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4.2 TERMINOLOGY USED IN STATISTICAL THERMODYNAMICS

Statistical thermodynamics deals with both the microscopic (molecular) and
macroscopic level, an it 1s important to define basic terminology very elea ly.

System and Particles

The world system in this chapter refers only to o macroscopic thermodynamie
system. The fundamental microscopic entities that compose a system are called
molecules or particles. Suppose we have a collection of particles, then each particle is
termed as a system. However, in some cases, these entities are not actually
molecules. For example, one can apply statistical methods to the conduction electrons
in a metal or to the photons in electromagnetic radiation.

Phase Space

The state of a gas can be specified if we define the state of each molecule of
the gas. The state of each molecule can be specified by defining its position and
velocity, ie., we must specify f-positional and f-velocity coordinates, when f is the

number of degrees of freedom of molecule. Total degrees of freedom of the molecules
are

f=3x No. of atoms in 4 molecule

e fA ph’asc Space 1s a hypothetijeal Space and can be imagined with 2f-axes. The
rate of a molecule can be represented by a point in this Imaginary space.

Minimum numbep of atoms in g molecule =1

Minimum f = 3
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defined by a st of aix coordinates
Sespnce 8 an imaginary six-dimensional
pace:

Unit Cell or Cell

The entive phase space is divide
colume. An element of volume
Il the points represent the
L - .
axternal configurations and sa

: d into a number of very amall elements of
m phase space s termed as a cell or unit cell In the
molecules, All colls have virtually same internal and
me energy.

Occupation Number

It is the number of sy

: MDeEr ol systems in that particular state. The set of occupation
pumber 18 called a distribution

Microstate and Macrostate

Let us divide the phase space into cells numbered 1, 2, 3 etc. A microstate of
the system may be defined by the specification of six coordinates x, y, z vy, vy, v, of

each molecule of the system within the limits of the dimensions of the cell in which
its reproductive point lies. This means that in order to define a microstate we must
specify the place of each molecule within the limits d, d, and d, and the magnitude

and direction of each molecule within the limits dv,, dv, and dv,. In other words we

may say that, in order to define microstat we must state to which cell each molecule
of the system belongs temporarily. Hence we can say that each distribution of the
molecules among the permissible unit cells corresponding to the same macroscopic
state of the system, is called a microscopic state.

Cell 1 ab,c N,=3
Cell 2 N, =2
Cell 3 Ny=1
Cell 4 N, =2
Fig. 4.1 Distribution between microstate and macrostate

A macroscopic state of a system may be defined by the specification of the
number of molecules or phase points in each cell of the phase space, such as n

molecules in cell 1, n, molecules in cell 2 and ny molecules in cell 3. The distribution

between microstate and macrostate is illustrated in Fig.4.1. The cells in the phuse
are numbered 1, 2, 3 etc., and the phase points are lettered, a, b, ¢ ete. A particular
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Eving the total number Ny of the phase p
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ate of a system. the tep
namic state ‘
thermodyna

[lecause of any large number of

The term macrostate means the
Jdifferent microstates that apq

. of atam.

microstate means the quantum satate of a 8y Bt il
L4
particles in n syetem, there are a huge numb

compntible with o given marostate.

Assembly and Ensemble by, A bilp
, gesembly. AN ensemupnle 18

o of 11 antities 18 called an assen :
A number of N identical entities 1 blies which are independent of

defined an a collection of a very large number ofasg‘en]l] &+ identical as possible. By
each other but which have been made macroscopically 4 '

& : i culating the possible energy
being independe } ¢ > means that in cal F .
dependent of one another, it B £y B : ;
y ' ‘ i croscopically identical, i
assembly of interest and any of other assemblies. By macroscop y it

; e of same se
means that each assembly is characterized by the same vatlute of the assemilor
macroscopic parameters which uniquely define the equilibrium sta ¥

states of an assembly, one should not t

The Canonical Ensemble

It is defined as a collection of a large number of independent assemblies,
having the same temperature, T, volume V, and number of identical system N As all
the assemblies possess the same temperature, T, it means that one could bring them
in thermal contact with each other and also a large heat reservoir at the same
temperature, T. Thus, in canonical ensemble, systems can exchange energy but not
particles. Fig. 4.2 illustrates the canonical ensemble in which the individual

assemblies are separated by rigid, impermeable but conducting walls.

GO AT AN R If'v)"llllr’lillﬂilldf’f
/! T,V,N T,V,N T,V,N
‘T, V,N T,V,N T,V,N
‘ VN | TVN | T,V,N ¢

Y& oremawe f’”"a’”‘l‘:"IJ’IAF-’/J'I”/I"ﬁrI-’I‘/

Fig. 4.2 Tllustration of the canonical ensemble

Probability

The probability of a state of a system is defined as the number of
configurations leading to that particular state divided by the total number of
configurations possibly available to the system. For example, tossing of a coin. It can
either show head or tail. Thus, total number of possible configurations of the state of
the coin is two, i.e., one head and one tail. The probability of showing head in one out
of two configurations is, i.e. 1/2, similarly the probability of showing tail is 1/2.

Thermodynamic Probability

. The thermodynamic probability of a system is equal to the number of ways of
realizing the distribution. The symbol of thermodynamic probability is W. Here, it is
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hich containg gl) mformation about
N as partition function. 1t is a dimension
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CR 18 Partitione

nd d among the molecules, The value of the
“Pends upon the molar mags, the
the inter nuclear distance, the mol

temperature, the molar volume,
8" § : ' ecular motion and the inter nuclear forces. The
partition tunctlmn brovides a bridge (o link the microscopic properties of individual
molecules (their discrete energy levelg, moment,
properties (like entropy, he

of inertia ete)) with the
at capacity ete,) of a sy
molecules. it 1s denoted by the symbol Q

.

macroscopic
stem containing a large number of

Probability Theorems

The following ar

¢ the important probability theorems used in statistical
thermodynamics.
0] The number of ways in which N distinguishable particles can be arranged in
' order will be equal to
N!
(i1) The number of different ways in which n particles can be selected from N
| distinguishable particles irr

espective of the order of selection will be equal to

N!
(N -n)! n!
' ' ' istingui icles can be
+ of different ways in which n distinguishable part}c _
W r'flt‘lr(jar?gL:el(llﬁi);allgodistling:ulishable states with not more than one particles in each
state will be equal to
g!
n!(g - n)!
4.3 STIRLING’S APPROXIMATION .

ling's
The calculation of N! becomes laborious for large values of N. The Stirling
e !

i ! N is very large.
approximation gives the approximation values of log N! when N 1
According to formula one has,

N!'=NInN-N (Stirling’s approximation)
InN!= nN -

o
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gal to unity whereas the latte
5
o ’ an one
Consider a svstem COmposed of N ; .
. oas alee o ) AN denteg } 12t
«uch as g8 molecules, at temperatuye \'uh\}{ Nheal and distinguishable particles
N N = BT ) D 7 ) -
v"x‘-‘““l‘\\ will not have the Same energy, | x‘m‘ \l and total energy K. Now all the
R of allowsble enen 8. tach molecule or particle <
" ber of allowable onerow R olecule or particle mav avie
umbe rQy levels, Henee total number b n.tu,l} may exist in a
S\\Dposo er of particles (N) may be

Ny = Number of partic

el
caigned to different energy levels,

> s
&

les in the energy level w

ith energy
n; = Number of particle

€0
g 1n the energy level with ONergy €,
Do = Number of particlae ;

o aber of particles in the energy level with energy €,

Then N=ng+n,+n,+
and  E=ngeg+nje; +nge, +

Equation (4.2) f}ﬂd (4.3) represent the total number of particles and total
energy of the system. Since the numbers 0y Ny, Ny ... ete. in different energy levels
change, the distribution also changes. it means there will be various wavs of
distribution. The total number of distributions (i.e., total number of microécopic
states) can be determined by statistical method. According to classical statistics, the
total number of ways (l.e., distribution microstates) in which N particles can be

arranged in these energy levels, is equal to the number of permutations of N things

in groups ng, N, Ny .. N;. Thus the probability is expressed as
N!
= e (4D
no. nl. nz. .o DL

4

Here N!is N factorial as in written as
N'=Nx(N-1DN-2)x...xdx3x2x1

Similarly the terms in the denominator are different. The quantity \\" 18
called thermodynamic probability for a system of distinguishable particles. On taking
logarithms of both sides equation (4.4) becomes

InW=InN!-[lnny+Inn'+lan!+.. +ln n;!]

4.5
ImW=InN-Zlony! e (4.5)

IERRRT——
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“.hc‘“ N s

CEtivhing’e formulg
oximated by Stivhing's
large, then In N! can be approxima

I N!= NI NN
o
Undep these conditions n! s also large, and heve,

Ylngt - oy dnn, - Iy

=Xn; In n, - N

...... (1.4)
On sul\st.itm.ing these values in equation (4.5)
In \\'=NInN~N~}_‘ni Inn; + N
'SNInN-swln, 4.7)
In W »“:NlnN~—:2nl- In n, e

Equation 4.7 is the exXpression for thermodynamic probability.
Example 4.1

Caleula te the

number of ways of distributing distinguigh
¢, between these energy levels so as to obtain the follow
Mp=Ln =1 N

2=1lie, ¢

able molecules a, b,
ing set of occupation numbey

ach energy level js occupied by one solution.

Solution

The Probability W 1s given by

W N!
P AN
No! ny! n,!

. 3! 3x2x1
. “‘1!1!11‘1x1x1“6
These are sjy ways of distribum'ng the three molecules as required.
Example 4.2
Calculate the number of ways of distributing four molecule
S 80 as there are 2

s 1n four energy
In the leve] €0> 1 molecules in the €y level, )
molecule in €,

leve]

Solution

The probability €quation giveg

4!
Y =Wiaie

_ 4x3x2x1 i
-(2x1)x1x1x1-1"
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On taking loganthm of both sides of above equation
ImMW=InN-[lnny+lan!+lan'+ |
InW=InN!'-Xln! e (4B

Stirling’s approximation can be used for factorials of large number sa N &
wisc very large

InN!'=NInN-N
Under these conditions n, 18 also large. and have
Yian! =inlnn - In
sgplan,-N e (4.6
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On substituting these valuesin cquation (1.6)

mW=NIWN-N-Enlnn +N
In W= NInN-xn Inn e (4.T)

N o . : ticlea or molecules in a ayvatae
Fhe most probable distribution of particles or m a4 8system ;

one for which W is maximum. Hence for these

Fero

condition W and 6In W will haye A i;;_
SW = Sln w=0 ke (48)
On differentiating equation (4.7), the result i1s

dIn W = - 6 n; In n; [8(N) = 8(constant) = (]

and now placing the condition of equation (4.8), we get

§[tn;Inn)l=0 e (4.9)
on; 1
or X n; . —+In n; 6n; J =0 ( - 8ln n; = e Sni)
: nl‘ 1
or E[6n; + In n; 6n;] =0
or (1 +Inn]én;=0 e (4.10)

We must remember that for the given molecular system, the total energy E
and number of particles N remains constant.

N = In; = constant .. 8N=Zén;=0 ... (4.11)
E =¥n;e; =constant .. 8E=ZXg;én;=0 ... (4.12)

Multiplying equations (4.11) and (4.12) by two arbitrary constant a’ and
respectively and adding to equation (4.10), we get

2[(1 +Inn) én; + 8 nja’ + € én; B)] =0
or E[(l +In nl) +o + E]B)] Gni =0

let l1+a' =a

X[lnn; +a+pej]bny=0 - Ll (4.13)

As the variables 6n,, 8ny, 8ny ..., are independent of each other so that the
equation (4.13) is to hold good, then each term in the summation must be zero

Inn; +o+pe;=0 (.. 820
or In n; = -(a + Be;)
or n, = @t (4.14)
or n=e%. P (4.15)

|
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quation (4.17), one

or N —_
T O (4.19)

In equation (4.19) it is assumed that each energy 1
.. it 1s composed of only & single level. However, when s
each level must be assigned a statistical ¢

bk &

evels 18 non-degenerate.

uch is not the case. thin
i and Eq. (4.19) becomes

-&;RT
D ge
N~ Sgi e‘fi WL e i w . oR LG mmes (420)
—€JkT
n; gie '
or NT Q .. ham (4.21)

ek

where Q=T g e 1 *! is called the partition function of the svstem. Equation (4.21) 1s
known as Boltzmann distribution law and it gives at any temperature T, the fraction
of total number of particles in a system which in the most probable or equilibrium
state will possess the energy <;. Hence this equation gives the most probable

distribution of the particles in a system any all the allowable energy levels. Equation
(£.21) is also known as Boltzmann statistics.
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Limitations
Boltzmann distribution law gives the moat probable dintribution of moleculgy
Or particles in a system among all allownble energy lovels. However, thin law hay the
fo“”“'mk' limitations,
(1) This law is only an approximation and is valid for gnses at comparatively loy,
density.
(11) In the metallic conductors electrons are confined within the volume of the
confined within the containing vesgal,

metal just as gaseous molecules are _
When Boltzmann law is applied to an electron gas, discrepancies appear
between thege and obgervations.

(111) In a similar manner as in (ii), the photon gas presents another difficulty. Thig
law predicts a continuous number of photons per unit range of frequency ag
the latter increases, whereas the actual distribution is given by the well

known law of Planck, exhibits a minimum.

4.6 PARTITION FUNCTION
Statistical thermodynamic analysis is facilitated through the use of partition

function. This great analytical tool is defined as

Q - z gl e—Ei/kT
where g; is the statistical weight factor and is equal to the degree of degeneracy, i.e.,
the number of super-imposed energy levels, k is the Boltzmann constant, €; is the
energy of quantum state in excess of the lowest possible value and T is the absolute
temperature. In equation (4.22) summation is taken over all integral of i from zero to

infinity corresponding to all possible energy states of the molecules. For general
purpose, it is required to measure energy level, relative to the ground state.

......

Therefore, equation (4.22) becomes

Q= g g; S .
i=0
Equation (4.23) gives the definition of partition function. It is defined as the

sum of the probability factors for different energy states or levels. It can also be
stated as the way in which the energy of a system is partitioned among the molecules

constituting the system.

Physical Significance of Partition Function
Partition function is a dimensionless quantity and summarizes in convenient
mathematical form, the way in which the energy of a system of molecules is
partitioned among the different energy states. Its value depends on the molecular
weight, the temperature, the molecular volume, the inter nuclear distances, the
molecular motion, and the intermolecular forces. The partition function provides the
most convenient way for linking the microscopic properties of individual molecules
(e.g., their discrete energy levels, moment of inertia, dipole moments) with
macroscopic properties (such as molar heat capacity, entropy and polarization). It

reflects the diversity of energy states of molecules of a system.
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@, LY

e vatio of Pumber o tbedaa i
(e Tati - ‘ ‘ of particles in any state of energy ¢, eelative to that in
fenerRY € follows from above tquation,

TR A

“.rl f." l“‘f‘ ‘QT
n, » . ot o Rt
o -
™ ‘\\ 11\\ . Ve (‘2“)

Yor computational purposes, it is convenient to consider €g = 0 and to take all

- walative to thig ¢ : ; . !
ypos relative 1o this ground state. On this basis equation (4.24) becomes-

21_‘_ :_g_‘_ ‘€i’kT

n, €

n, i
n,=—ge €;/kT

SRS . e oS e . (4.25)

)
-

Jhere 1, 1 the number of molecules in the ith state, n,. the number of molecules in
She FETO ENETEY level, g; and g, represent the degeneracies in the ith and zero levels

—sspactively.

e
NS

Where €, =0, then g, = 1, therefore one can write

—-;:: g —Ei/kT
n, Ei ¢

—Ei/kT

or n;=n, g e e (4.26)

Now N=I n
Substituting the value of n; from equation (4.26) in above equation, we get

or N=n_ g e’ +n,g e 1" +n gye 2"+
c Nonylgy e €T gy )

—~ llkT

or N=n Tge (€ =1
or N=n,Q
or Q =Nin, e (4.27)
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From equation (4.27) it follows that the partition function (Q) may be defined

as the ratio of the number of particles or molecules in the ith levels to that of zerg
level. At absolute zero,

N-on, and Q51 as

Hence the value of partition function increases_ with temperlat;:iz.aAz fthe

‘emperature is raised, there are more molecules in the highest e'neriigy i‘ i Ti o

number of molecules in zero energy level. Therefore, the partition function 1g larger

T—-0

at higher temperature.

Factorization of Partition Function

Partition function is defined as

Q - Z gi e—Ei/kT
The energy € of a molecule is the sum of contribution from the different

modes of motion like translational, rotational, vibrational, el.ec'troniC, etc. If we
sociated with any one mode of behaviour is independent of al]

------

assume that energy as
other modes, then we can define energy by

E=E1:+ET+EV+EC

and gl':gT-‘Lgr.é-gv.*.gc
where En, E, E; and E_ are translation, rotational, vibrational and electronic
contribution, respectively and 8T, & 8, and g, are degeneracy of translational,
energy level, respectively. So equation (4.28)

vibrational, rotational and electronic
can be written as
Q=Z(grg g, g)e CtorrevreiT
= Q=x gr e—EEIkT +3 g e—er/k’I‘ +Zg, e—Evn_iT

------

or Q:QT'Qr'QV'Q\:

Equation (4.29) is known as multiplication theorem or factorization of
partition function. This factorization means that we can investigate each contribution
separately. From equation (4.29), it follows that the net partition function is equal to

ons in respect of different types of

be the product of the separate partition functi
energy independently associated with molecules.

4.7 TRANSLATIONAL PARTITION FUNCTION
By definition partition function is given by,

For translational energy, as the translational energy levels are non-

legenerate, e.g., g; = 1, tranalational partition function can be written as

Qt —_ E e—Et/kT
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Stalistical
ular box of dimeng; Cquatiop ynamics 231
octang nsion g} When g
I ? )| ﬂnd C v 0 VQd f(n. [h“ . , ‘
a8 Bives the ey . 'he particle moving in a
" *Pression for tranalational energy
h? [ n n® .2
Et = 8§ X + y nz
2t ~5 42
m al bz c2

\vhefe Ny ny and n, are Drincip

: al quant
of iranslational energy of part; um num

cle a)

Qt = Qx - Qy E QZ
If we consider the mgt

; 10n in x.gy;
function (Qy) can be written ag *axis only, then corresponding partition

In rgy levels are closel
yariation of energy may be fcaken to be continuous and the sumxy;lastli)ace'd oo t'he
(4.33) 1 replaced by integration. e

Here

® 2 h2/8ma2

— -n< h</§ K
QX“[ e My Mt oo (4.34)

2

tti e —
FUing 8ma’ZkT

o ] 9
Q= I - Sedng o T wern (4.35)

Using standard integrals

(0 ]
~Ix2 _1l.n

Equation (4.35) reduces to

2 1/2
1 8ma“kT
e s R R
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Smilarly, for motion along v and = directions, we have

b (0N
Q= @n miT)'"™ . h (

2 ¢ 4
Q, = 2n mAT)!"2. li; : (4.98)

Sul\stitutimz the value of Q. Q, and Q, into equation (.42), we can write

"/')
2n mkT)
Q, = Q, - Qy ‘Q, = (_—I—h‘_)_— - abe
" (2n ml\"l‘)m2 v (4.30)

h:l ’
21 mkT )3/ 2
*

Q

or Q = ( ,,,,,, (1.40)

where V is the volume of the container. Equations (4.39) and (4.40) give the
eXpression for the translational partition function of a single molecule,

Example 4.3

3
Calculate the translational partition function of Hgy confined to a 100 c¢m
vessel at 298 k.

Solution

2.016 x 1073 kg

5= = 3.348 x 107
6.02 x 1023

Mass of H, molecule =

V =100 cm3 =1074 m3
k =1.381x 102 gk}
h =6.626x 1073 Js

21 mkT \3/2
Qtz( hZ ) v

o - (2 x3.14x(3.348x10"2")x(1.381x10"2%)x 208 )m <107
L = (6.626 x 10742

Q, =(1.97x 10*)¥%x 107
Q =2.769 x 10%°

Thus about 10 quantum states or levels and thermally accessible even at
room temperature for H, molecule.

4 1}
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where 118 the Moment of inerti 44
quantum number, J = 0,1, N
fevel 1s degenerate in (2 :

l"_‘_ - .](" " ” ~~hi_d

9 ° molecyle
el o l\\‘% w k '

J+ 1) wav ¢ know thy

o ) ways, the value m‘q,.\;t the rotational o

By = (2 4 1) Thatical waight

and ] 19 the retational

nergy at the J™

14 Eiven h‘y'

The expression for fotationg]
p

artition fu,
1ction for g g
— - A 811 34
Q. =% g, 0 ST 1gle

molecule 1a

ati \ veeree (44D

" Fot \.tu.mal energy levels are sufficient]
energy ‘)e.t\wcen .t\vo adjacent rotational ens n ); closely spaced, i.o.
Hence, it 18 .p(')SSlble to replace summation 1. TRY levels can be take
0tod =a, gIving quantum (4.42) by int

variation in
n as continucus.
egration from J =

Q
Q= I (2d + 1) . ¢ JI+DhZ8x21kT
9 :

L (4.43)
Q Iu ~J(@J
or =1 2J+1 Hha
=, )e g (4.44)
h2
where a=—5
8n” IRT
Againput Z=JJ + 1)
A= @F DY dFr - onis 3 b 80 i Trra i (4.45)
Combining equation (4.44) and (4.45)
_ ° —-z0 _ 1
Q.= '[0 e  dz e m e . w im (4.46)
Putting value of a into equation (4.46) we get
2
8n” IRT
Q= _Ehz_ ...... (4.47)

The equation (4.47) is only true far heteronuclear diatomic molecules hke
NO, HCI etc. But in case of homonuclear linear molecules like Oy, N, and also

0=C=0, H — C = C — H, only one half of the rotational terms will be present.
This effect reduces Q, to one half of the value in equation (4.47). In order to avoid
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(“h(‘ﬁt‘ tomplications, n aymmetry number (¢) i8 ilﬂ,r()(l'l‘l(t(!(l. }lt 18 th.e Numbe, o
:‘:]lu\iﬁlum (or indi“'vil\g‘\lithhl(!) molecular orientations. I'hus the rotational p()mtinn
me AR "
ction for any lineapr molecule, becomen
81 kT .
(% . n wE T ke (448)
r 2
oh

This is general equation for rotational position function of g line,
(homonuclear or heteronuclear) diatomic molecule. The valug of o for homo nucleg,
(01.- SYmmetrical) linear molecule js 2 because end to end rotation yields an equivalen,
orientation. On the other hand, the value of o for heteronuclear (or unsymmetricy))

linear molecyle suchas 0=C=0, 0=C==Setc. is 1.
Example 4.4
Calculate the rotational partition function for Hy at 300 K. Moment of inertia

for H, is 4.59 x 10747 kg - m?, symmetry number ¢ = 2.

Solution

_ 8 IKT
o h?

Q

— -23
_ 8x(3.1416)% x 4.59 x 10 *7 x 1.38 x 10™*° x 300
B 2 x (6.62 x 107°%)

Q
= 1.71

4.9 VIBRATIONAL PARTITION FUNCTION
The partition function for vibrational energy of a diatomic molecule is given
by
Qv =3 g, e—ev/kT ...... (449)

As the statistical weight of each vibrational level is unity, equation (4.49)
becomes

Qv =3 e'e:v/kT ...... (450)

According to wave mechanics, the vibrational energy of an harmonic
oscillator is given by '

€ =(v+—;') he .. (4.51)

\4

where v is the fundamental frequency of oscillation and v is the vibratio.nal quantum
number having value 0, 1, 2, 3, .... In the expression for partition function, €, refers

to the energy of vibrational state in excess to the ground state energy. For the
present case the lowest or ground state energy corresponds to v = 0 and is given as
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€0 =5 hu
P2 (4.5

Therefore. the CXPressy
. \presson fe ' b oot 1
n for energy appearing in the position function 18

7

. 1 ) 1
e . 2lv+ -
\ k\ 5 ) hu - 5 hv = vhy oo (4.53)
Q\‘ = : e"\'h\‘:"{’T
Putting x = ho/AT
Q. =Ze ™™

shrational energy lev
?Xbmno. = ‘g)‘le\els are not closely speed, so summation is not replaced by
integration. Since v can take values from 0, 1, 2, 3, ..., so

-0 = -
Q\'—l +e1+e2x+.”
Q\-=1+e—x+€‘_2x+...

Q, =1+ (e_“)1 + (e"‘)2 ¥ ..

This seri : . . :
ries can .be recognized as the geometrical series of common ratio

—X
r=¢ . Thus we have

__1 1
Q\' = 170 e"x : o i e—hv/kT

or Q=(-ey1 L (4.55)

For most diatomic molecules, at ordinary temperatures, the value of Q, is

nearly unity, become hv is appreciably. greater than kT.

410 ELECTRONIC PARTITION FUNCTION

Many monatomic substances as well as a few polyatomic molecules, posses
multiple electronic ground state. In most of these cases in their normal state, there
are two or more different electronic levels where energies are so closed that they may
be assigned a single energy level with a statistical weight factor greater than unity.
In addition to such levels, there may be excited electrons states whose energies may
be much greater than that of the ground state. As we increase the temperature, such
excited states become more and more occupied. In such cases the electronic partition
function is greater than unity and various with the temperature. The electronic

partition function is given by
Q=E8, 8 T Ll apmeol Sewni s (4.56)

where g, is the statistical weight factor of each electronic level, normal or excited and

is equal to (2J + 1), where J is the total angular momentum number in the given
state and € is the energy in the electronic state, in excess of the lowest state. Thus,

sy s e S SR N ARSI T R S S E e S

B v i i
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(\‘0 = }_‘(2(] + Do ¢ l‘/,!'.l‘ ...... (‘157)
In the senarel « i ™ = yquati )
becomes ¢ Beneral state, the energy is zero, i.e., €, = 0, thus equation (4,57
(\‘(,‘ = }_‘(2(] + 1)“C - E‘ZJ + ] ...... (4.58)
&‘lect.1-<)1\§:.()t]\. “qQuation (4.58), it follows that contribution of this' state to the
of sbeimis e & Dd.l tition function is thus (2J + 1). Th degeneracy of electronic ground state
atoms is given in Tahle 4.1.
Table 4.1 Ground State Electronic Degeneracy
R R B He Na Ca
Term/8 2 1 2 1
| TPvmbol ] %Sy, So Sz So
Bo=2J +1 2 1 2 1
\
o & The term symbol 2*1y, g 18 a short hand notation for all angular momenta of
a i :
the t.o(igll’ aVlZ" the spin angular momentum S, the orbital angular momentum L, and
ngular momentum J. Mathematically
S= IS; L= ZL; and J = L + S (for atoms with z < 30)
\\ihere S; . and L. and the spins and the orbital angular momenta of individual
electrons in the atom respectively. The ground state of electronic states of free atoms
are generally degenerate-for hydrogen atom with electronic configuration 1Sl, spin
S=1/2 andL=OsoJfL+S=1/2andg0=2x 1/2 +1 = 2. For helium atom with
electronic configuration 182, spin S=1/2-1/2=0and L =0, so J = 0 and hence
g, = 1. Thus for H-atom, Qe = 0 and for He atom Q. =1
4.11 PARTITION FUNCTION AND THERMODYNAMIC FUNCTIONS
. We will now utilize the partition function and the distribution law to evaluate
various thermodynamic functions including the equilibrium constant in chemical
reactions.
(i) Internal Energy
Consider a system consisting of non-interacting molecules (e.g., ideal gas),
the total energy of the system is given by
E=Zne, = fesosmiag (4.3)
According to Maxwell-Boltzmann law
ni = gi e—(l e—Ei/kT
Taking summation on both sides
Smi=e%zge s (4.59)
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N=pag™ Q
« N
et ==
Q
Putting the value of ¥ . (4.60)
utin e valu Tn.
€ of In, from €quation (4.59) intg equation (4.3)
E= E_Q Eg e‘EiIkT s
l . (4.61)

Putting the value of ¢ @ g,
om i i
€quation (4.60) into equation (4.61) we get

Now Q=ZIg o~ €i/kT
ifferentiate . ;
Diffs the above equation with respect to T at constant V, we get
Q 1 .
(ﬁ i :WZ g e €;/kT =

or sz (‘%) =3 gl e‘Ei/kT
v

...... (4.63)
Comparing equation (4.62) and (4.63)
EQ _ (ﬁ)
N = 7).
NET?
E= Q v
) olnQ )
E = NkT? ( ).
3(3)-(5)
Q\aT /v \ T Jv
For one mole of a gas N = N = Avogadro number
oln
E = NjAT? (ga"rg)‘
clnQ o4
or E=R’I‘2( B’I‘)v ...... (4.64)

R=Nyk

Thus, equation (4.64) is the relation between energy (E) and partition
function of the system.
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(1) Mot Capuelly
Hleat capacity ot conationt yolume wtven by
2l 20)
) m( ! ) ...... (4,66
v i Jy )
y( Nnt)
nind f) = ""‘( : )
1] 'l “/l ',f‘IT v

Putting the value af 1) b equition (A,66h), we gel
' (! wb(f"]l‘,e)
(.v 7.*1‘ Il gl

' Y )
( \ & " r,'lc ( ”'”H. ) | ul|'/n ( ”J“"‘i J
vERL A o

n the molar heat capacity (C,) at

Baguntion (4,60) in the rolntion betwee

conntant volume of an idenl gan and partition function.

Wao anlio known

C,=Cy+ R

i “"Q) ...... A,
It07r‘lu ( = ] (4.67)

Fquation (4.67) is the relation between molar heat capacity (Cp) at constant

pressure of an ideal gas and partition function.

(iii) Entropy
According to Boltzmann distribution law

—e/kT

n ge '

N™ Q

where n; = Number of molecules having energy €;

N = Total number of molecules in the system

g; = Statistical weight factor for energy level i

Taking logarithm of above equation on both sides
Inn;=InN+Ing-e/kT-InQ

Multiplying the above equation by n; both sides, we get
nlnn; =n;In N + n; In g;- k'l‘ -n;InQ

- S5
or njlnn; = (n; In N~ n;In Q) + n;In g; -7
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. N '
of nnn; =n; In (-Q ) tnilng - ey
VOB ORT
By taking summation over

all the énergy-level (or quantum atates) we get

—_ Q
or Inlnn;=-%n JIn ( N ) +Inlng - nk'; ...... (4.68)

But according to modified definitiop of probability
L PUE WA n,!
Taking logarithm on both sides of the equation
InW = (nglng, - Inn,!) + (nyIng; - Inn )+...(n;Ing; - Inn;!)
InW = (nglng, + nylng+ ...

- nylng)) - (nng! + Inny !+ .... Inny!)
InW = In; In g - Zln n

For any large values of n;, as in the case with molecules, Stlrlmg s formula
may be used

lnni!=nilnni—ni
Zlnn! =Zn; Inn; - En
Here Zlnn;! =Zn;Inn; - N

oon. (4.70)
From equation (4.69) and (4.70)
InW=2Zn;Ing;-Zn;Inn; + N
or Inylnn=-lnw+Inlngg+N L. (4.71)
From equations (4.68) and (4.71)
<N
-InW+Zn;Ing +N=-Zn;ln (%) + Inyng; - ZEI:-T—I
mw=EWM(§)+Z:{+N ...... (4.72)

Since in the summation Zn; In (Q) the factor In (%) will come with each

hence Znjln (I%) =1In (%) In

But N=Zn;

term

Scanned with CamScanner



240 Modern Physical Chemistry

i (@) =Nm (g
Hence Xn;In ( N ) =Nln N/ - 0 s ., (4_73)
Similarly

v (_l.‘_l_c;_l.) —_ ._l— Y¥n.e

& kT =%T u"i o TR S L RN Lo (474)
IFrom equation (4.72), (4.73) and (4.74), we get

( d =
InW =N In (—I\%) tprimetNo (4.75)
0 (ﬂ“Q)

D = ol A ("—T‘ i

But ! NA ol Jv ot Eniei =R
9
. g) o Nkt ( nQ )
In\W = N In ( N kT oT v + N

Q Oln
oW = N In (N?‘) + NT (‘ (719 )v +N
Taking N 8 common

» 0l
laW = N [ In (%) +T (—“'( ;FQ )v +1 ] ...... (4.76)

According to Boltzmann-Planck’s equation

S=tInW
S
In W =2

Here equation (4.76) becomes
S ol
E=N [ln(%)+'l‘(-(;,r;Q)v+1]

S=kN[ln(%)+T(%T@)v“] ...... (4.77)

Equation (4.77) is the relation between entropy and partition function for any
number of molecules in the system. For one mole of an ideal gas; i.e., N=N A We get

oo, [n($)n(2%8) 1
-1 [(8)+1(2) 1

1
i

S:Rm(§)+RT(%B)V+R ...... 478)

R = kN, where N, is the Avogadro number. Equation (4.78) applies

-y

to one mole of an ideal gas.

‘_.-‘
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We lknow that,

A=F-"TH
Substituting the valug of Konnd g I e, (47 i
. " _' t’) Y V,‘ft
A = QT ( 229 gy 0 :
. ] V ]'l 'i ) rr(”hl g)

- il ”lnC{
A =R ( = )v

v
|
R in ;3) (2 ”'"‘3) Ry

A=-RTIn (S & )-nr

A=-rr () (),,‘

Equation (4.80) is the relation betwee

nwork function and partition function.
sure
v) Pres

Rearranging equation (4.80)

=-~-RT Q)

A m[ln(N +1]
A=-RT[InQ-lnN+1]
A=-RTInQ+RTInN -RT

which on differentiation w.r.t. V at constant temperature T, yields
oA _ dlnQ
(av)fr“RT( o )'I‘

We also know that dA = - PDv - SdT. Differentiate it w.r.t. at constant T. we

get
oA _
2 et (4.82)
_ dlnQ )
—_P=-RT ( )
5l
or  P=RT ( O(.R,Q )T ...... (4.83)

Equation (4.83) is the relation between pressure and partition function.

(vi) Gibb’s Free Energy

F=H-TS
F=E+PV-TS |
F=A+PV e (4.84)
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e [ ()] v ("),

e () ey (%57,

ji
T _ m( ) 1-v( %)y |
o _ () v( %), e (186)

Baquation (4.86) is the relntion hotween CHbY's free onergy and partition

function,

(vii) Heat Content

We know that
H=15 PV e (4.84)

Substituting the value of I8 and P into equation (4.84), we go

(MY (700G
H = R d i v<___ VIV ;%iv._.

—pp [ AnQ° gi&
= | _ﬁ a u<+< )

_am [ [ OnQ o_:oc i i
H=RT |1 ﬁls.u__.‘__ v< _Ail% ] s (4.85)

Equation (4,85) is the relation between heat constant and partition function.

4.12 ENTROPY AND PROBABILITY (STATISTICAL TREATMENT OF
ENTROPY)
d law of thermodynamics hae a statistical nature. At constant energy
and volume a system is in the equilibrium when its entropy is maximum. Again, the
thermodynamic probability is also a maximum. It means that the exist some
relationship between entropy and thermodynamic probability of the system.
Boltzmann showed that entropy and thermodynamic probability are related by
S=klnW e (4.86)

where k is a Boltzmann constant = & = /N, R is the gas constant and Ny is the
Avogadro number. Iintropy is an additive property, where as probability is
multiplicative.

Consider two systems of identical particles for which the entropies are S; and
S, and probabilities Wy and Wy. When these systems are combined the total entropy
i8 S =8, + Sy, while the total probability becomes W, W and this

S =f(W,W,)

Secon
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W eining -Inlsn + N 411
Acoowding Lo most probable distebotemn
Ng e
n =y
For translation motion. the abuve equation takes the form
Ng et

n‘&-—"af""“' -]

Substituting the value of n, wnto (4 T1), we gat

F{NY ] o
oW =tnlng-Iade |G e W eN

hW:..!‘n‘h(a)tﬁzg‘e‘*ﬁ e (AT
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Pattig this value in equation (1 00) we get
N et dIndy,
In\W y : ) l i N
] n| l“( l)' ! ‘x..\ \ 1"" \

' le‘ ) It ti'"”! »
In\V = N In( N ( Rt )\. b N
Multiplying equation (4.91) both sides by Boltzmunmn conal

i l"l"()
KInw - Nmn( }:' ) | n'r( B )\, + AN

(1.01)

ant K, wo gel

For one mole of an idenl gas
Q (nQ,
kln W= Nykln ( IR G

: Q (InQ ) 492
KW = R In (N),, R ("—-‘-;,-; LR -

Nk
')\,' A

RInW = S, (1.93)

Q dInQ i
Sn‘:liln(ﬁ)r R’l‘( m,')v fR e (1.9%)

Therefore,
K, = & This equation (4.93) becomes

S =kInW (4.94)
Equation (4.94) represents the general relationship between entropy and
probability.
4.13 STATISTICAL EXPRESSION FOR EQUILIBRIUM CONSTANT

The free energy of a mole of an ideal gas can be related to the partition

function. Since the methods of deriving partition functions for various types of
molecules are available, at least in principle, it should be possible to calculate the
free energies of the substances taking past in a chemical reaction. The free energy
AF®, for reactants and products in the standard state, is related to the equilibrium

constant K of the reaction by the equation

— AF° =RT InK
Hence, there should be a close connection between partition function of the
substances involved in the reaction and equilibrium constant of the system.

For translation
0 o .0
Ft - Ht B St

Q. =0 0
F, =E, +RT-TS, Basaas
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and S = R "I‘ R [ W,
' "IN n

I |‘ | ( W'

; ' pnl,
[ = Ry 'n"("(')\ g
= Rk ity (
{ o)y R '|*‘ m.(v‘ljn.tg't [Q‘
’ o ' R n K l{,‘
0 ,
0 ( I)IIIQ : 0 5
l'\. — R.'l‘)‘ . {, ‘"“Q 0
O TP MRE L] el R
J1 /v { l ‘”1 =R In| =~ ]{'lll

N

...... (4.97)

0, et o
where Q; is the partition function for the

he standard state, i.e, P=1 atm. I,Jninﬁ the

equation (4.97) for translation ang equation I} - °

== RT In Q fi
“o(i) or standard force
energies of rotation, vibration and e electronic (!\(,IL(IUOI] we obtain f 0
an ideal gas tain for the total F° of

(0=C0 (0 ?0
F Ft+Fr+1v+F

0

o _ _t Y
F _—RTln[N]+Et )—RFan +D )—RTan +E ()RTan

(o}
o _ (0} 0 Qt
F*= By + Eg + Bo - RTIn{ v )-RTan}RTan‘i-RTanZ

0,0 A
= Dgm AR N

/

F =EO—RT In ~) e (4.98)

where Eg is the total standard state energy of the gas and Q° the total partition

function.
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Equation (4.98) ¢

——

an be used to derive the relation between the equilibrium

X RN, T 3 ider a gen
and Q%s of the substances involved. Consi genera]
al gases such as

a:\(g) + bb

constant of g reaction

reaction nvolving ide

® S cCq+dD,

In terms of e

1 i AF? of the
: quation (4. 0 le, the equation for
reaction will be n (4.98) for F' per mo

nd
QYN)° (Qp/N)
’-\Fozl(CE0 +dEO)—(aE° *bEO )]—RTIn( g/\ 2 b
o @ (@QYN)
OnAne ;A0 d
AFO = AEE - RT In (QC,I\') (QD/N) ...... (4.99)

(QN)* (@/N)°
where AEg is the standard energy charge of the reaction at T = 0.
But  AF°=_RTIn K., therefore,
QYN QN
QYN* (QpN)°

-RTInK;, = AE] - RTIn

0
“AE, QN @pmN)°
a0
QN QN

a0y QN QN
=cC 0 +

Qy/N)* (Qa/N)°

Equation (4.100) shows that Kp of a reaction can be calculated from the total

partition functions of the reactants and products where AEg is available. The latter
can be obtained for some reactions from spectroscopic data, while for others,
spectroscopic data are required to obtain AES.

or Kp

...... (4.100)

4.14 THE SACKURE-TETRODE EQUATION

In case of monatomic gases, rotational and vibrational motions and hence

energies are absent. The internal energy in case of monatomic molecules wili be only
du to its translational energy, i.e.,

E,=RT’ ( 5%@4)\; ...... (4.64)
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where Q tfor n mo b e
Mt natomic molecule) ia the tranalational partition function and ita
value g given by

9 m\Y2
Q, = armAT \7
U L he \) R )

On taking logari
ng logarithm of equation (4.40) as both aidea
¢ 372
In Q. = 2nmk e 3
Q=In % V+45InT
Differenti : :
tiate this equation w.r.t. temperature under constant volume

((?anl) 3
oT )y =97

Substituting this value in equation (4.64), we get

p —pm2, 3 _3
Et—RT xﬁ'—'_jR‘T ...... (4.101)
Further, we know that molar entropy of an ideal monatomic gas is given by
B Qt) dlnQ,
St—Rln(N +RT(T‘)V+R ...... (478)
_ Qt) 3
St—Rln(N +RT x 57 + R

Qy 3
Qt) 5
Substituting the value of Q, in above equation and taking R as common

@rmkT)>

5
CEAAS e (4.102)

S,=R | In

For ideal gases PV =nRT

For one mole of an ideal gas

PV=RT
RT
or \" =P

@mkT)*” 5 e
5,=R [ I3, Br+s] o e (4.103)

4.102) and (4.103) are the alternative forms of Sackur-Tctrode

Equation (
equation.
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It sati {,unlt'ﬂ_‘nnnn Statistics predicts the behaviour and pmporr,lrm{”f thclmlhm‘nnc‘m.
Bu‘t(”ls actorily explaing the behaviour of gases and crystalline $rree lltl'OW.d‘m-‘”ty.

10 rog 1 1 - lati | B |
But © results obtaineg in many cases show deviations, number of complicationg and
shortecomings, These are

()

415

"\F low densitieg of gases, Boltzmann distribution law shows little agreemeny,
with the éXperimental facts,

(11) Energy of a photon ig proportional to its frequency. From CI.QSSical Statisticg
we have the energy distribution which gives us the distributlgn of freqyency‘
As the frequency increases, there should be a continuous increase in the
number of photons per unit ’range of frequency. But we know that there jg ,
Maximum in the actual distribution.

(iii) Boltzmann statistics again fails to explain the behaviour of electron gag in
metalljc conductors.
All these anomalies called for a modification of classical statistics. This leq to
the format

1on of a new chemical statistics called Quantum statistics, in two different
Ways namely (1) Bose-Einstein and (2) Formi-Dirace statistics.

The limitations of the Botlzmann distribution law have been removed by
S:N.Bose and A Einstein (1924-25). In Bose-Einstein statistics, we deal with the
dlsfrlbution of indistinguishable particles among the energy levels or states with ng
limit on the numbey of particles in any of the energy state.

o Let the particles be lettered a, b, ¢, etc. (Although the particles are
dlstmguishable, we assign letters to them temporarily as an aid in explaining how
the thermodynamic probability is computed). In some one arrangement of the
particles in an arbitrary level i, we might have particles a and b in state (1) of that
level, particle ¢ in state (2), no particle in state (3), particles d, e, f in state (4), and so
on. The distribution of the particles among states can be represented by the following
mixed sequence of numbers and letters.

[1(a, b)] [(2) c] [(3)] [(4) def]
where in each bracketed group three letters following a number designate the
particles in the state corresponding to the number.

If the number and letters are arranged in all possible sequences, each
S€quence will represent a possible distribution of particles among states, provided the
Séquence begins with a number. There are different gi ways in which the sequences

can begin, one for each of the g states, and in each of these sequences the remaining
(8; + n; — 1) numbers and letters can be arranged in any order.

The number of different sequences in which n distinguishable particles can
be arranged is n! (n factorial). As an example, the three letters q, b, and ¢ can be
arranged in the following sequences.

abc, acb, bea, bac, cba, cab

There are six possible sequences equal to 3! (3 factorial).
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Ihe numbay of diffe ) v ooy i At At
numbers and e

£ N i)

i - .
i pr}--.c:;);{vf '.‘p{‘”_"ﬁ{f-ﬂ oGr waya lyf .’}ln ”.(; \

Hers jg therefepe

{k’ *n - '
iy~ 1) . (4.104)
and the total numbey of

Gagible en "
ile sequences of g, numbers and n; letter ia
€ l(g; 4+ n, 1)!)
J\lth('l!u'h o
sdad A ) .
e :mmn;; pn”:}: of these sequences represents a possible distribution .c‘,f
example, one ()ftf;r. . L,y States, many of them represent the same distribution. For
* Possible sequencey will be the following.
(3) j
() 101) ab) (4 def] {(2) ]
This is the
contain the same
different sequence

number of diffe
avoid connectin

(4.105)

#ame distribution as the previous one, since the same states
Particles and it differs only in the bracketed groups appear in a
- There are g, groups in the sequence, one for each state, so the
rent sequences of groups is g.! and we must divide (4.105) by g! to
8 the eame distribution more than once.

Also since the

ila . e e e i - of
Nittiov tiskag particles are actually indistinguishable, a different sequence

(1) cal [(2) ] [(3)] [(4) defy

algo represents the same di

stribution as first one because any given state contains
the same numbe

r of particles. The n, letters can be arranged in n;! different ways, 80
(4.105) must algo be divided by n;!. Hence the actual number in which the n; particles
may be allocated in g; states is given by

1 g;! n!
which may be more conveniently written as
(gi + ni-1)!
W= —V% g' =g -1
(gl - 1). n]-.

The product over all the energy levels or states is the thermodynamic
probability

(gi+ni-1)!

...... 4.106
(- D! n! ( )

W=TII

where the symbol IT means that one is to form the product of all terms following it,
for all values of i. It corresponds to the symbol I for the sum of the series of the

terms.

The system to which B.E. statistics is applicable is found to have the
characteristics of g; > 1. In such situation, the number 1 appearing in the numerator
and denominator of thermodynamic probability (Eq. 4.106) can be neglected. The
expression i8 reduced to

—— AT 3 S S AR ST S G T N
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i+ ni)!
S E;T_l?)_ ...... (4.107)

The expression for InW becomes
InW =X[In(g +n)! -Ing!-Inny] o (4.108)
For a system containing very large number of g; and n;, one can use Stirling’s
approximation to eliminate factorials. Here we get

InW = £[(g; + ny) In(g; + n)) - (g; + 1)) - g;lng; + g; - nylnn; + nj]

InW =Z(g; + n)ln (g; + n;) - g;Ing; - nylnn; ... (4.109)
The condition of maximizing InW is
olnW
SInW =3 ( on; ) By =0 L e (4.109)

Now

clnW
oar:l. =ln(g;+n;)+1-Inn;-1

1

=Iln(g;+n)-Inn

-1 Bi Ny

With this, equation (4.109) becomes

g.+n.
sln\v=z[1n( — ’JSniJzo ...... (4.110)

Since n, and g; for each quantum groups have been assumed to be large, the

distribution of energy within a group may be regarded as virtually continuous, it is
therefore, possible to write

SN =ZX6n;=0 and 8E=Z¢;06n,=0

Multiply these equations by two arbitrary constants, —a and -3 and adding
these to equation (4.110), we get

g.-f-n‘
61nW=E[In( —

)—a—ﬁeiJSni=O

i
Since the variations &n; are independent of one another.

gitn
ln( -y )—a—BeFO

8i t 1,

or In o =a+fe;
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\\‘
‘\
ay b\ “\\‘l\r\
\\\
Ry
\ e
\ 3 \
n, O 1
Ry
TR e —
\ o\ 0‘\1:‘- 1
Al
0

\ (\‘»‘\,fﬁ‘“‘“h{ ...... (4.101)

N > \ o .
Bquation  (£.101) is the mathematical representation of Bose-Einstein

statistics for the wmost probable distribution of the particles among RENIGUE ERPER
levels or states,

‘ Derivation of Planck's equation for the distribution of energy in black body
radiation s possible with the help of Bose-Einstein equation. It appears that
radiation i thermal equilibrium in a box with walls, which do not absorbs any of the
radiation, may be treated as system of elements, viz. photons, obeying the Bose-

o

Ninstein statisties,

418 THE FERMI DIRAC STATISTICS

In the Boltzmann or in the Bose-Einstein statistics no restriction was made
to the number of particles present in any energy state. But in applying Fermi-Dirac
statistics to particles like electrons, the Pauli Exclusion principle is also taken into
consideration, i.e., two electrons in an atom cannot possess the same energy state. In
simple words, it implies that not more than one particle can be assigned to a
particular energy state. Evidently, the number of particles n; in any level cannot

exceed the number of states g; in that level. The latter condition requires that n; < g;.

To calculate the thermodynamic probability of a macrostate, we again
temporarily assign numbers to the energy states of a level and letters to the
particles, and we represent a possible arrangement of the particles in a level by a
mixed sequence of numbers and letters. A possible arrangement might be the
following

[(1) a] [@) b] [®) [(4) ] [B)-....

meaning that states (1), (2), (4), ... are occupying with their quota of one particle each
while states (3), (), ... are empty. For a given sequence of numbers, we first select
some arbitrary sequence of letters. There are g; possible locations for the first letter,

following any one of g; numbers. This leaves only (g; - 1) locations for the second
particles, (g; - 2) locations for the third, down to [g; - (n; = D] or (g;—n; + 1) locations
for the last letter. Since for any one location of any one letter we may have any one
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searhie locations of each of othera, the taty) nmn‘"
o e

the p
sequence of ny letters can be asmgned o g atateg

rof waya in whick 0 Piven

A
1) (g - 2) .. (g - ng v )= B

AU ( )
;- nyf Ay

Qince t:'f — g[('_[{, - 1) (u' - 2) ... (“l - n;+ 1) (“i nt
i)

Recause the particles are indistinguishable, , Stata ;
the particular letter that follows the number repnev‘*‘!nmn} ‘f}lﬁ “enupiod regardless of
n,! different sequences in which n, letters can he w”“‘:n', ”': m.n‘m. Bines there sre
“3'102\ b_\‘ “i!- Hence the number of ways of p]{lcinﬂ n; indihtir,g[‘:;’qt’ ;lwu]n “euntion
: 12t []ﬂff.ir;]lgn in “,

distinguishable energy states with a limit of no more than o,
1 particle for eneryy

state 18

!
W=
g-n)imy: e (1.103)

The thermodynamic probability of a given distribution f prrtic]
\ dan o
energy levels is the product of number of arrangements of al| energy lovels 24‘:,9; ey

_ g'
W= G )iy oo (4,104

Taking logarithm on both sides of above equation.

InW=Z%[lng!-In(g-n)l-Inny}]
For a system containing very large number of g; and n;, are can use Stirling’s

(4.105)

approximation to eliminate factorial.
In W = Z[(g; Ing; - g;) - [(g; - ni) ln(gi -n) - (gi -n)] - (“i]nni - n)]

In W = Z[g; Ing; - g; -(g; - ny) In(g; - ny) + g; — n; — njlnn; + n]
InW==2[g;lng; - (g —ny) In(g; - n;) - n;lnn,]

The condition for maximizing In W is

olnW
61nW=2—a;_—5ni=0 (4.106)
1

As g is constant

Now

lnW
~——=0-{-In(g;-n;) -1} - {lnn; + 1}

1

=In(g;-n) +1-Inn; - 1=In(g; - n;) - Inn,

SoW . &
Bnl =1In ni
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with thig equation (4.106) |,(,,,m“m ‘\w”"“‘"“‘*ﬂ'—'"”“‘.’-‘L’I!_'g""odynnm i, %ua
SInW =y | 1, B n

0, “’“| = ()

Further we know thyy e (4.107)

SN =3 Blli = nnd ‘
Multiplying these o ‘ : 5, 80, = 0

i ' Juat
equation (4.107) we get Quationg by

> [h{@
I ‘u_[}ei] Slliz

Now each term in t
individually zero. Here

~@an ~f and thege tq

ln(gi—ni
ni _a‘B€i=0

g — n
or In 3 1l
( n )‘O‘J'Bei

E_&_ Q BE

ni nl_e et

Bi

;i_]_:eﬂ_eﬁel

Bi 4 Be.

¢ ¢ i+l

n: = Bi

P aPE p TTERardgutuve 0 lashy aiwh (4.108)

. Equation (4.108) is the mathematical representation of the Fermi-Dirac
statistics. Ferml-Dn'fac statistics can be used to explain gas degeneracy, electron gas
in metals and thermionic emission of electrons from metals.

4.17 COMPARISON AMONGST BOLTZMANN, BOSE-EINSTEIN AND
FERMI-DIRAC STATISTICS

For the purpose of comparison of the three forms of statistics, the essential
equations obtained are as follows.

n.

—= 1 Maxwell-Boltzmann statistics
B e%ePSi

n; 1 ) ; —

—_= Bose-Einstein statistics

g FePSi-1
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Yy TP pare campariaon to unity
It ae tmportant to note that f g/n, 18 very large n comy ‘ ‘
ao-Finatein and Fermi-

Jng s 4 one can neglect one o the denominators of Bo

. . ‘e o » "B 20 distribution take
rac statiste, becaner Ry o Ry + 1 1 and BE. and ¥

¢ form of Maswell Boltzmann distribution

The varous differences among the three statistics are as follows.

' . N > 4 .
Maxwell Fermi-Dirace Bose-Einstein
Roltzmann ‘ _

(M Particles are (1)Particles are
indistinguishable

(1)Particles are
indistinguishable

dietinguighable and

only particles are and only quantum and only qunntum
taken into states are taken into states are taken into
consideration consideration consideration

a)No restriction 18 put (n)Restriction is put in (11)No restriction 18 put
on the number of the number of on the number of
particles in a given particles in a given particles in a given
state quantum state quantum state

aiVolume of state in six| (iii)Phase space is known| (iii)Phase space is known

dimensional space is
not known

(iv)Number of (iv)Number of (iv)Number of
distinguishable may distinguishable ways distinguishable ways
be given by may be given by may be given by

‘ 1 gini Wer g;! __ (njtgi-1)g;!
W =n! Tl‘_ ~ 7 (g-ny'ng B (8~D!n;i
(WApplicable to ideal (v)Applicable to (v)Applicable to photons
gas molecules electrons of high and a-particles
concentration
(vi)Particles obeying (vi)These are called (vi)These are called
M.B. statistics are Bosous. Fermions
called Maxwellons or
Botlzmannons
(vii)At higher (vii)At higher
temperature F.D. - temperature B.E.
distribution distribution
approaches M.B. approaches M.B.
distribution distribution.
B Bi i
(vii)n,; = AP (viii)n; = m—l (viii)n, = e“epgeli -

[ —
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