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However, both types of mec
etc. Like quantum mechanics, cla
molecular structures using classical

hanics use same energy units, e.g. joule, caloric
ssical mechanics can explain some atomic and
equation, e.g. Bohr's theory.

2.18 THE SCHRODINGER WAVE EQUATION

In 1926 Erwin Schrodinger, an Austrian Physicist developed the wave
mechanical model of the atom. This model takes into account the wave and particle

nature of the electron. In his model, he visualized the atom as a positively charged
Tucleus surrounded by a standing electron wave which extends round the nucleus.

QSchrodinger proposed that if the electron has wave-like nature, it would obey
the same equation of motion as all other known types of wave obey. On thg basis of
this simple idea, he derived an equation which describes the wave motion of an
electron wave along any of the three axes viz. x, y and z axis and is callefi
Schrodinger Wave Equation.) This equation cannot be proved or derived. Rather, it
may be taken as the starting point for a dimmn%%ierg quantum tbeor?-. Itis
possible, however, to make an argument for the Sc odinger equation in the
following way.

; -1
Let us consider a particle P moving with uniform angular velgcxty o rad \SV
in a circular path of radius A, which is executing simple harmqmc motlon(.i wi
measure time from the instant when P passes O and then after a time t second,
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‘ : ave dese
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with time ean b repre!

. : ion and harmonic wave
Fig. 2.9 The representation of simple harmomnic R
. : by a body executing

: : -oduced 1n a medium ng

A simple harmonic wave may be pro angle PBC, we can write

. . i
simple harmonic motion. By considering the right angled tr

PC_¥_ .
PB- A "
¥ = A sin 6 = A sinot (. 6=o0t) 2.30
Where ¥ (pronounced a psi) represents the vertical c'iispla.cement of i ]
the harmonic wave. We can plot this displacement against time as on )
the right hand side of Fig. 2.9 6= 2=
The angle velocity, ® = 2m0 o
Where v is the frequency or t=%
¥ = A sin 2nvt (2.36) 34k 1
In order to consider the nature of progressive waves, we are more t
interested in the distance variation of displacement. For this purpose &
we need the fundamental distance — time relationship. L =50
® =21V

x=vt (2.37)
Where x is distance covered in time t at speed v.
Combining Equation (2.35) and Equation (2.36), we have

2nux

¥ = A sin - (.. t=x/v) (2.38)

and wave is shown in Fig. 2.10
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B
U e A nin ")\ (2 90)
On .“‘Tm'“”“”l'i”M "llln'”m” (""'””) with resgpoect Lo %, we gel
d\y ( \ Inx (',’,n
- L3 an
(IK »,l con A A J
2n A 2Ix
= 4 CON
A A
Differentiating again, we goet.
2 .
ds v zn/\( , an)(zn)
PO E - T k't B vyl N e v
dx” A A A
2
~An o 2nx
Sl v A sin NS
_117‘(' znx
e 4 \[f = il
r U= A sin =5 )
2 2
d*V 4n W
o o2 Tz =0 (2.40)

r 4 h ’ 3 . ’ . J -
] I‘hl.s is he classical wave equation describing the wave motion of any particle
?hm:g x-axis. Since the electron is proved to have a wave character, let us assume
at the same behavior is shown by electron waves. To apply this equation to a

Particle, A must be replaced by the momentum of the particle using de-Broglie's
relatxonship le.,
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Subatituting this value in sguation 2. 10, v

‘ [ g 42
(l"'i' ‘ ;In"'m)v

dx® h)

WD (2.42)

tarmn of ensryy, we muke use of 4, friey

In order to oxprean this equation in ,
enorgy and potential eneryy (Bohy,

that total energy (I8) in the sum of kinotie
theory),

Total Knergy = Kinotic Energy 4 Potentinl

o = 1/2 mv"e +V
) l 3 Y,
b - -3 DIt
(8) ] 2 my /]

mv? = 2(l8 - V)
Vz Z(l‘l = V)

B )

m

Substituting this value of vZin equation 2.42, we get

d>y  8n’m
,// ';;;2— o+ —hz—' E-VW=0 (2.43)

I

This is the wave equation when the particle is8 moving in one dimensional
system, i.e., the wave is moving in one direction x. For electrons which can have their
wave motion along any of the three, axes, x, y, z, we can similarly write the wave
equation as

azw+ v 2w 8n°m

pw 0y2+622 = E-V)¥=0 (2.44)
. -
or simply
2 ,
v+ 8;2"’ E-V)¥=0 (2.45)

where V2 (de squared) is known as the Laplacian operator.
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W vy
) 0 Bn? .
o A . By oy 8% m
h WV
2 2
Multiply thia fquation JL-‘
Bn’m
hz Vz
'~:‘~—-—- ‘l’ T" - 1.‘
81“m EY 4+ vy
or EYy = - Vi gy
2 + Vv
8n°m :
I h?
or DI _\VZ
: +V |
8n“m 3
or  HW¥=REy
(2.46)

ere H=-——5—V*+V and i g
wh 8n°m 18 known ag Hamiltonian operator. It represents a

certain way of expressing the total energy of 4 system and E is the numerical value of

that energy.

Applications of Schrodinger Wave Equation

)
(i)

(iii)
(iv)

v)

(vi)

(vii)

Important applications of the equation are:

This equation is used to calculate the energy and wave function of particle in
a three dimensional box.

This equation introduces the concept of degeneracy in atomic orbitals,

This equation has been used to derive an expression for an electron in H-

atom.
This equation has been used to derive various quantum numbers which
represent the postal address of an electron in an atom.

This equation has been used to calculate the energy of m-electrons in
conjugated systems like benzene.

This is also used to calculate the resonance energy of molecules.
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214 THE INTERPRETATION OF WAVE FUNCTION ()

The wave function I in o sort of an amplitude /u,n'cn'nn, In the cage of 3
wive, the intensity of a light at any point is proportional to the Square ¢ ?""
amplitude of wave at that point. In terms of light quanta or photon hy, the the
intense the light at any place, the more photons are falling on that place. This ;‘r‘i
enn be expressed in another way by saying that the greater the value of amplttu,j::""

n light wave in any region the greater is the probability of a photon being within l'n,—,‘:
region, t
'V being a mathematical function has no physical meaning by itself, May

Born suggested in 1927 that the product W does have physical meaning, sine, it
gives the probability of finding the particme_ﬁ‘y‘;dhm‘TWp
and its complex conj {ig}i@"ifTd;}jr‘j}jabilffy density). The probability of finding y},.
electron in space is not given by 'V only, even though ¥ is considered to be a Complet;f
function which has a real value and always zero or positive. The complex conjugate of
1" in obtained by changing i to -i everywhere in ‘. If the behaviour of the electron i,
represented by a wave equation, we can equate the square of the function with eithe,
(n) the clectron density and (b) the probability that the electron will be found in ,

Riven volume element, we thus get a physical significance for the function ¥(x, y, 3
in that

‘l’z-dx-dy-dz (= ‘1‘2 dv)

measures the probability that he electron will be found in the volume element dv
surrounding the point whose coordinates are (x, y, z).

The other interpretation w2 dy represents the electron density in the volume
element dv eannot be justified so vigorously as the probability interpretation, but it
has proved to be very useful in practice. But difficulties arise when applied to single
clectron system.

".I‘he probability density at some point multiplied by a differential is the
probability that a particle will be found there. For example, if a particle can move
along the x-axis and has a wave function ¥(x), then

the probability density, f(x) = ‘P*(x) o(x).

The probability that the particle is between x and x + dx is
f(x)dx = ¥ (x)-¥(x)-dx

The probability that it is between x; and x, is

X9
\P*(x)-‘l’(x)dx

X1

The probability that the particle is between x = —» and +x is of course, unity

I ’ ¥ (x)-P(x)dx = 1
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W“hanlcs and Atomic Structure
entire space available ig equal ts ‘:VIIiVQ function
nit
In calculating probabiljt Y, the wav
complex conjugate so that the
function ¥ as a matter of faet .
quzmtity.

69

times ita complex conjugate over the
e function is said to be normalized.

probabilj . T ave function is multiplied by its
ay iﬂvolv?udeinmty_ is always real and positive. The
N Imaginary part i.e. ¥ may be a complex
Let Y=a+ip
where a is real quantity and b ig gy ;
an imaginary
part.

Then its complex conjugate

¥ =a-ib

where ¢ (iota) is an imaginary part

These two values of ¥ and y*

may be imaginary, in order to get a real quantity we multiply them

WYY  =(a+ib)(a-ib)=a? - (ib)?

=a‘?‘+b2
or 1¥|2 =a%+ b2
or ‘PZ =c12+b2

. . 2

Strictly speaklrzxg that ¥ should be the square of the absolute value of the
wave function i.e. |'¥|”. However most of the wave functions in atomic or molecular
structural problems contain real terms only, and so %2 may be employed.

M‘The quantity ¥ tells us where the particle/electron is likely to be (not where
itis).” — S

A wave function not only contains the information about where a particle
may be located, but it contains all the information that can be learned about the

system this is represented by the wave function. Other physical quantities can be
obtained from wave function.

Since Y¥' is a prob

ability density, a wave function must have certain general
properties.

or
The physical interpretation of the wave function as a probability amplitude
implies that it must obey certain mathematical conditions.

Following are the mathematical requirements which must be met by
physically acceptable wave functions.

—
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cortain propertien (0. momentim) are (:snl(:lnlffl,e(l l?y tﬂkmgt thfnger;\i/:zuﬁs
of the wave fnetion, 1 the wave function is discontinuous a some point. Its
feat dovivative in infinite at thia point. But "'“l”‘m,“f p}?yslcal properties
cannot be infinite, se the wave function eannot be discontinuous. Morfzover
the requiroment of continuity v helpful in the selection of physically

vensonable aolutiona for the wave equation,
tain solutions of Schrodinger equation

\p )
(\) muat be pvorywhere (

\l]
1. W) and ! Tx

Bocauae of these limitationa only cer

are of phyaical interoat,
A diseontinuoua I cannot correspond to a physically acceptable situation,

bocausge it leads to finda derivative infinite.

The wave function Y giv2s information on the outcome of a measurement of
any property, not just position, ¢.g. momentum, encrgy and angular momentum. ‘¥ is

not to be thought of as a physical wave. Inatead ' is an abstract mathematical entity
that gives information about the state of a system. Everything that can be known
about the system in a given stato is contained in the state function V. Instead of
saying “the state described by the function ‘" we can just as well say “the state ‘P.”
The information given by W is the probabilities of the possible outcomes of

mensurements of the systems, physical properties.
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(1) This function beconge
. 8 - Thi :
certain value of :nl‘inite at  ®) This function is not gingle valued

v

_/

=

at every position over the allowed
range of x

v

(c) This function is not everywhere
continuous

— X

(d) This function has discontinuous
derivative at each cusp.

(d) This meets all the requirements and hence is acceptable.

Fig.2.11. Example of the wave functions that do and do not meet requirement, for

physically acceptable solutions.

2.156 STATIONARY STATES

In quantum mechanics, the state of a system is specified by the: wave fuqction
¥(x, y, z, t) which is a function of both the space coordinate and the time coordinate.

This function contains all the information necessary
directly measurable, in contrast to classical concepts. 1

function YW does not change with time, then su

for our purpose and is not
f the probability densit

ch states are known as stationary.

/

This is in the stationary states.

| ¥(x,y,2,t) | 2 - |¥(x,y,2)| .
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Since most of the l‘h,\’“"‘“I y
weily the state of the syatem
' 1

the wave equalion which
e of the system and will alsg 1y, |
Y "“"”l‘
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Wl arding (] 80y I
Vs

density, we could spe
the space coordinates,
coordinate, representa the stationary Al

Schrodinger time-independent equation. .
lowed wave Tunction,

ecesaary Lo introduce verti, I"”“Hl

i

/

allowed energy, I and (i) the al .
Schrodinger equation for a problem, it 18 n
conditions for a well-behaved function,

Example 2.5
Which of the following expressions are acceptable wave functions, and ), i

are not? For those which are not, state why?
W=k \[‘c, Ko=)

(i) W = x? + 1, where x can be any value (ii)
e ] J. . P —— -
iy ¥= 75 §in :\,: - 'Tzl— SX< 'g (v) PEFTY Os=xsio
W w=— 0sx<3
4 - x? -

Solution

(1) Not acceptable, because as x approaches positive or negative infinily, tl
function also approaches infinity. It is not bounded.

(i1) Not acceptable because the function is not single-valued,

(ii1) Acceptable because it meets all criteria for acceptable wave functions,

@v) Not acceptable, because the function approaches infinity for x = 4, which is
part of the range.

v) Acceptable, because the function meets all criteria for acceptable wave
functions, within the stated range of variable x.

2.16 SOLUTION OF SCHRODINGER WAVE EQUATION TO PARTICLI IN

A BOX
This is simplest application of Schrodinger wave equation (SWE) to the

translational motion of a particle (electron, atom or molecule) in space. The results

obtained can explain as to why the energies are quantized, i.e. can have only discrete
values unlike the classical mechanics according to which energies associated with the

motion of a particle can vary continuously, i.e., can have any value. Such a model,
usually called ‘the particle in a box” model serves as the simplest case for the
treatment of bound electrons in atoms and molecules.

Suppose that we have a particle of mass m confined in a one-dimclminn‘ul hox
of length L. For simplicity, we assume that the potential energy of the particle is zero
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The Schodinger wave

d*y

9
82°m
== m

dx* h*
Inside the box V = g

Therefore,

a9 a
- <
d *’ & 8:‘{ m

dx pE E¥=0

~_ 2
2 8a™m
lLet AT =

T ) E
h*

3
Where A 18 a constant, and 15 Inde

d"'zlil

— 4
» ~

dx~

’\*1:0

V= o

\f

*Quation in on

E-Vy

s SRR

Quantym Mechanics and Atomic Structure 73
f‘“érgy At e

ac 1 of sha b 5 s cngitin nferite
Probah;) ach end of the box there is an infinite
‘Tobatility of 5 A S L e
12 ¥ of hnding the particle outside the box
12, - I

e dimenss

=0

pendent of x

V=

X=0

X —p X

Fig. 2.12 One dimensional box with infinite potential barriers
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Hhan I oare (WO nrki ' v conditiona. One Ong
Where A mlldl . applying the poundary ‘-"’"r Mo of the boy, t"nu‘
can be determined by #PPL | in that they wave function must be 4 nd‘lry

conditiona on our wave functiot

™ aide the b i
+ the wave on W' in zoro out OX, there ahonu"un
(W

functi
walls of the box. Therefore

function of the x. Sin
e s oat the X
no nudden changes in the valuen of 'l v Mugy bt
zoro nt x = 0 and x = L. - ?
X
\ll = (‘
0<x<L

e A ain Ax + 13 cos AX
L<x
W= S
ormalizable because it is nonzerg gy

here within the interval. Yin the

function i8 1

Morcover, the wave ‘
is finite every W

finite interval 0 < x < L and it

Now apply the boundary conditions.
(1) When x = 0, then equation 2.60 becomes
0=Asink~0+BcosA-O
0=B (& sinO=0andcosO=1)
Thus
Y =AsinAX (2.51)

at x = L, the ¥ is again zero.

nction ¥ becomes

(11) At the other wall, i.e.,
Therefore, at that point the wave fu
0=Asin AL (2.52)

Now either A=0 or sinAL=0 |
If A = 0, then the wave function ¥ will be zero every where and this is not ap
acceptable solution. Therefore

gsin AL=0=sinnn ~ (sin n = sin 27 = sin 3n = 0)

AL=nn

or l:r

A SE | (2.53)
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0yn
q line enn have only the BNOTR R v A

orgy in quantized, Ny, el e _
1 mechanien, mErete sy lovals e pEpectod an the hasis of

LA P el mving Viesh swerieiy bwinn prodnts G

¢ M hy thin Bt e bidegor valoaoy of v, Lo,
the en '
“hullli\'“

i 3 f 4
A partiele i n bhoy o
! cannot h'“'“ BP0 oy D i the loweal snergy B ‘ J
By

ained by substituti =
btamed b ME D= i squntion A4 and Wthis energy s known ne 270

8 0

W
72010 poing Bml .7,3 (2.66)

X

144 ! \ ) . adid 4 y 4 .
o 1 h“VHit.hll\l the particle fneido the box is not nt rest, Therefore the
W,y p ) A \ ) i . .
psition of t \(-. Pﬂl acle ennnol, be precinsly lnown, Although n = 0 satisfies the
poundary conditions, the correaponding wave function in zero everywhere,

Bach of thg‘ energy values I 'huu n correnponding wave function 'V that is
obtained by a substituting the value of A into quation (2.61)
[

. nn .
¥ = A s8in 1 X (2.66)
The next step is to determine A. Sinco the particle must remain inside the

box, the total probability of finding the particle between x = 0 and x = L, must be
unity. This normalization process gives

L
I vidx=1
0

Where ¥2 dx represents the probability of finding the particle between x and
x + dx. We write

. nnx )2
I (Asin-—L-) dx=1
0

L
A’ IOAsinZEI’?‘-dx=1

But  sin®0=1/2 (1 - cos 20) |

A2 IL 2n1t,x)d'x=1
So 5 0(l—cos L
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Z ' I { ic__"‘ T dx = /_; ;N O
. ¢ nt o =1 !
A — v X}
or =|s-g=" b /0
2 ! ) 1
. A [, - = §in 2n% } s ataing ¢
or g\ 2n% / - the ‘bragiif'! conlAIng the g.. o
L eennd term MR ce XPTOSEION haon -
Where n is an integer. 5¢ .-::rd ns. Hence 19€ above EX¥ oty
YT = K g T .':" ra JE 8=
angles that are integral multiples 0 ,
- {-. sinnx = Q)
’xg
7 -0t
A=V2L . oarticle in 8 one-dimensional b,
Thus the normalized wave function of 2 P e
us the nor
given by
(2.57)
2 . nax
Y= T 81 L 2 = )
, jcular vaiue Ol X 1s Ziven Py
o din thepartideatapam - =R
The probability of finding
) -
(Z2.5%
2 2 . 2D% o
Y =1 an =
0] -
- ey - =
R = and‘{"' are SO0WDRD InN Fiore
. lavels as well as Y sz
Plots of the allowed enerey levels
2.13.

entioned below.

s is quantized according to Equation 255
for a particle in a one-dimensional box f

Some important results are @

¥ The (kinetic) energy of the particl
Only certain energies are allowed

length L.

9

1 -

a ;

2. The lowest energy level is not zero but is equal to -8:1? This zero poin:
energy can be accounted for by the Heisenberg uncertainty principle. If the
particle could possess zero Energy, its wvelocity would also be m
consequently, there would be no uncertainty in determining its momenmm
i.e., Ap = 0. But with Ap = 0, the equation of law indicates that Ax would 2=
infinite, so the particle could not be located within the box which is against
the principle.

3. Depending on the value of n, the wave behavior of the particle is described oF

Equation 2.57, but the probability is given by ¢2, which is always positive.
For n = 1, the maximum probability is at x = %, for n = 2, the maxmu=

L 3L
occurs at x = 7 and x =—~. In the latter cases the probability is zero 8t x ==

e

e |

‘;.__
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Fig. 2.13 Plotls of (a)- ¥ and (b) W2 g, the first four energy
evelsin g one-dimensional box

system become very large.

Example 2.6
What is the wavelength of light absorbed when an electron in a linear

molecule 104 long makes a transition for the energy level, n =1 to the level n = 2.

Solution

_ n’h?

En =
" 8ml.2
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Eanmple 1.0 2
§ f (I' nn
Rutadiene molecule ahows longont wive longth
the Tength of the moleeule

Nohation

- y mgth of nhaorption corregy,
I caee of butadiene the longest wave leng | pondy t h

A P [ )
promahion of 1 oleotvons from n o 2 ton =

"
A o [ - I hh"
YV Y 'n Iy 'i
d 4 Hml,"
6h”
hy = e
Hml,”
Hhh
Vb em—
Sml.”
Q2
8ml” . ¢ ( _— _3)
f ™ hh '

| 2 _ _Mh _bhx210x 10 Dy 6.626 x ”)\.'M

L =6.656x10""m =0.666 nm

Application of the Particle in -a Box Model

The problem of particle in a one-dimensional box is not merely an exercise in
mathematics, it can serves as a good model for the calculation of approximate
energies in the atomic and molecular systems, besides accounting for the effect of
quantization,

Firstly, the model can be used to estimate the quantization effects in energy
of gaseous molecules having low molecular weights at any low temperature.
Secondly, the model provides basis for calculating approximate energy levels of
electrons in atoms and molecules where the bound electrons may be assumed to more

in “boxes” of length 1 — 10A. The minimum energy gap between two levels in then of

the order of 10718 to 10720 J, which is greater than the thermal energy (RT) at
ordinary temperatures. Hence, the quantization of electronic energy may be observed
in atoms and molecules. Such calculations also provide satisfactory interpretation of
electronic spectra of atoms and molecules. An electron in an atom or molecule can
jump from a lower energy level to a higher level by absorption of light of suitable
wavelength (A) or it can jump from higher to lower level by emission of light. The
wavelength of light emitted or absorbed is related to the energy gap between two
levels.

AE = X (c is the velocity of light)
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The time i\\\‘l‘)\l‘\\“l‘\\‘ ':\"\\ 1 .

s ' Oy 4 b
\ﬂm‘m-i o ROV W FANALH (a wan WY wittten in the
: \

0 = ey

It belonga to the Slana o

1‘ |‘\‘“. 3
» oo R Y ONe o \ .
.\olﬁ‘“““‘lm' Tl “h'\_‘ anslatiag of the (j emiNbe equations. The word
“--mslntum 18 <‘h:\1‘:\\tl0\'1.-:““3 valye® ©olerman w ard

Eigtnewert' A full
ANMANON has on one aide an
other side

WOWhiely e called 1
AMiltoniag Op

.'\\\ Sige

WErALINE ON & figys Nalve o
gperator O} K Vlmetioy, and an Vre g

qgnevalue multiplying, the RAMO Doty
¢ : A

qbove equation ﬂ representa the 1N
sigenfunction.

A vonstant colled the
¢ vigenfianchion. In the
orator, B the sigenvalue and W the
(operator) (f\l’l\ci,i(‘m\ = (cons
When a operator operates \ :
« N O v N . x

ith same numerical value, he b hanetion and the same funetion s reproduced
with \"c al value is C'iilo ;’ .'\‘“‘_ﬂ“’ anetion s called an eigenfunction and
numericat. 4 " s e ¥ 8 Qigenvalye. An equation  that containg  both
eigenfunction and eigenvalue g called an eigen eQuaiion
The SWE 1s the eigenvalye cquation for \
wavefunction is the eigenfunction
energy eigenfunction. The eigeny
energy, and is called the energy

tant factor) | Eame fanetion)

amiltonian o

perator. The coordinate
of the H:\mﬂtmu:\\\ <

porator, and 1t often called
alue of the Hamiltonian operator B, s the value of

: , ergenvalue, Solving an fquation means finding not
only the set of eigenfunctions that satisfy the dquation, but also the agenvalue that

belongs to each eigenfunction. Two conmmon cases oceur, The first case is that the
eigenvalue can take an any wvalue Within same range of values @ continuous
spectrum of eigenvalues). The second case iz that there is a discrete set of
eigenvalues with the values between the members of the set not permitted (& diserete
spectrum of eigenvalues). The occurrence of & diserete spectrum of eighenvalues
corresponds to quantization.

In addition to satisfving the SWE,

2 wave function must satisfies other
conditions. Since it represents a wave, we assume that it has following properties
which are generally shared by waves.

>

(1) The wave function is single-values
(i1) The wave function is continuous, and
()  The wave function is finite

These properties will lead to boundary conditions that have important
consequences.
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would yield Cigen
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Jfapetaon
' Al ” yeffund :
rt Wi il af the i o h'“"":l | il Ho‘l&“”l'm‘ ton®
1l G d
v olgen V! x
\;m\llu\m" What o m ‘“ (oM )
i
i y)
(n | ("
i (iv) ‘lx (")
0o
(s ") (L " 4x)
|V, g \ (Vi) (lX. '
{ 4
(V) ' Q( 008 I) 9
dx d i
1 il 2"
Wi e )
d e 98
- (6x")
NP 0 W
(\l) le“ (‘
Solution
|
()] ﬁ; (ain x) = con X
, ; o gin X i 1 ated.
Thia ia not an pigenequation a8 function gin X 18 not gener
¥ d ,
(i) Ix (con X) = = 8IN X
This is not an oigenequation a8 function cos X i8 not generated.
1
i) g =ace”
This is an eigen equation with an eigenvalue of a.
(iv) dx eH=1: "
This is eigen equation with an eigenvalue of 1.
d* ( x ) 1 x
v) ol cosy |=-Tg 087
This is an eigenvalue equation with an eigenvalue of - 1/16.
: d - .
V) gy =1
This is an eigenvalue equation with an eigenvalue of -4.
. d | g2 _ded
(vi1) 5= (e x ) = -8x(e ix )

Scanned with CamScanner



— Pf.!‘ﬁ',!.’i‘!!!’.f‘,’..'i‘?f!:glg- and Atomlic Structure 83

This 18 not uy CIEONVR] e
reproduce, it j, not ‘
function - fy

“Qunting , Ui ]
multiplied bocame although the original function is

; . v
YO tonstant, it s multiplied by another

-
s —-‘-‘—v(nin Ax) = e (
i P S e . ’ X
(i) 4 dx 4 con ax) 16 win 4y

™V s : 4
I'his 16 nn “Igenvalye “Quation wi
wh o nw a1 i
. ith nn eigenvalue if -16,

an
- (™) = Mgn

(ix)
This i an eigeny
o 3 : " . "
K tlue “quation with ap eigenvalue of o
a9 . 2 '
(x) dx (5! )"*‘ ui.ar)‘x = 15,2
This 18 not an ¢
- 4 @ ) .
Benvalue equation ng the function is not reproduced.

2,18 NORMALISATION OF WAVE FUNCTIONS

| d:\ﬂ:’:d::ﬁ to tlﬂrn the probability of finding a particle is represented by W
dx "5' 2"' ‘ ume element dxdydz, |f the probability for a particle having wave
function i e evaluated over the entire space in which the particle exists, then the
probability ehould be equal to | or 100%. Mathematically it can be stated as’

>

J'“' ‘i"i"dxd}'dz = 1

or f _WWidr= (2.59)

(where dt = dxdydz 1s small volume element),

Where the integral of the wave function times its complex conjugate over the
entire #pace avalable s cqual to unity, then the wave function is said to be
normalised and this condition 15 known as normlisation of wave ffunction. The limits
-0 and +a are conventionally used o represent “all space” although the entire space
of & system may not actually extend to infinity in both directions. The integral must
be equal to unity since the particle must exist same where in that interval if it is to
exist at all. For one dimension the above equation can be written as

L‘_ Y (x) dx = 1 (2.60)

The SWE is a homogenous differential equation whose solution gives a value
for ¥. Very often ¥ 18 not a normalised wave function. But it can be shown that
multiplication of a wave function ¥ by any constant A is also a solution to the wave
equation.

Let us assume that a wave function for a system exists and is ¥ () = sin (m/2)
Where x is the only variable. If the region of interest is from x = 0, to x = 1, then

.
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_ ' alow.
normalisation of wave function 18 carried out ng hel

According to equation (2.59) the function must be multiplisg by
Fa

constant go that

m‘"h.

1
J W' dx =1
0

Note that the limits are 0 to 1, not -« to +u zm('l t?mt dt is simply dy for thi
one-dimensional example. Let us assume that ¥ is multiplied by some congtyp, A

Y — AY
Substituting for ¥ into integral, we get

: o 5 nx ax\
J.O(A‘V) (A‘Y)*dx=,[OAA (sin—z-)(sin?[) dx

Sine A is a constant, it can be pulled out of the integral, and since this
function is a real function, the  has no effect on the function.

Therefore, we get
1

1 .
* X
JOAA (sin%)(sm%) dx = A? jo sinz%dx

Normalization requires that this expression equal 1:

1
2[ _pmx
A o 5in de—l

The integral in this expression has a known form and it can be solved and the
definite interval from limits 0 to 1 can be evaluated.

) 1
fsmz bxdx = % - Jp 8in 2bx
In this case b = /2, evaluating the integral between limits,

2(X_2 . 2201l
A [2_47:8"1 5 }0—1

y 1
A2 [%-%Slnzﬂx‘] =1

A2(%j=1
A=12

Hence the correctly normalized wave function is therefore

. WX
‘P(x) =\/§ (sm 'E-)
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")“."-’”HIH Marhanicg annd Aty

p A ORTHOGONAL 1y
, ‘ OFWAVE g
TUNCTION

Fheve miny b gy,

ANy feee .
avalem el w Ve Tang tlon | tptahle h",‘l"‘(\l," to SWE W POV for 4 partienlar
LEL 1 i
L \ie N VOV Teane " ey S - shae St W "
1\"\‘“\\““ '“ m\.l lm .-,\”‘\,_"””‘h”v ‘ ”| ,n\a‘lnl‘ eNerEy valua I Foar any iy WA
. ! ta P ' v W W
condition st be fulfifleg ‘¢ energy values F, and E,, the Inllowing
|‘.A
Aoy
¥ ln‘n\'!1 ) ' 611
P AIRY

.
Sach acondition s cnlle

. d e X . o,
(wo funetions ‘I‘" and condition of Orthogonality of wave functions. L
!

nre .
val propevty of () n A H_md to be orthogonal to each other Equation (261} 1= 2
gene ) AR ‘Cwave functions, W -
. H5eWwave . ; at are ai on of n ven

WIS are wsunldly orthonorma) T They ave bvr 1t of ome ank

ihe intagral S i O one another. They are independent of one another
;uu. el W“\vv o \ ru-n |"“‘l)\l('l over the whole Ipace I8 zZero Thev are not
dogen netions (having spnme energy) and are exact solution of the wave
equation, ‘

" 3 .
e normali; .
Fhe normalization and orhtogonality conditions may be combined as follows

oy
j .
\J7 o\ e ¥
P de=, ifn=m

S §

o
J. \ l‘\
' — .
_h I nVm dt =0, ifn#m

These relations can be combined by writing

ot 00
\ I*\
J -
Y o ! n ! n dr= 5nm
a oD
w
. P\ - 9 62
a1 ¥ o Pyt m dt =35, (2.62)
where 8., is called Kroneckor delta, which is defined by
0 for n+m
) (2.63)
bl'l“l
1 for n=m

wave functions that satisfy equation (2.63) are said to be orthonormal.

An exception to the Orthogonality rule occurs when two 0‘1; u&OiZn:;:;-;i
functions correspond to the same energy level. Such levels are said t;)‘ ff Z? g
levels. Wave functions for degenerate levels are mot always 0r§ Otbz?:e solutions
another, However, they are orthogonal to all other wave functions, tha 8

of the same wave equation.
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Example 2.11 | oo
hat the wave functions 1 the following equation gy,
Show that the wi
any pair of different values of n

: in(ﬂﬁ)
gy = -8
'n a . a

Solution ¢ _ Auiction, B
iy g erty of an eigen iunction, Fey Pars:
- is a mathematical prop ; ¢ artin),,

Orthogonality is 2 different integers. Limits 4y, ch "‘41,‘

Url,hum‘" ’
]

V)’

a one-dimensional box, let n = [, m, the two Mgy,
sine the particle is confined below 0 <x <d ‘
a § 2
2 . (lax) . (M)\/de
IZ‘*’l‘*‘m dx zjo\ ES‘”(T)S'H a a
(1
2| . ﬁ‘l) ' (——mm{)dx
:a 0 sin ( a sin a
Using the trigonometric relation
. . 1
sinusinff = 3 [cos(u — B) — cos(a + B)]
a
2 1 Inx max Inx _ULTE)J
J':‘P,‘Pmdx =a'x-2- O[cos(—a———'a )—cos(a + a dx
1 ¢ X
X
5 J.O [cos(l—m)%—cos i+ m);dx} dx
1 a X x1? 1 a : nx19
“a T my<oin|¢-m G| 5 g [sin€+ m) 2y

- l-m a a

S|

_1[sin(l—m)3_sin(l+m)}a
0

_1[sin\l—m)n sin(! + m)n
n I-m = l+m ]

=0

Since the difference and the sum of the two quantum numbers / and m must
be integers, the sinus of the angles are all zero and have the integral is zero.

fcos lx-dx=71sin Ix

This integral is used in the derivation of above relationship.

This result may also be obtained by graphing the functions. Fig.21.5 the two
functions and their product. The integral is the area enclosed by the integrand.

Figure shows that the area is zero.
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4 . '
’Tl 3 \ / '( 4 '
/ -
' -
] \\\
Ae \ J/
(a)
i
e 1.6 pLoy t \ &
g 210 Graphical method for verifyi
- = 7 R '
first tWO functions of n particle in a l. m}nr;h sgonality of a pair of functions. (a) the
. R a POX (b) ,]- ¢ : &
: ! &) - . / 0 ‘t of the ¢ R g I, 3 T p—
is the area under the curve in (b). Since the h luct of the two functions. The integ
). 0 ositive and negative parta cancs t sael

other, the to

3wy
ey

tal area under the Rl &

o 20 OBSERVABLE AND OPERATORS

Y
-
When studyin
cqﬁurcnlents Of ]ts,‘s pgrothe . Sta‘e Of a__.__._"i}f_!gm’ one tﬁ.-x)lf_fﬂ”’,- "}':.lk"u v Rt
" ;1;(\ Each individuq] PAEE W Su~Ch as mass, ":Olum*?. }:"f;r:l'\mr;». momentum and
energ) al_property is called an observable. An observable 1

erty of the svstem wh
}rzfu]at.es that the state Vf‘hml‘comd,b(3 measured. Since ~quantum mechanies
?;ermine the value of v O' a_system 1s given by a wave function, how does one
de arious observable (say, posx(xb’ri“or'mom':nﬁm‘., or energy)

from wave functions.

any

The next po ,

lue of an Oll))sztulabt]es of quantum mechanics states that in order to determine

the va T rvabis. you have to perform some mathematical operation on a
wave function. 1his operation is represented by an operator.

¥~ “An operator reprgsents a mathematical rule that transforms one function
into another or one vector into another”.

'An operator 18 an instruction to carry out certain operations”.
or

“An operator is a symbol or sign that tells us to do something of what follows

the symbol”.
Consider some examples

: . . d -, od L

(i) In the differential equation I sin X = cos x. The operator is 3. If

differentials the function on its right.
(1) In the equation
y=Inx
The In operator takes the natural logarithm of x, transforming into y.
(i)  Inthe equation

y =x f(x)
The operator x stands for the rule: multiple by x the function
The result is a new function called .

to the right of x.

Scanned with CamScanner



' q8 Moo Physical Chemisiry

() T the oty egnation

The matvis opevator tranedoris onie v fo Ao aa b v

ot of instraetiona cinbodied 1yt Wi,
iy

I':\‘hlmlll\- an operalor b g
dIlWllW‘ IJi: \‘-;il““” b lll" ‘”HH uJ Iy

aperator and the operations v
(anathor funetion) '!4,‘,

Fig i
"'f’:l '

(operntor) (fanction)

The fune hich the aperition ia cavvied auf o aften callig
he Tunction onowhich the aper ~ gy,
'y

The Teft hand side of B 260 does pot mean that thie B Wik
by the operator [non sense an operator theretor dass ot Wi wgy ), "y

/

o

when it standa alone. For anpln‘- \/ 18 an uln:;‘nlln' which ju Heff i, "1.4
mean anything, but of a gquantity or nwmher pul der i, et i,
quantity mto s square voot, another quantily Ao bperatar, il i

othorwise obvious, is hereafter written with a symhol (7) overbia Tl “

|
i

il

operator A s symbolised by A, Opevators — are esbisiely bapiria,,
auantum mechanics hecause they provide the means for calealabing po.
moeasured values of observable properties of the system. Hoas he et ufar, A
auantum mechanies that for any observable in classical mechanics, e,
Imear quantum mechanical aperator. 1t s further postulated Hia
possible measured values arve the eigen values ablwined from 5%y, e
physical significance of the eigen values of any physical quantity is, tfal Hiey
are the possible results of measurements of physical quantity,

Algebra of Operantors
Although operators do not have any physical meaning, they can be added

subtracted, multiplied, and have some other properties.

Addition and Subtraction

m ki) . v $
_ I'he addition or subtraction of operators yields new operntors, the sum or the
difference of operators being defined by

(A £ B) f(x) = A f(x) £ B fx)
For example, let A be log, and B be a(—l;(-, and {(x) be x; then
(ﬁ % ﬁ) f(x) = (logu + %) x? = log, x> i:(*;l; (xz)
=2 log, x + 2x =Af(x)itﬁ f(x)

Multiplication

Multiplication of two operators means operation by the two operntors one
after the other, the order of operation being from right to left; for example, Af} f(x)
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neg l']\'l‘ ‘I‘ I 1 f Y
. 1 "‘! L] e {
Al LRRAT on ‘(\. In ' rag (l' "I' ' L §) ’
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fix) “\[ll f(\‘)l ,\ f(x) = |
. X l('r)

For example, |y L™ 2 fy g, 0
. Yo -

'i\. and f(x) Ay then
AB f(x) = a2 d

AP |
dx (0%7) = 4y

¥ - 2 1
| Iax") = 12ax
1\“ Q

Fhe square of an - operator

. . . L) ! M
sucrcss1\‘uly twice, i.o. A2 f(x) = neans that

AA f(x). F

the same operator s applied
or example.

A d
let \ = — - \ :
A= 3% and f(x) = 81N X, then A2 f(x)( Ll) # it
d2 . dx
or f(sinx):-_[i ‘ !
dx dx [ dx (sin x) ] = (;T( (cos X) = - gin x

Commutative Property

Operatio :
ence in nh-are performed on a function successively the
which the operation are performed; in other words,

not necessary that Af} flx) = BA f(x). For example, let A

d A
= [} 2
denote 3¢, B stand for 3x2, gpnq the function f(x) be sin x: then,

an N - d
ABf(x) = = [3x%, (sin X)] = o (3x% sin X)

= 6X sin x + 3x2 COoSs X
A'n a2 d
and BA f(x) =3x*. o (sin x) = 3x% - cos X = 3x% cos x

. If two qperators are such that the result of their successive applications is the
same irrespective of the order of operations then the two operators are said to be
commutative. In the above example, the two operators are non commutative. Now

let A stand for 3 +, B for 4, and {(x) be ax; then,
Aﬁf(x)=3+4+(ax)=3+(4+ax)=7+ax
BAf)=4+3+(@x)=4+3+ax)=7+ax

Thus, Aand B commute

Linear Operator

An operator is said to be lineax_' if its application on the sum of two functions
gives the result which is equal to the sum of the operation on the two functions
separately, i.e., if,
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A (%) + g(x) = A f(x) + A g(x)

or  A[CI)] = C - A f(x), where C ia constant

Examples

d m d n
. d d omo ey === (ax™) + == (bx
(1) dx 18 a linear operator because 7y (ax™ +bx7) =y ( dx )
.« g . ¢ ] »
(11) \[, square root, is not a linear operator because

VIx) + g(x) # V&) +Vgx)
Commutator Operator
For any two operator A and B, the difference A B - B A, which is giley

denoted by A B - B A or [A, B] is called “commutator operator”.
If A and B commute then [A, B] = 0, where 0 is called the zero operator whic},

means multiplying a function with zero.

A d :
In the earlier example, where, A = dx B8 = 3x® and f(x) = sin x, the

commutator is obtained as follows
[A, B] f(x) = [AB- B A] f(x)
= (6x sin x + 3x° cos ) — 3xZ cos X
= 6x sin x = 6x f(x)

or [A, B] = 6x

The Operator V and V2
So far we have given the examples of simple one-dimensional operators viz.

d
dx’ 4x, etc., which operate on functions of a single variable like f(x) or f(x) + g(x). But

there may be two-or three-dimensional operators which operate on function or more
. . Jd @ 0
than one variable, i.e., f(x, y, z). Thus, the operator =7 By + 5 when applied to a

function f, where f stands for f(x, y, z), gives the results,
ox "oy oz ) Tox "oyt az
A very important differential operator, known as “del” or V-operator, or a
vector operator, is defined as,

_»d -»>d -d
Vel tiGmtrie
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where t = \]l Fhe quantity T iwequal to -1, beeome i(-1) = 1

On the basis of these rules, operator for other quantitiea can be determined

Thus the operator for energy is the Hamiltoninn (l‘l) nngular momentum s L Thease
can be cxpressed in terms of equationa (2.65, 2.66). As we know that the total energy
of a conservative system in classical mechanics 1 represented by Hoand it value
equal to the kinetic energy (T) andahe potential energy (V), 1.0

H=T+V
The corresponding Hamiltonian operator

H=T+V (2.67)
Thus the eigenvalue equation for the energy may be written as

HY = BY

Some common quantum-mechanical operators as derived from their classical
expressions are shown in Table 2.1

Actually the rules given here relatively the operators to classical observable
are only one of the many possible ways of constructing a set of rules. We call a gven
set of rules a particular representation (here the coordinates representation) of
quantum mechanics. The other representation is the momentum representation.
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| (lirectluu)
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axis)
Kinetio @nevsy
2
m /f\ hy
Y, e ~2
Szzm
Patential enersy
v \‘r )
Vs, v Vxy 2 (mul (x, Y, 2)
tlpllcatiﬁ)n\,
Total energy
A
. . = 2
H(Hmmllmmln) (=T+7¥ e
-—— VY
87" m \

Example 2,12

Ghow that if all the eige

A and B commute with each
ligenfunctions are Y, so that

n functions of two operators A and B are the
- A : s&:s
other. The eigen values of A and B a

functions,
represented by a; and b;

A =aity

and B W= by
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The elgen Mnctions of the opsrators AB are ot asnad
e L - Ay : 3
B = ABY) - Aby « b ko o .

Qimilarls

BAY, = A - r
! \"! "--r ' "”3“ vr’?._i"
since ab, = h g
d ] ¥
or A and B commute with each other

COMPLEX NUMBERS

2.21

A complex number ja one which containa [ '! or i as it 18 seually symbe -
s wo. o8 TOF 5
— | the (AT L s

Thus A + 1B 18 a complex number We speak of the real (A) and
post of a complex number_ |f

C=A+iB

‘1)
then the complex conjugate of (, called C’, is defined by replacing i wherever if
appears of —i. Thus :
C'=A-iB
The magnitude or absolute value of a complex number is defined as

ICI =(CCHY2= (2., p21/2

(11}

f111)

Note that the magnitude of a complex number is always real. Two complex
numbers are equal only if both their real and imaginary parts are equal. Addition and
subtraction follow the same rules as a for vectors. That is the real and imaginary
parts are added independently. Thus if Z,=x; +iy,and Z, = x, + iy, then

An equation which will often be used in dealing with complex numbers s
Euler's Formula.

i _ - )
€ =cosa+tisina (266)

An equation of the above type (Euler's Formula) can be derived by expanding

each of the quantities '*, cos a and sin « in a Maclaurin series. By equating the
power sinus expansions it can easily shown that equation (v) leads to an identity.

2.22 PARTICLE IN A THREE-DIMENSIONAL BOX

We have seen that a particle moving freely in a one-dimensional box
(potential energy v = 0) serves as a very convenient model for several types of atomic
and molecular systems. Calculations, though approximate, agree fairly well with
observed results. Electronic motions in atoms and molecules, are, however, three-
dimensional and a three-dimensional box model should be more appropriate. Though
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- e to some othep A
are complicated du f,%r
¢« and molecules are ©
| ) 3 £ s L
clectron motiens in atom

hanical treatment of a ging], P

1 m a ti(:lh
j u um-mec g \
1’-'1 UE rep hn\\' fﬂr‘ ri‘.f-‘lllt-.“ 0l g an

; t.
: » of interes
moving in a three-dimensional box are

Let us consider a particle of mass Z
™" moving in a three-dimensional
rectangular box having zides a, b, and-c
along x, v and z-axis as shown in
Fig.2.16. The potential energy of the
particle moving inside the box will be
z£ra. The remainder of gpace outside the c
box will have infinite potential energy.

The potentia] energy at the boundaries of é
the rigid walle will also be zero in order
o  avoid discontinuity of the wave

—— x
function, je. : b
Vix, y,2) =, a
for0<x<a,0<y<band0<Z<C Y o
Fig.2.16 Particle in a three.
Vi ¥, 2) = = elsewhere dimensional box
The Schrodinger wave equation
for such Particle moving within the box
18 given by
fi§+@+7+8“2mm=o (2.69)
X" y° 5y h
& £ 2 :
or (Tzi-:o*z-l-% ‘P+812mE‘~P=0
X" oy° 52 h

Operator, [t ig
e functjon :
ePending on jugt s coordinae 1 D¥(x,y,z)ig q Product of thege function, each
¥y z)=x Y6y Zgy 2.71)
Since

Fp 2 Mmay be Written ag
d
\2 =YZ \2
- (a)
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U apparent thay
CaCh term on the LK

of e quation (2.72

ua S .
.\‘lﬁ\‘ \\"."i \"k! I“\\\ai 4 ‘

M

D s a function of

\.“ u;tt'\\\ .\_\\
AN tk‘! XQ §
@ { 7
Por axample, if x is : Qual to & conatant quantity | - ‘i‘:‘l*t l‘
N = \ oA N \;&‘."‘\\1 “\\‘i v _“1{ ) a k 1 \ }1 ‘
r‘rwf"‘ "‘“ ) ~ 5\,;“\\ \\‘\“ . « s h* \t‘ ‘ .
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n ; X ol 1% » s
NARELY O donstant Sx'm ANt quantity. Let thia
N ¥ nstant be | ——

Qunverts the
E Nl 3:4‘\\1‘;\

Sumilarly, the se

-
nt. Thi

s)&:’ o \\‘:\A$:~ e SR

s \ N
ardinary differentis Particle differential o

N .
1 &% _ Sx™m
Y ol "o By
dy h
“"’.‘ ) 2
1 &2 8x*
:: > 2 =—- 2 E’? ‘) T
& gz e o .
» - D
Equation (2.72.a b, and ¢) can be rearrans ged to give
2 2
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l, ”~
" ol Nkl l.l(('))
By =
I{ i \ Hn :“ l" "‘ ”
\ ¥ b
||'.." "
‘ X b Ik that
It is clear from thes equatt (2.75)
Al
IR DM D .
; as the equation g,

']N\ Hn"“‘
.,,untinnn !

One,

(2. 74a-¢) in nay be written aq

yopgquations
the ©q lution of those t

lach of
dimensional box. Therefore, the 20

';,‘ ny ::\‘)

(276-{1)

s n\.n,\-‘) (2.76-b)
\ hs b s2im b
5 n,na (2.76-¢)
2 = oS
2, 2 -
nch (2.76-a)
and E, =——%
) Sma”
2 2
. Dyl (2.77-b)
Y, =T -39
Y 8mb~
2} 2
E =z (2.77-c)
Z 2
" 8me

where n,, n, an n, are integers, excluding zero. Thus, thee is a equation 1s a quantun

for each coordmate The total kinetic energy of particle from equations (2.77 a-c) js
given by

2, 2 2 22
n‘h" n, h Zh
E - ' D] + ‘ 2 + 2
8ma~ 8mb”® 8mc
gf 2 2 _8
h nx nV nZ
E t5tg (2.78)

~8m ;Tz b” ¢
The complete wave function for the particle is given by

Y =Xa Yoy 2

v on (5) Ao (32) B ()
¢ Bl (32 w3
or w=\[ sm( )Sm( )(an)
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‘r]‘t l\‘\"(”'l ( I b | ‘
- ‘-.‘i"l‘ o at W\in s 3% ) ¥ V
‘fh"r‘:“ " ‘\::;i'r.-r-va:\l‘v tey 1’! “' “T ‘ ‘hl -

alsoe known na serp PO BTV Py

\ T AN
that m one-dimensional 1y bivol

I’H‘ pr"":(‘Y’l!' Y f f |}!_!4 WA ]‘\.”\_g faeipys ‘.{:” ot @ enye
em excopt for nodeas (in the lattar) and dogeneracy

un the former). Hepe the fctor g
v % the n(--.r”\ql.“..”,“” af factor ar conatant

The resulta of particle
n":“\\‘d to the flill(\\\‘lllg; Points:

M A three-dimensional hax are of interest mamnly with

nhke 2 clagaies
() Unlike the clagsieq) predictions,

constant, but g a funcm e probability of inding the particle |

mofx, v and z-coordinates

(i) The probability of finding the
depends upon the e

1

particle 1n a particular portion af the t

nergy of the particle.

(iii) Only certain energy |
lowest Kinetice energy

iR

OWTIS' related to n are allowed, others a not allowed. The
18 given when n,=n,=n, =\
b4

]

s _ 3h*
‘111 — 2
8ma“

Example 2.13

> 1 " oy .
Determine the :o“est kinetic energy of a particle in a three-dimensional box
N a1 Q i 5 - ”
of dimensions 0.1 x 10™° m, 1.5 x 107 i and 2.0 x 107" m

Solution
9 2 D)
t) - -
Nl
2V 2T
Sm a b c‘)‘

In lowest state, n, =n =n, =1

~N

(6.626 x 10742 [ 1 ' | |
= -1 5.5 + 7 ) + ® ) ’\
8x9.11x107 L 0.1x 10792 (15x 102 (2.0 « 107 )2 |

E

=(6.626x10‘3“)2X 1 [ | IS ]
8x9.11x107 " 10730 Lo.)? " (15)2 " (2.0)2

=6.067 x 1078 J

2.23 DEGENERACY

In the case of particle in a one-dimensional box, the state of the particle could
be specified by specifying energy of the system. All of the energies and eigen
functions are different. For the general 3-D particle in a box, because the total energy
depends on not only the quantum numbers ny, ny, and n, but also the individual

dimensions of the box, a, b, and ¢, one can imagine that in some cases the quantum

-
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might b
he apme energ

e such
y 0

nl)ﬂ“m

jeld t ng,

numbera and the 1

/ . .
n.. n, and n,) would'y ig cubical i.e,, a =} =
Ny, Ny 2 o if the box is cu ' b=¢ th
ed as: n

the

o jon rise
: onting situatic
An interesting prcn(:nl.

¢ 2 (1
\”nl't"'](‘n are re

n,my n,nz,
8 . _'.‘;'ﬁf.tf)sin("y' )sin( ,a )
;?;' 81N a a (28())

’i\,ﬁ

functions and ¢

s =
Vixy,2)

2 ‘ 2 2
E = -—l]""z’ nf + ny + nZ ) (281)
©gmash d th
on a set of constants an e sum of )

e quantum numbers adds up to the samee “Qug,,

The energy depends
mbers, Or if the quantum Numbepg th tOtalaj

quantum numbers. If a set of thre

nu
another set of three quantum - S o i
exchange values, the energies wold be exictly the even Roug thmsel"&-,
1§ condition 18 ' Ay, Vi

. energy are calleq Iy
i tions that have the same . de Sy,
independent wave functio ted by the number of different Wavier;erate, ]i

specific level of degeneracy is indica \
e two, the en - Tuney:
that have the exact same energy. If these ar ergy leve] ig 4 CtlUn;,

(doubly) degenerate; if there are three different wave functions, it i thlzo.fold
e-fol

(triply) degenerate and so on.

functions are different:

Let
n, ny n,
B 2]
8ma
h2
2 1 1 E =6
211
8ma2
2
L 1 : 2 Ejp=6-— D)
: 8ma

Ej5), Egy; and E| 12 have same energy, even through each energy observah)
| rvable

corresponds to a different wave fupncti i
nction. This value of i
Id)zggzx:leexl"a;i. Thenfe‘ are.three different wave functions that haigezﬁy e !
wave functions may have different eigen values of other o‘ss Samilenefﬁ-
ervable.
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"::Hl = w-l‘._‘_:; (25 4 h')
S8mg” ™ 1+ 1) = 27 . :---~§

'l‘hiﬂ 18 an - ey . S
functions have ng “":\‘::\‘(1\‘11\' t“:i‘l:\‘*;(‘\tlonm] degeneracy  The corresponding wave
exactly the same. I we reCORNIze 1) “:‘ “_““‘“‘“‘rv “‘\N their energy eigens alues are
level of degene M Eisy and y

TACY in thig eXample |
quantum states hole,

Wwing to the same
Degeneracy depends upon the
incn}:‘sug, it‘\‘i dl\gf‘n(‘

racy
levels of the 3. par

‘115 also have t
YeCOmes four-fald The

energy leve
SYmmetry of the
also inere
ticle in 4 box

he same energy. the

number of differen:
lis known ar degree of drgemerae
Atoms and melecule
Ase’ and vice ve

= If symmetry

rsa. A dwagram of the en

¢ ..i:‘
imensi ' : 18 shown in Fig2.17. For a particle m three.
dimensional 1303\, t.h}:a degroe of degcnomcy can be removed by a shght distorton of
the system, or by UusIng a box of different dimensions.
30«1
[ sy 33 (6.0 D5, DAL 8
254
A p==—meaa G2 DG L)O3. )02 DR DAL
A 124+ 2,2,2)
5 U 2,2, D2, 1,2(1.2,2
"
E _
=
m 6- ———————— (17192)(L 29 l)(z’ 1’ 1)
34+ -- (13 19 1)

(n+ngtn,) =
Distinct energy levels (with n, n,, n, labels)
Fig.2.17 The energy levels of a 3-D particle in a cubical box
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Example 2.14 | — of a particle ip,
. . < a
the energy levelg 2

of
Determine the degree of degeneracy

cubica] boy.

Solution jons is given by

: ] dimens
Ener gy of a particle in a box with three equa

2
h 9 2 2
E= 5 (ng+ng+))
a
2
17h
E bl D)
8ma“

2 2 2_im
nx+ny+nz—ll

rms will be 17, are
The possible ways, in which the sum of these squared te

n, n,, ng
2 2 3
2 3 2
3 2 2

Thus, three sets of quantum numbers give the same energy. Hence, the
degree of degeneracy is three, i.e., the energy level is three fold degenerate.

2.24 AVERAGE VALUE

We know that the wave function ' 1s a state function. It contains all the
information about the properties of a system. In order to get information about the
properties of the system from the wave equation, we can use following equations

provided the state function ¥ is an eigen function of operator A
A‘l‘i - al‘\{ll' (2.82)
When a quantity associated with an operator A does not have a definite value

In a given state ‘P, the following procedure can be used.

It has been seen that the absolute square of the wave function jg g measure of
the probability of finding a particle within a certain distance element dx and its value

1S given l?y o (.\')_. W(x) dx. If a large number of measurements are made,

positions will be the.mean of the sum (integral) of probabilities of 4] the positions.
This average value is also known ag the expectation valye. Mathematically, it is
represented by the symbol, <>. Thus, the average value of position of 4 particle

<x>=,"'~}"x\’l\"dx
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© h < \" \{'\'
R 2 tha
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only 1WEhe wave function jg po PG 1o the k
S Normali s e phyvgie
aliseq Y8ieal property. This & ]
~ ced. Oﬁherwis@ the :Er\} ..Thxs formula holds
- ) SHoOwIng formula is used
\ ais use
S Y §
KA>= 2 L
. "
J ¥ g g (2.84)
- A

However, i§ W S an e
CA> = t

: eighenfunets .

Q. Q e < “L“On fatisfine . " =

' ey the av orage value AUstying Equation (2.82) we shall find
\\\.‘\z\“\“&\\‘.:\\{\\\g '\\\ e\‘\\‘-\. \\\\\\Q < N ¢ X< ;\ -

rvation. > will be equal to the eigenvalue ‘@’
Now, the averae
the expectation value of the me wES A dgrribed hiyja fanction P i
- € Momer - . -
Hientum operator. In one-dimension. this becomes.
a0
<P, > = \ WA 0
By L. 2 (%) Py Yix) dx

.*&

I .

= YOG gY@

PRan

_l‘ \,{l'-\d\*]‘\

MV WRTE dx
Sumilarly, average energy of a particle can be written as
a0
%
<E> =) Y H¥d:
-
- ¥ 9
. h- 9 >
- Ju‘, L_ 53—V +V |Pdr
Sx"m

The study of expectation values is very important, because all the condusxm;s
of quantum theory, representing various physical properties, can be deduced by
selecting appropriate operators.

2.95 POSTULATES OF QUANTUM MECHANICS

- = jong S - \.
A number of postulates of quantum mechanics have been introduced as they
have been needed.

: -3 1 ; ibed by a wave
v ha ystem-1s described Db}
1. The stajuwﬂmm—wgm .

: : 1tes of
function W(x, ¥, Z. t) OF Y(r, t) that 18 the_function of the coo 1nates O
uncuon Ny X )

; : x ° . e system.
m—e_and time. It contains all the information known about the sys
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m mechanicg by a line | for any pair of functions thag
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and w,

operator satisfies the following condition .
ayatenm. 2

NN Every ‘
“very physical property obhsery

which deseribes physical states of

.‘.‘1':;\\‘*"2({\ = ,[‘{'2(;\ ¥y dx

~ ~ &
', The only possible values which a me
are the cigen values a, of the equation.

asurement of the property A cap vied
: Fielg

4’\\ \l" - a‘l}Il '
g with the observable.

where A is the operator correspondin
A
ssociated with the operator A is given by

3. Average value of the property A a

+x0
<A>= I ¥ Awde

-

where V¥ is the normalized wave function for the state.

+x

¢ Awde
-0

or <A>= .
J. 'y de
-0

where W is the system, state function.
6. The wave function of a system changes with time according to time-
dependent Schrodinger wavz equation.

S — R
-;—ﬁﬁ—(‘—a‘t’—?—t—ﬁ JYxy, 2 t)

d or derived, we can treat these postulates
in the same light as the acceptance of Newton's second law of motion. This classical
law is accepted without proof on the strength of its agreement with experimental
results. Thus the entire justification of postulatory basis of Quantum Mechanics Lies
ultimately in the agreement of theoretical results with experimental ones.

These postulates cannot be prove
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232 THE RIGID ROTATOR

By a rigid rotator we mean, a two or more particle system
distance between the particles fs assumed to remain fixed during vetatn il v
vary with time. The theory of such a rigid rotator s wseful w deabng wiath
—otational spectra of diatomic molecules. 1f the wasses o the electrons angd

vibration of the nuclei are ignored, a diatomic molecule may be compared
rotator.

A VAR

L. Classical Treatment of Rigid Rotator

Let us consider a two-particle rigid rotator hike a diatomic wolevude with
masses m; and my and geparated by fixed distance “r’. Assume that the contre o
gravity of the system is fixed at the origin of our coordinate. Let the dwtance of w,

from the centre of gravity be r; and distance my be vy, then

mlrl - nl2r2 \: L B 3Y

3.120

or r;+rg=r
From Eq. (2.125) and (2.126)
mr, = mgly

= 1112(1' - 1'1) (-‘- LY + Vo 7 v)

“\21' - l“-_).l"
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A B
atomic molecule,

] for a di

Fig 2.23 Rigid rotator mode

or m,ry * mery ¥ mer

ry(m, + my) =mgrl

Ml

P, =
" my +my

-

Similarly,

myr

l" :
27 my +my

he C.G. is

) of the rotating body, about t
(2.127)

The moment of inertia (I

2
-

9
I =mr]+myr,

n "
=X mxri"
1=1

Substituting the values of ry and ry In

mor ]- m;r )2
— ——————— + m‘ ————————————
I T ml+n;2/ 2 ml+m2

n12 2 2+ ml 2 2
_lnl r m2 ml+m2 r

2.127, we get

m; +my

Taking m;m, as common.

my +m, }rg

=mym, [

= 2
m‘mz[ml+m2]r

mlln2 2
B [nll +m2] r
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lR"‘ohH‘(‘tl mnee; '\"«h'n M bore 4 t r
o boa . B sipatit sream
‘_q“‘_’i! redured mase | in | ek A & Pa munetad inea 4 ding . o e
s N QGUART R mev b nica is . k i seiié pAPtHis @
an compRIPd 10 two particls ) ‘ 7
Since the distance baterann o : . N g
soro. Therefore, the rigid res TOER he two particle w fixed, the ¥ 5 @ ’
ll‘ ‘ rotator has only K E. The R F af rotation, (1) u U 1
)
!l\ — _‘_ T ,:'. l ._)
2 ]‘\l ! 3 mQ“'w
here vy and v, are the R T Thee N
“h(- 1 2 h. hn!‘ﬂf \(31()«;]“(»; of massaa m, and m , reapectIv sly Y heny Y
r . e . X 5 )
terme of angular velocity, we can write
T-‘-lm(u22+— 22
2 l rl 2“’12{) TE
=1 9 9
-
-1 2
=g 071 (2.129)

where © (omega) is the angular velocity and I is the moment of inertia about an axis
passing through the centre of the gravity and normal to the line through the masses.

Since th({ angular momentum L, is related to the moment of Inertia. [
through the relation

L=ol (2.130)
Therefore,
T =07 = ——— D) :
2T = (2.131)
_1 o 1e’* L
T =501=53=7"=7]

Quantum Mechanical Treatment of Rigid Rotator

Now, let us consider the two particle rigid rotator from quantum-mechanical
stand point.

N.B. The molecule is called rigid rotator because it is not compressed in any
gituation, because we are dealing with an ideal system.

o ——————
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The rigid rotator in (hree-dime
Fig.2.24 The rg

onaionnl Sehrodinger wave equation f,,

It will be recalled that the three-dim

a single particle 18
2
. 8a'm . =
vhp + =g BV 0
constant and this constap,

i d rotator will be , .
rigid quation to the rigid rotapq,

The potential energy of the o ahove
value may be conveniently taken as zero. Applying !

and putting V=0
2 ‘
8 (2.132
Vz‘l’ + '%QE E¥=0 )

n operator was given in terms of spherical polar coordinates,

G 0 1 0
g_1 0 2,9.) _ 1l Cgine. .+ :
v -r2'6r(r or) " ¥ sin0 507 0" ?gin®0 0p”

The Laplacia

r

For the rigid rotator, r has constant value, Since r is constant, factors

involving &/ér will be zero.

19 d 1 &
TN TOE | P T
r? sind = ) * sinze (7(1)z

Substitute this value in equation (2.132), we get

1 @ ( . azw) R
——— 2| 8in B + R |, =i ¥Y=0 2.133
r? sing P 8 r2sin?0 y¢2 h%r? ( )
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il
i i Z
\ Il 20w
dy ‘ Hn fl L win” = m

win (0l
nnd y (l('( w0 g %

’ / 2
: - Py

or min 0 ( aind ‘“ } ¢ [ win (= m
' Yoo do

471 Il
Patting b = l"'
1

y
N “”l ” (‘ ( (]Y) " 5 {'” ” - m —3 O
01 Va0 ain 0 40 s

Multiply by Y/sin” 0
2
| d (]Y) » ____nl'____) Y = 0
eino' 30 (““’ 039 ) (P 4in%0
rentiation indicated in the first term and remembering

Carrying out the differe
that (sin 0) (%) must be differentiated as a product.

2
] d2y dy ( m )Y-O
. ain @ » =—= et | B - =
3ing " 8in® ,102+c°80 a0 " P ~5in%

The variable in the equation i8 now changed by putting

z=cos 0
z2 = cosz 0

ginZ 0 + cos?0 =1
Bin‘£0=1—c0920=1—z2

L (o,
sin0 do \ &in de p-

1
or gin 0

1 d dy m
L sino‘de( sin” 0 d9)+(ﬂ-1_22)Y=o

N——~
+
~—
ho~]
!
~~
ok
IB
N
\./
\_/
e
Il
o

(sm 0 - (-8in 9)((%
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Quantium Machantea and Atomis Strocture 128

or a1 : 2N 0 on g AV s . d dAY 1
(‘1 iy 0 “” ’\? :
) s “\
i | o0 - 1 W 0 d 1y f 1\1) \
’ dn i ‘{ {! \ 4 }‘1' {1
?
. dy ;
oY 200 :
» " ¥4 \ (‘ b 5 ¥ 2
’ } -2 )
bl 2 o (!..\‘ ' ’ )
‘ » 008 Yo 4 &in” 0 ‘l ‘“ ,( m° .
dz  d» .“ ‘ 31Y=0
\ 2
2
or s]““! 0. Ll_\T, 9 . dy ‘ n\').
R R J¥=0
- ',‘<
dL’\.
1 - p2 Y 2 N
1=<w). z--2z~(~l»- e O & as
dz dz -2 Y=0 (2.143)
-~ &
N ¢
L) ‘ r
(1_?.)-———1-_1)' d\ n2 N
T 22 —— 4 ! - )
dz? dz H - a 2)}\ =0 (2.144)
-z
B=1l+1)

Equation (2.144) is simi
Pz = P?“(co‘% g)(-—‘ 1\: :)) 1'8 similar to Associate Legender Equation and the function
1 .,I ) = Y(0) is called Associated Legendre Polynomial of degree “I" and
order “m -

d*P™(2) :

Nl d .

(1 -2z Iz 22, P)'(z) + (z(z +1) - ﬁ) PT(2)=0
It is a well known equation of physics.

8nlIE
h2

B:

2
I1+1)= S“th

= h21(l + 1)
rot 87‘21
While considering the rotational spectra of diatomic molecules , the quantum
number is usually written J rather thanl
9 .

h s
Ej=E.q =-é;2-1' J@J+1) (2.143)

This relationship gives the eigen values of the energy of the rotator and J is

known as the rotational quantum number.

e e
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Wamber o and m 10 will be papem berd!

nnmhum 1t

M

Joaml

whaen o « o for axsmpla, then m =
Blaten of the gystem for J = 2. Au
“auation (2.146) there nre thus
“nergy. In general for any value of J, ;
mentioned here that this degenericy .
magnatic fisld, and henes in the prewaure hnt
the rotational spectrum. 1t should be ”"W! t ,“';/nl have 74
It s once ngnin seen that o rotations ”]”““i“ I('imm
BErves as an approximate model for "h”, " ;ll unt
two energy levels are defined by rotutions”
energy difference between the AlS, in given by

ll “' l‘
Jeehaen'l

five different :
(here #re (e
w removet
of n magne
J can have

Joulesn

2
ALy = h”l TR SIEL AR

8n

There is a selection role in rotational ppectroscopy
A =41

We need only consider transitions i

transitions, being spectroscopically forbidden.

Equation (2.145) expresscs the nllowgd cnc} p
spectra are usually discussed in terms of wave number,

v = AE/hc
E;y n s
or GJ=T{E:M.J(J4‘ I)Lm
or v=BJ@{ +1) em™?

where B, the rational constant, is given by
__h_
" 8nlle
where
h = Planck, constant
¢ = Velocity of light, cm 8~
I = moment of Inertia
where J = 0, ground rotational state no rotation occurs.

1

After absorption of radlation J = 1
The energy absorbed will be

€j=1— €g=0= 2B-0 =2B cm-l
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. . &4 motational Fig. 2.26 Allowed transitions and observed

rotational spectrum.

:-\ ch;:;-'ﬁcreristic motion often observed in physical system is the simple
harmonic motion (vibration or osallation). It is a back and forth motion along the
sme path, 1:1 which the displacement from an equilibrium (rest) position varies
riodically “inh tume. The vibration is simple harmonic if it has a fixed time period
i an htudg. A pendulum swinging through a very small angle and mass
schad 10 & weightless spring, restricted to move along the same path, are close

roximations to harmonic oscillator. Atoms in a molecule execute vibrating motion
ong & bond with bond length and bond angles changing periodically, these

stitute tiny harmonic oscillator.

-

P
%'; o M

W
(3 5
W 6
™
H
'r3

{0
‘ vy
by ‘]
>
[5

3 I
3

|

X" When s particle oscillates about its mean position along a straight line under
the acton of a force which (1) is directed towards the mean position and (ii) is
roportionsl to the displacement at any instant from this position, the motion of the
partcle 13 said to be simple harmonic motion and the oscillating particle is called a
simple harmonic oscillator or a linear harmonic oscillator, as the displacement is

- A . |
expressad in term of single coordinate.

b("

The harmoenic oscillator is an important example of periodic motion because it
serves as an exact or approximate model in classical or quantum mechanics. At
temperature above OK, the atoms in a crystal are temporarily displaced from their
normal positions in the structure due to absorption of thermal energy. Consequently
interatomic forces obeying Hooke's law act on the displaced atoms. Under the action

Scanned with CamScanner



124

Miiidurn Ifhy,[ral  haptistry -

ite normal position whje), it 1)
v )'?

it

ld pho ) ’
" Brations of ench nbom are .

’ “"”l“r

o e _ vil
“i restoripe forees each slom j
4 I“h”“' the v

;::""“"‘ poeitinn in the el nlf‘“f“""*'
s ol o simple harmone (i illator: . the potentinl

Mo for we hsve conuldered anly the ;“?wgu wlll)t‘l:l‘;i”‘lli'f oscillator, :;:'r‘i; "V‘ N
“hatant Howeyer, 1n problemes hike "hmw.”f ]ml!ljf ynples are given by "/“‘1;; lj,‘—" V)
Varivs with displacement coordinste. the “,,np'l““ "y:l,‘. |lul Jattice, To u‘ndv‘n I"'"”m of
Datomic moleculen and motiong of 50 ptom 1n ,(,/'u.““” 'lnt'(:hlmjr'ul h:oj"’(ld the
vilirations of molecules we peed W “”""’”“”]d e ’“h“., 'mwd U() l'(:‘/ilz‘w L‘h;:nl',l““”'t of
8 haemonic oscillator, and a8 |,,,(:|,“r:)|111:1 for that we nee # Claggioy,

brantment of n hisrmonie aseillator.

] ™
(1) Clugsienl Harmonie Oscillator

The simplest, exsmple of harmonic P,__,0,73,7)/\6'\0’.
aseillator is n muss connected o o will bY
mesn of an jdealized spring, 0 the
sbeence of gravity, As shown in the
Fig. 2,27, the displacement of the mnss 8 ' .
shown by its x-coordinate and the origin. O X
of the coordinate system s taken st the
cquilibrium position, The mass oscillates
shout its equilibrium position, and the
motion is ssid 1 be harmonic if the force : -
¥ due to spring is directly proportional 0 the displacement * from its equilibriym

position % gy Which we can define as the origin of x-ax1s.

Fig, 2.27 Mass m connected to a wa)
by a spring in the absence of gravity

e (2.147)

The negative sign comes from the fact that the force F is opposite to the

displacement x, The probability constant k, referred to a force cottstaity1s-small foe g
weak apring and l;z.rge for a Htiff apring‘ Recall from phyBlCS that a force can be

expressed as the negative derivative of the potential energy..

dVv

—‘-‘

- =
N dv =-F . dx (2.148)

The work done in stretching spring to a distance dx is equal to the product of
foree times distance, This work is stored in the form of P.E. (V). To get the overall
charge, one has to integrate the equation (2.148).

dVv :-I:F~dx
\' =-I:F'd.x

% =J’:kx'dx

,__._-4
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|
V hex
y Iy (2.149)
Now necording 11y, "econd law of 1y, t
otion
I' = wn
iy n ) (2.150)
here na8 Lhe necelorntioy, I
W here ¢ O Mnanp 100 i i y )
and (2.1560), we got. M mubjocted (4 n force | Comparing Eqs. (2.147)
mn = o kx

b

- v

L. 2
m ) SR e k‘ X (l ‘x
de? X ( e Ame—p

dt?
2
dx ( k )
dt? ~ 7 Unx JX

or sz +( k )
dt? mx ) =0

It is a second order diff, : .
B erential ¢ . .
equation is quation. The general solution of this

(2.151)

X = A sin (3)1’2 t
m

(2.152)
Also from simple harmonic motion, we know that
X = A sin 2nvt (2.153)
Comparing the above two equations, we get
A sin 270t = A sip (‘k-)llz t
m
e
Vowr 2n m
- _1_ |k R
- -1 1 k
& v (cm )=Tm = (2.154)

For two particles connected

to each other through a weightless spring (as in
diatomic molecular), we use the ter

m reduced mass, p

- 1 k
o(cm—l) =% E (2.155)

Egs (2.154) and (2.155) gives the vibrational frequencies of a linear harmonic
oscillators. If we take the potential energy to be zero where x = 0, then the path of the

e,
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S . N )
motion will be paraboln (Fig.=-#
3 p 0 |
is potential ( Be=Ve=gks ) whi

-
..-paf"“
- -

r O : tor
-X \ for oscillale
) .abola curve
Fig. 2.28 Para
; i1lator :
nic Oscil for linear motion of ,

(ii) Quantum Mechanical Harmo e equm,ion
The time-independent gchrodinger wave ~
s follows:

particle along the x-axis is given &

2y 2
d? | Srim g vyw =0
, h tial
gy of the particle, y is the poten
le, which is & unction of x-alone-

ator along the x-a
displacement X,

(2.1566)
energy and 'V ig the

where E is the total ener

wave function of the artic
p v frequency © under 4

) . g with angul A
For a linear oscill 3l the potentiﬂl energy 18 given hy

restoring force proportional to the

_1, .2
From classical treatment of harmonic oscillator, we know that
1 k

p—— e

_
V=9 2n VM

k= 47t202m

hence V= 21r2v2mx2

Therefore, the Schrodinger wave equ

(2.157)

ation for this system is

a2y 8r’m 292
-ax—2+—hT(E—2nvmx)‘P=0 (2.158)
and the problem is to find the well-behaved functions which satisfy equation (2.158)

and the allowed energy levels. Equation (2.158) may be written in the form

a2y 8r’mE 16n"v’m’X®

dx? + h? h2 ¥=0
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o
d-\y ] 2 A
or e T L 'T?l‘i - o2x2 |\
dx l‘u X I' = (‘
”,1 l(‘lﬂ“\)ztnz
) h“! and o= n_vin

Here

0
d=\y 2 .
1x2 ! (@1%)']&— o’y Y=

dx h B (2.159)

In order to simplify Eq.2.
which is related to x by the eq

q=+a X

159), let us introduce g

) dimensionlesa variable
uation ensionl able q,

o fed
and from Eq.(2.160)
dq _
dx ~— V¢
hence
dix = diq\la (2.161)

In order to arrive at an ex i 2/dx2
: Rt ; pression for d“/dx®, Eq. (2.161 t b
differentiated again with respect to x. 2 & 3 TRt e

d® d(d
7= (Ve

Substituting the value of d/dx from Eq.(2.161), we get

a2 4 d
a2t Ve (35 V=)

dx?
d2 =a d2 2.162
I dq2 (2.162)

Using the relationship and that given by Eq.(2.160), we may write Eq. (2.159)
as

a . q=\]?1x, x2=q210t

2 2 2 2
.d\P+(8n mE oq )\on

dq? o«
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e
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-
e

-

.
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4y ?{;}_T,’}.. -
or 3 ¢

= i
7
('fl-‘ h
7
ivide this equation by

L. smE _ Jw=0

3 ] /

) X
- ( 112»'m:’h. we get
Substituting the value of a = 7%

2 4 2 ' =
,144"[23,@-(;2)!' d

dqg* h24zu°m
a2y (2E 2).,;:0
— ——,—-q

or dql (»h

2E

Let B=Ty
2_2_‘;.:+(ﬁ_q2)‘¥=0
dq
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