) → P(4). Therefore, we had to show that P(4) is true separately.

We can now show that the Euclidean algorithm, introduced in Section 4.3, uses O(log b)
divisions to find the greatest common divisor of the positive integers a and b, where a ≥ b.

THEOREM 1 LAMÉ’S THEOREM Let a and b be positive integers with a ≥ b. Then the number of
divisions used by the Euclidean algorithm to find gcd(a, b) is less than or equal to five times
the number of decimal digits in b.



5.3 Recursive Definitions and Structural Induction 369

Proof: Recall that when the Euclidean algorithm is applied to find gcd(a, b) with a ≥ b, this
sequence of equations (where a = r0 and b = r1) is obtained.

r0 = r1q1 + r2 0 ≤ r2 < r1,

r1 = r2q2 + r3 0 ≤ r3 < r2,

⋅
⋅
⋅

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,

rn−1 = rnqn.

Here n divisions have been used to find rn = gcd(a, b). Note that the quotients q1, q2,… , qn−1are all at least 1. Moreover, qn ≥ 2, because rn < rn−1. This implies that
rn ≥ 1 = f2,

rn−1 ≥ 2rn ≥ 2f2 = f3,

rn−2 ≥ rn−1 + rn ≥ f3 + f2 = f4,
⋅
⋅
⋅

r2 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn,

b = r1 ≥ r2 + r3 ≥ fn + fn−1 = fn+1.

It follows that if n divisions are used by the Euclidean algorithm to find gcd(a, b) with a ≥ b,
then b ≥ fn+1. By Example 4 we know that fn+1 > 𝛼n−1 for n > 2, where 𝛼 = (1 +

√5)∕2.
Therefore, it follows that b > 𝛼n−1. Furthermore, because log10 𝛼 ≈ 0.208 > 1∕5, we see
that

log10 b > (n − 1) log10 𝛼 > (n − 1)∕5.
Hence, n − 1 < 5 ⋅ log10 b. Now suppose that b has k decimal digits. Then b < 10k and log10 b <
k. It follows that n − 1 < 5k, and because k is an integer, it follows that n ≤ 5k. This finishes the
proof.

Because the number of decimal digits in b, which equals ⌊log10 b⌋ + 1, is less than or equal
to log10 b + 1, Theorem 1 tells us that the number of divisions required to find gcd(a, b) with
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FIBONACCI (1170–1250) Fibonacci (short for filius Bonacci, or “son of Bonacci”) was also known as
Links

Leonardo of Pisa. He was born in the Italian commercial center of Pisa. Fibonacci was a merchant who traveled
extensively throughout the Mideast, where he came into contact with Arabian mathematics. In his book Liber
Abaci, Fibonacci introduced the European world to Arabic notation for numerals and algorithms for arithmetic.
It was in this book that his well known rabbit problem (described in Section 8.1) appeared. Fibonacci also wrote
books on geometry and trigonometry and on Diophantine equations, which involve finding integer solutions to
equations.
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a > b is less than or equal to 5(log10 b + 1). Because 5(log10 b + 1) is O(log b), we see that
O(log b) divisions are used by the Euclidean algorithm to find gcd(a, b) whenever a > b.

5.3.3 Recursively Defined Sets and Structures
We have explored how functions can be defined recursively. We now turn our attention to howAssessment sets can be defined recursively. Just as in the recursive definition of functions, recursive def-
initions of sets have two parts, a basis step and a recursive step. In the basis step, an initial
collection of elements is specified. In the recursive step, rules for forming new elements in the
set from those already known to be in the set are provided. Recursive definitions may also in-
clude an exclusion rule, which specifies that a recursively defined set contains nothing other
than those elements specified in the basis step or generated by applications of the recursive step.
In our discussions, we will always tacitly assume that the exclusion rule holds and no element
belongs to a recursively defined set unless it is in the initial collection specified in the basis step
or can be generated using the recursive step one or more times. Later we will see how we can
use a technique known as structural induction to prove results about recursively defined sets.

Examples 5, 6, 8, and 9 illustrate the recursive definition of sets. In each example, we show
those elements generated by the first few applications of the recursive step.

EXAMPLE 5 Consider the subset S of the set of integers recursively defined by
BASIS STEP: 3 ∈ S.
RECURSIVE STEP: If x ∈ S and y ∈ S, then x + y ∈ S.

The new elements found to be in S are 3 by the basis step, 3 + 3 = 6 at the first application ofExtra 
Examples the recursive step, 3 + 6 = 6 + 3 = 9 and 6 + 6 = 12 at the second application of the recursive

step, and so on. We will show in Example 10 that S is the set of all positive multiples of 3. ◂

Recursive definitions play an important role in the study of strings. (See Chapter 13 for
an introduction to the theory of formal languages, for example.) Recall from Section 2.4 that a
string over an alphabet Σ is a finite sequence of symbols from Σ. We can define Σ∗, the set of
strings over Σ, recursively, as Definition 1 shows.

Definition 1 The set Σ∗ of strings over the alphabet Σ is defined recursively by
BASIS STEP: 𝜆 ∈ Σ∗ (where 𝜆 is the empty string containing no symbols).
RECURSIVE STEP: If w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗.
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GABRIEL LAMÉ (1795–1870) Gabriel Lamé entered the École Polytechnique in 1813, graduating in 1817.
Links

He continued his education at the École des Mines, graduating in 1820.
In 1820 Lamé went to Russia, where he was appointed director of the Schools of Highways and Trans-

portation in St. Petersburg. Not only did he teach, but he also planned roads and bridges while in Russia. He
returned to Paris in 1832, where he helped found an engineering firm. However, he soon left the firm, accepting
the chair of physics at the École Polytechnique, which he held until 1844. While holding this position, he was
active outside academia as an engineering consultant, serving as chief engineer of mines and participating in
the building of railways.

Lamé contributed original work to number theory, applied mathematics, and thermodynamics. His best-
known work involves the introduction of curvilinear coordinates. His work on number theory includes proving
Fermat’s last theorem for n = 7, as well as providing the upper bound for the number of divisions used by the
Euclidean algorithm given in this text.

In the opinion of Gauss, one of the most important mathematicians of all time, Lamé was the foremost French mathematician of
his time. However, French mathematicians considered him too practical, whereas French scientists considered him too theoretical.


