
ApPENDIX A 

LEGENDRE POLYNOMIALS, ASSOCIATED 
LEGENDRE FUNCTIONS AND SPHERICAL 
HARMONICS 

AI. LEGENDRE POLYNOMIALS 

Let x be a real variable such that -1 ~ x ~ 1. We may also set x = cos B, 
where B is a real number. The polynomials of degree l 

1 d1 2 I 
Pl(X)=211!dx1(x -1), l=0,1,2, ... (AI) 

are known as the Legendre polynomials. An equivalent defmition of Pz (x) can 
be given in terms of a generating function, namely 

00 

(1 - 2xs + s2)-1/2 = L Pl(X )sl, lsi < 1 . (A2) 
1=0 

The Legendre polynomials satisfy the differential equation 

[(1- x2) d2
2 - 2x~ + l(l + 1)] PI(X) = 0 

dx dx 
(A3) 

We have the recurrence relations 

(21 + l)XPI - (I + 1)Pl+1 - IPl-1 = 0 , (A4a) 

2 dPI l(l + 1) 
(x - 1)- = l(xPI - Pl-d = (PI+! - Pl-d (A4b) 

dx 2l + 1 

which are also valid for the case I = 0 if one defmes P -1 = O. 
The orthogonality relations are 

+1 

j Pl(x)Pdx)dX = _2_D!!' 
21 + 1 

-1 
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(A5) 
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and the closure relation is given by 

~ f(21 + 1)PI(X)PI(X' ) = 8(x - x') 
1=0 

(A. 6) 

The Legendre polynomial PI ( x) has the parity ( - ) I and has 1 zeros in the 
interval (-1, + 1 ). Furthermore, 

(A. 7) 

For the lowest values of 1 the Legendre polynomials are given explicitly by 

Po(x) = 1 , 

Pl(X) = x , 

1 2 
P2(X) = 2(3x - 1) , 

1 3 
P3(X) = 2(5x - 3x) , 

142 P4(X) = S(35x - 30x + 3) , 

153 P5(X) = s(63x - 70x + 15x) 

A.2. ASSOCIATED LEGENDRE FUNCTIONS 

(A. 8) 

The associated Legendre functions Pt' ( x) are defined by the relations 

They are the product of the function (1 - x2)m/2 and of a polynomial of degree 
(I - m) and parity (- )I-m, having (l - m) zeros in the interval (-1, + 1). The 
functions pr(x) can also be obtained from a generating function, namely 

oc 

(2m - 1)!!(1- x2)m/2sm(1_ 2xs + s2)-m-l/2 = L pr(x)sl, 
I=m (A. 10) 

with 
(2m - 1)]] = 1.3.5 ... (2m - 1), 

= 1, m = 0 

m = 1,2, ... 
(A.ll) 
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In particular, we have 

Pp(x) = Pl(X) , 

p/(X) = (2l- 1)!!(1- x 2)1/2. 

The associated Legendre functions satisfy the differential equation 

[(1- x2) d2 - 2x~ + lO + 1) - ~] pr(x) = 0 
dx 2 dx 1 - x2 

We also have the recurrence relations 

(2l + l)xpr - (l- m + I)Pl~l - (l + m)P[!:'l = 0 , 
dpm 

(x 2 - 1)_1_ = -(l + l)xpr + 0- m + I)Pl~l 
dx 
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(A. 12) 

(A. 13) 

(A. 14) 

(A. 15) 

= lxpr - 0 + m)P!'!:.l' 0 ~ m ~ l- 1, (A. 16) 

P1m+2 - 2(m + 1) (1- :2)l/2 Plm+1 + (l- m)(l + m + I)Pt = 0 , 

0~m~l-2 , (A.17) 

P/'!:.l - Pl~l = -(2l + 1)(1- x 2)1/2pr-1, 0 ~ m ~ l-1 (A. 18) 

and the orthogonality relations 

+1 J m() m( ) 2 (l + m)! 
PI x PI' x dx = -2 - ( ),611'. l+1 l-m. 

-1 

Inlportant particular values are 

pr(1) = pr(-I) = 0, m =f. 0 

[for m = 0, see eq. (A.7)] and 

m( ) __ (_)8 (28 + 2m)! 
PI 0 218! (8 + m)! ' l - m = 28 

= 0, l-m=28+1 

The first few associated Legendre functions are given by 

Pf(x)=(I-x2)1/2 , 

pi(x) = 3(1- x 2)1/2x , 

P?(x)=3(I-x2) , 

pi(x) = ~(1- x 2)1/2(5x2 - 1) , 

pl(x) = 15x(1- x 2 ) , 

pl(x) = 15(1- x 2)3/2 . 

(A. 19) 

(A.20) 

(A. 2 I) 

(A.22) 
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A.3. ORBITAL ANGULAR MOMENTUM AND SPHERICAL 
HARMONICS 

APPENDIX A 

In classical mechanics the orbital angular momentum of a particle is given 
by 

l=rxp (A.23) 

where r and p are the position and momentum vectors of the particle, respec­
tively. In wave mechanics p is represented by the operator -iV (with h = 1) 
so that l is represented by the operator -i(r x V). The Cartesian components 
of l are therefore given by 

lx = ypz - ZPy = -i (y!..... - z!.....) 
8z 8y 

ly = ZPx - xpz = -i (z!..... - x!.....) 
8x 8z 

(A.24) 

lz = XPy - YPx = -i (x!..... - y!.....) 
8y 8x 

Using the rules of commutator algebra, together with the basic commutation 
relations 

[x,Px] = [Y,Py] = [z,Pz] = i (A.25) 

we fmd that the operators lx, ly and lz satisty the characteristic commutation 
relations of angular momenta, namely 

(A.26) 

Thus the three operators lx, ly,lz do not mutually commute. However, if we 
consider the operator 

l2 = l2 + l2 + l2 x y z (A.27) 

we readily fmd that each of the operators lx, ly and lz commutes with l2, 

(A.28) 

As a result, it is always possible to construct simultaneous eigenfunctions of l2 
and one component of l, which we shall choose to be lz. 

Let us use spherical polar coordinates (T, (}, 4> ), with 

x = T sin (} cos 4> , 

y = T sin (} sin 4> , (A.29) 

Z = TCOS(} • 
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We then have 

and 

( . {j {j) Ix = i Sill ¢ {j() + cot () cos ¢ {j¢ 

ly = i (- cos ¢~ + cot () sin ¢~) 
{j() {j¢ 

{j 
I = -i-

Z {j¢ 

1 = - --- SIll()- + ----2 [1 {j (. {j ) 1 {j2] 
sin () {j() {j() sin2 () {j¢2 
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(A.30a) 

(A.30b) 

(A.30c) 

(A.31) 

The spherical harmonics Ylm ((), ¢) are simultaneous eigenfunctions of the 
operators 12 and lz. That is (with 1i = 1) 

1= 0, 1,2, ... 

m = -I, -I + 1, ... , I 

They are given by 

m [(21 + 1)(1 - m)!] 1/2 m 
Ylm((),¢) = (-1) 4 ( )' PI (cos())exp(im¢), 

7r1+m. 

m:::: ° 

(A. 32) 

(A.33) 

(A. 34a) 

(A. 34b) 

and have the parity (- )1. Hence, in a reflection about the origin such that 
( (), ¢) -+ (7r - (), ¢ + 7r ), we have 

(A.35) 

The spherical harmonics satisfy the orthononnality relations 

211" 11" J Yz'':m'((),¢)Ylm((),¢)dfl= J d¢ J d()sin()Yz":m'((),¢)Ylm((),¢) 

o 0 
(A.36) 

= 811'8mm, 

where we have written do' = sin ()d()d¢. The closure relation for the Ylm is 

(Xl +1 

L L YI;",,((), ¢ )Ylm(()', ¢') = 8(0,- 0,') (A.37a) 
1=0 m=-I 
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with 

6(0 _ 0') = 6(0 - 0'!6(</> - </>') 
smO 

(A.37b) 

The spherical harmonics constitute a complete orthonormal set of functions on 
the unit sphere. 

The Ylm also satisfy recurrence relations. Introducing the operators 

we have 

and also 

l± = Ix ± ily = exp(±i</» (±~ + i cot O~) 
80 8</> 

I±Ylm = [1(1 + 1) - m(m ± 1)]1/2Y1 ,m±1 , 

= [(I =t= m)(l + 1 ± m)F/2Y1 ,m±1 , 

I+Yl,1 = 0 , 

LY1,-1 = 0 

[ (l + 1 + m)(I + 1 - m)] 1/2 
cos 0 Ylm = (21 + 1 )(21 + 3) Yl+1,m 

[ (I+m)U- m)]1/2 
+ (21 + 1)(21- 1) Yl-1,m. 

(A.38) 

(A.39a) 

(A. 39b) 

(A.39c) 

(A.39d) 

(A.40) 

For m = 0 and m = I the spherical harmonics are given by the simple 
expressions 

( 21 + 1) 1/2 
Yl 0(0, </» = -- PI (cos 0) , 471' (A.41) 

and 

[21+1 (21)! ]1/2 
Yl,I(O,</» = (_l)l ~ 22l(I!)2 sinIOexp(il</». (A. 42) 

It should be noted that the equations (A.32),(A.33) and (A.36) determine the 
functions Yl m (0, </» only up to a phase. Since different phase factor conventions 
exist in the literature, it is important to carefully check this point in dealing with 
the functions Ylm used by various authors. The phase of the Ylm is chosen here 
so that: 

1) the functions Ylm verify the recurrence relations (A.39) 
2) Yl,O (0 = 0) is real and positive. 
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The first few spherical hannonics are given by 

Yoo = (47r)-1/2 , 

( 
3 ) 1/2 

Y10 = - cos8, , 47r 

( 
3 ) 1/2 

Y1,±1==f 87r sin8exp(±i¢), 

( 
5 ) 1/2 

Y2,O = 167r (3cos28 - 1) , 

( 15) 1/2 
Y2 ±1 = =f - sin 8 cos 8 exp(±i¢) , , 87r 

( 
15 ) 1/2 

Y2,±2 = 327r sin2 8 exp(±2i¢) 
(A.43) 

( 
7 ) 1/2 

Y3,O = 167r (5cos38 - 3cos8) , 

( 
21 ) 1/2 

Y3,±1 = =f 647r sin 8(5 cos2 8 - 1) exp(±i¢) 

(
105)1/2 

Y3 ±2 = - sin2 8 cos 8 exp(±2i¢) , , 327r 

( 35 ) 1/2 
Y3,±3 = =f 647r sin3 8 exp(±3i¢) . 

A.4. USEFUL FORMULAE 

Let r1 and r2 be two vectors having polar angles (81, (PI) and (82, ¢2), 
respectively, and let 8 be the angle between them. The "addition (or biaxial) 
theorem" of the spherical harmonics states that 

(A.44a) 

or 

(A. 44b) 

where x denotes the polar angles of a vector x. 
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Using the generating function of the Legendre polynomials [see eq. (A.2)] 
we also see that 

(A.45) 

where r < is the smaller and r> the larger of rl and r2. This result may also be 
written with the help of eq. (A.44b) as 

00 +1 ( )1 
1 '"' '"' 411" r < * (~) (~) , , = ~ ~ 2l + 1 ( )1+1 Y1m rl Ylm r2 . 

rl - r2 1=0 m=-l r> 
(A.46) 

We also have 

exp~ik'rl -,r2') = ik f(2l + l)jl(krdh~I)(kr»Pl(cOSO) (A.47a) 
rl - r2 1=0 

00 +1 

= 411"ik L L jl(krdh~I)(kr>)Yl~(rdYlm(r2) (A.47b) 
I=Om=-1 

where jl and h~l) are respectively a spherical Bessel function and a spherical 
Hankel function of the fIrst kind (see Appendix B). 

The development in spherical harmonics of a plane wave exp( ik.r) is given 
by 

00 +1 
exp(ik.r) = 411" L L iljl(kr)Yl~(k)Ylm(r) (A.48) 

I=Om=-1 

Using the addition theorem (A.44), we may also write 
00 

exp(ik.r) = L(2l + l)i1jl(kr)PI(cosO) (A.49) 
1=0 

where 0 is the angle between the vectors k and r. In particular, if we choose 
the z-axis to coincide with the direction of k, we have 

00 

exp(ik.r) = exp(ikz) = L(21 + l)i1jl(kr)PI(cosO) (A.50) 
1=0 

It may also be shown (see for exanlple Edmonds, 1957) that 

! Yhml (0, 4»YI2m2 (0, 4>)Yla m 3(0, 4»dO 

= [(2h + 1)(2l~: 1)(213 + 1)] 1/2 (A. 5 I) 

x (h l2 13) (11 l2 l3) 
o 0 0 ml m2 m3 
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where we have introduced the Wigner 3 - j symbols (see Appendix E). From 
eq. (A.51) we fmd that 

11+12 

Yllm1(B,1»YI2m2(B,1» = L 
L=III-121 M=-L 

X [(2h + 1)(2l:: 1)(2L + 1)f/2 

X c~ l~ ~) (~1 ~2 ! )YL,-M(B,1» 

(A.52) 

This last equation may also be written in terms of vector addition (or Clebsch-­
Gordan) coefficients (see Appendix E) as 

11+12 +L [(2l1 + 1)(2l2 + 1)] 1/2 

YZlml(B,1»YI2m2(B,1»= L L 411"(2L+1) 
L=III-121 M=-L (A.53) 

x (11 Ol20ILO)(llmll2m2ILM )YLM(B, 1» 

We remark that in eqs. (A.52) and (A.53), the summation over M reduces 
to one term with M = ml + m2. 

Additional useful formulae may be found for example in Abramowitz and 
Stegun (1964, Chapter 8), Rose (1957) and Edmonds (1957). 
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BESSEL FUNCTIONS, MODIFIED BESSEL 
FUNCTIONS, SPHERICAL BESSEL FUNCTIONS 
AND RELATED FUNCTIONS 

B.I. BESSEL FUNCTIONS 

Let us consider the differential equation 

2d2w dw 2 2 
z -+Z-+(Z -II )W=o 

dz 2 dz 
(B. I) 

where II is a parameter which is assumed to be real. The so-called cylin­
drical functions are solutions of this equation. Special cylindrical functions 
are the Bessel functions J", (Z) [also called Bessel functions of the fIrst kind], 
the Neumann functions N", (z) [also called Bessel functions of the second kind 
and sometimes denoted Y",(z)) and the Hankel functions HS1)(z), HS2)(z) [also 
called Bessel functions of the third kind]. These functions may be defmed by the 
following relations (Abramowitz and Stegun, 1964, Chapter 9; Watson, 1966) 

'" 00 (_z2/4)k 
J",(z) = (z/2) (; k!f(1I + k + 1)' I argzl < 7r (B.2) 

where f is the Gamma-function, 

1 
N",(z) = . ( ) [COS(II7r)J",(Z) - L",(z)], 11=1= 0, ±1, ±2, ... j 

SIn 117r 

I arg zl < 7r, (B.3) 

Nn(z)=limN",(z), n=0,±I,±2, ... jlargzl<7r, (B.4) 
",-+n 

J_n(z) = (-I)nJn(z)jN_n(z) = (-l)nNn(z), n=0,1,2, ... , (B.S) 

HS1)(z) = J",(z) + iN",(z), (B.6) 

HS2)(z) = J",(z) - iN",(z) . (B.7) 

213 
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The functions pairs {JII(Z), NII(z)} and {HS1)(z), HS2)(z)} are linearly inde­
pendent solutions of eq. (B. I ) for all values of 11. 

and 

We also note the integral representations 

n 00 

JII(z) =~ J cos(zsin¢> - 1I¢»d¢> - Sin~7r) J exp(-zsinht -lIt)dt, 

o 0 

1 arg zl < 7r /2, (B.8a) 

n 

NII(z) = ~ J sin(z sin ¢> -1I¢»d¢> 
o 
00 -~ J [exp( lit) + exp( -lit) cos( 1I7r)] exp( - z sinh t )dt, 

o 
largzl<7r/2 

n 

In(z) = ~ J cos(z sin 4> - n4»d4> 
o 

n 

= i:n J exp(izcos¢»cos(n4»d¢>, n =0,1,2, ... 

o 

(B.8b) 

(B.8c) 

If C denotes J, N, H (1) , H (2) or any linear combination of these functions 
(the coefficients of which are independent of z and 11) we have the recurrence 
relations 

We also have 

dJo(z) = -h (z); 
dz 

(B.9a) 

(B.9b) 

(B.9c) 

(B.9d) 

(B.ge) 
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A generating function for the Bessel functions is given by 

(B.IO) 

When II is fixed and Z --+ 0, we have 

J (z) --+ (z/2)Y 
y z->O r(1I + 1) 

(II =1= -1, -2, -3, ... ) (B.Ua) 

2 
No(z) --+ -lnz 

z->07r 
(B.Ub) 

Ny(z) --+ - r(lI) (z/2)-y, Re II> 0 . 
z-+O 7r 

(B.Uc) 

For II fixed and Izl --+ 00 we have the asymptotic expressions 

( 
2 ) 1/2 117r 7r 

Jy(z) --+ - cos(z----), 
Izl->oo 7rZ 2 4 

I arg zl < 7r, (B.12a) 

( 
2 ) 1/2 117r 7r 

Ny(Z) --+ - sin(z----), 
Izl-+oo 7rZ 2 4 

I arg zl < 7r, (B.12b) 

H~l)(z) --+ (~) 1/2 exp [i (z _ 117r - ~)] ,-7r < argz < 27r, (B.12c) 
Izl-+oo 7rZ 2 4 

H~2)(z) --> (~)1/2 exp [-i (z _ 117r _ ~)], -27r < argz < 7r. (B.12d) 
Izl-+oo 7rZ 2 4 

B.2. MODIFIED BESSEL FUNCTIONS 

Let us now consider the differential equation 

2d2w dw 2 2 
z -2 + z- - (z + II )w = 0 

dz dz 
(B. 13) 

The modified cylindrical functions are solutions of this equation. Particular 
modified cylindrical functions are the modified Bessel functions I y (z) and K y (z ) 
such that 

Iy(z) = exp(-II7ri/2)Jy[zexp(i7r/2)], 

= exp(3117ri/2)Jy[z exp( -3i7r /2)], 

7r 
-7r < argz < -- 2 

7r 
- < argz < 7r 2 -

(B.14a) 

(B. 14b) 
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and 
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Kv(z) = ~i exp(ll1ri/2)H~1)[zexp(i1l"/2)], 11" 
-11" < arg z $ 2 (B.l5a) 

1I"i (2) = -2:exP(-v1I"i/2)Hv [zexp(-i1l"/2)]' 
11" -2 < argz $ 11" .(B.I5b) 

We also have 

v 00 (z2/4)k 
Iv(z) = (z/2) L k!r(v + k + 1) (B. 16) 

k=O 
11" 

Kv(z)= . ( )[Lv(z)-Iv(z)), v=I=O,±1,±2, ... (B.I7) 
2sm V1I" 

(B.IS) 

(B. 19) 

where'Y = 0.5772156649 ... is Euler's constant, 

I_n(z) = In(z), n = 0,1,2, ... 

K_v(z) = Kv(z) 

We also note the integral representations 

(B.20) 

(B.2I) 

1 J7r sin(v1I") JOO 
Iv =; exp(zcos¢»cos(v¢»d¢> - 11" exp(-zcosht -vt)dt , 

o 0 
11" 

I argzl < 2 

7r 

K v(z) = J exp( -z cosh t) cosh(vt)dt, I arg zl < i ' 
o 

Kv(z) 

(B.22a) 

(B.22b) 

(B.22c) 
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In particular, 

00 00 ( ) -J exp( -zt) - J exp[-z(U2 + 1)1/2] 
Ko z - (t 2 _ 1)1/2dt - (U 2 + 1)1/2 du, 

1 0 (B.22d) 
7r 

I argzl < 2" . 

If Z denotes I y, exp(v7ri)K y or any linear combination of these functions 
(the coefficients of which are independent of z and v), we have the recurrence 
relations 

We also have 

d1o(z) = h(z); 
dz 

When v is fixed and z ~ 0, 

(z/2t 
I,,(z) z-=:o rev + 1) (v =I- -1, -2, -3, ... ) 

Ko(z) ~ -Inz 
z->o 

K,,(z) ~ ~r(v)(z/2)-y Re v> 0 . 
z->o 2 

B.3. SPHERICAL BESSEL FUNCTIONS 

Let us consider the differential equation 

d2 w + ~ dw + [1 _ l (l + 1)] w = 0 
dz 2 z dz z2 

(B.23a) 

(B.23b) 

(B.23c) 

(B.23d) 

(B.23e) 

(B.24a) 

(B.24b) 

(B.24c) 

(B.25) 

with l = 0, 1,2, .... Particular solutions of this equation are the spherical Bessel 
functions (or spherical Bessel functions of the first kind) 

( 
7r ) 1/2 

jl(Z) = 2z Jl+1/2(Z), (B.26) 
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the spherical Neumann functions (or spherical Bessel functions of the second 
kind) 

Z 1 ( 7r ) 1/2 nl(Z) = (-1) + 2z LI-1/2(Z) 

( 
7r ) 1/2 

= 2z NI+l/2(Z) 

(B.27) 

and the spherical Hankel functions of the fIrst and second kind 

hP)(z) = jl(Z) + inl(z) 

( 
7r ) 1/2 (1) 

= 2z H Z+1/ 2(z) (B.28) 

h}2)(z) = jz(z) - inl(z) 

( 
7r ) 1/2 (2) 

= 2z Hl+1/ 2(z) (B.29) 

The functions jz(z) are regular while the functions nzCz), h}l)(z) and 

h~2)(z) are irregular at the origin. The functions pairs {jl(z),nz(z)} and 

{h~l) (z), h}2) (z)} are linearly independent solutions of eq. (B.25) for every l. 

and 

The fIrst three functions jl(Z) and nl(z) are given explicitly by 

. () sin z 
)0 z = --, 

z 
. () sin z cos z 

)1 z = ~- _z-, 

h (z) = ( 33 - ~) sin z - 32 cos z , 
z z z 

( ) cos z 
no z = ---, 

z 

n 1 ( z) = _ cos z _ sin z , 
z2 z 

(3 1) 3 . n2 C z) = - 3" + - cos z - 2" sm z . 
z z z 

(B.30a) 

(B.30b) 

The functions jl(Z) and nl(z) may be represented by the ascending series 

zl 
j I C z) = (2l + I)!! 

[ z2/2 (z2/2)2 ] 
x 1 - 1!(21 + 3) + 2!(2l + 3)(21 + 5) - ... , (B.31a) 

( ) (2l - I)!! 
nl z = - zl+l 

[ z2/2 (z2/2)2 ] 
x 1- 1!(1-2l) + 2!(1-21)(3-2l) - ... (B.31b) 
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and for l fIxed and z ---+ 0 we see that 

zl 
jl(Z) z-:::!o (2l + I)!! ' (B.32a) 

( ) (2l - I)!! 
nl z z-:::!o - z/+l (B.32b) 

For l fIxed and real x ---+ 00 [in fact for x somewhat larger than l(l + 1)/2] 
we have the asymptotic formulae 

jl(X) ---+ - sm x - - , 1 . ( l7r) 
:1:-+00 X 2 

(B.33a) 

nl(x) ---+ --cos x - - , 1 ( l7r) 
:1:-+00 X 7r (B.33b) 

(1) ( ) . exp[i(x - l7r /2)] 
hi x ---+ -t , 

3:--+00 x 
(B.33c) 

(2)( ) .exp[-i(x-l7r/2)] 
hi x ---+ t • 

x-+oo X 
(B.33d) 

If fl denotes jl, nl, h?) or h?), we have the recurrence relations (with 
l> 0) 

fl-1 (z) + 1/+1 (z) = (2l + l)z-l fl(z) , 
d 

lfl-1(Z) - (l + l)fl+l(Z) = (2l + l)-fl(z) , 
dz 

l+l d 
-.fl(z) + - fl(z) = fl-l(Z) , 

z dz 
l d 
- .fl(z) - - fl(z) = fl+1(z) . 
z dz 

We also have the differentiation formulae (with m = 1,2,3, ... ) 

and the additional useful relations 

jl(z)nl-l(z) - jl-l(z)nl(z) = z-2, l> 0, 

d ( d () 2 jl(z)-nl(z) - nl Z)-jl z = z- . 
dz dz 

(B.34a) 

(B.34b) 

(B.34c) 

(B.34d) 

(B.35a) 

(B.35b) 

(B.36a) 

(B.36b) 
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We also quote the following indefInite integrals 

J j5(x)x 2dx = ~x3[j5(x) +no(x)h(x)] , (B.37a) 

J n6(x)x2dx = ~x3[n6(x) - jo(x)n1(x)] , (B.37b) 

J h(x)dx = -jo(x) , (B.37c) 

J jo(x)x 2dx = x 2h(x) , (B.37d) 

J jf(x)x2dx = ~x3[jf(x) - jl-1(X)jl+1(X)], I> 0 . (B.37e) 

The following defInite integrals involving the functions j I often appear in 
electron-atom scattering calculations: 

00 J exp( -ax )jl(bx )x/l-1dx 

o 

1['1/2b1r(fL + I) (fL + I fL + 1+ 1 3 b2) 
= 21+1aIL+1r(1 + 3/2) 2F1 -2-' 2 ; 1+ '2; - a2 ' 

Re(a + ib) > 0, Re(a - ib) > 0, Re(fL + 1) > 0 

where 

ab z a(a + 1)b(b + 1) z2 
2F1(a,b;c;z) = 1 + -, + ( ) I' + ... 

c 1. c c + 1 2. 

is the hypergeometric function, 

00 I 

(B.38a) 

(B.38b) 

J . 1+1 _(2b)f(I+1) 
exp(-ax)Jl(bx)x dx - (a 2 + b2)1+1 ' Rea> 11mb!, (B.38c) 

o 
00 J . 1+2 - 2a(2b)lf(l + 2) 

exp(-ax)Jl(bx)x dx- (a 2 +b2)1+2 ' Rea> I 1mbl·(B.38d) 

o 

Similar integrals involving higher powers of x may be obtained by differentiation 
with respect to the quantity a. 

Finally, we remark that 
00 J jl(kr)jl(k'r)r2dr = 2:2 6(k - k') 

o 

(B.39) 

Additional useful formulae are given for example in Abramowitz and Stegun 
(1964, Chapters 9 and 10) and Watson (1966). 
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DALITZ INTEGRALS 

In this appendix we shall study integrals of the type (Dalitz, 1951, Joachain, 
1983) 

with f -+ 0+. Following Feynman (1949), we first set 

a=a2 +(q- k i)2 

b =,82 + (q - kf)2 

and use the integral representation 

1 

1 J dt 
ab = [at+b(l-t)]2' 

o 

(C.l) 

(C.2) 

(C.3a) 

By differentiating both sides of eq. (C.3a) with respect to a or (and) b, we also 
have 

1 

-=2 dt 1 J t 
a2b [at + b(1 - t)J3 ' 

(C.3b) 

o 
1 

-=2 dt 1 J I-t 
ab2 [at + b(1 - t)J3 ' 

(C.3c) 

o 

1 
1 (m + n - I)! J t m - 1 (1 - t)n-l 

ambn = (m - 1)!(n - I)! [at + b(1 _ t)]m+n dt (C.3d) 

o 
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so that we may rewrite eq. (C.l) as 

1 

- (m + n - 1)! J m-1 n-1 
I m,n(a,,8;ki ,kf;k) = (m-1)!(n-1)! dtt (1-t) 

o 

1 
x ~~------~--~----~----~----~--[a 2t + (q - k i )2t + ,82(1- t) + (q - kf)2(1- t)]m+n 

We now observe that 

where 

A = tki + (1 - t)kf , 
r2 = a 2t + ,82(1 - t) + t(l - t)(ki - kf)2 

= a 2t + ,82(1 - t) + t(l - t)il2 

and we recall that ~ = k i - k f is the momentum transfer. 

APPENDIX C 

(C.4) 

(C.6) 

(C.7) 

Apart from a one-dimensional integral on the t variable, the calculation of 
I m,n(a,,8; ki, kf; k) therefore reduces to the evaluation of integrals of the type 

J 1 1 
Ls = dq . q2 _ k2 _ if [r2 + (q - A)2]S 

(C.8) 

Let us begin by considering the case S = 1. Using spherical coordinates 
(q, (}q, ¢>q) in q space, taking the z-axis along the vector A and performing the 
integration over the azimuthal angle ¢>q, we find that 

11" +00 

L1 = 211" J d(}q sin (}q J dqq2 
o 0 (C.9) 
1 1 

q2 _ k2 _ if x r2 + q2 + A2 - 2qA cos (}q 

Upon changing the integration variables in this equation to q' = -q and (}q' = 
11" - (}q, we can also write 

11" 0 

L1 = 211" J d(}q' sin (}q' J dq' q'2 
o -00 (C.lO) 

1 1 
X qI2-k2 -if r2+qI2+A2_2qIAcos(}q' 
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so that, by comparing eqs. (C.9) and (C.10), we have 

11" +00 

L1 = 7r J d9q sin 9q J dqq2 

o -00 (C. 11) 
1 1 

x ~~~-- ~--~--~-------
q2 _ k 2 _ if r 2 + q2 + A2 - 2qAcos9q 

The integral on the q variable may be perfonned by considering q as a 
complex variable and closing the contour with a semi-circle of infinite radius in 
the upper-half complex q-plane. The poles of the denominator in this upper-half 
q-plane are located at q1 and q2, with 

q1 = k + if, q2 = A cos 9q + i(r2 + A 2 sin2 (}q)1/2 

Hence, using the residue theorem, we have 

(C.12) 

(C. 13) 

where we have set w = cos 9 q in the flrst integral. Performing the integrals in 
eq. (C.13), we obtain 

L (k r A) = 7r
2i In (k + A + ir) 

1 " A k - A + ir 
(C.14) 

The integrals Ls for 8 = 2,3, ... may be readily obtained from L1 by 
successive differentiations with respect to r. Thus we have 

- 1 a -
L2(k, r, A) = - 2r arL1(k, r, A) , 

7r2 
(C.15a) 

- 1 a -
Ls(k, r, A) = - 2(8 _ l)r arLs-1(k, r, A) (C. 15b) 

Let us now return to the expression for I m,n(a,,8; ki' kf; k) given by eq. 
(CA). In certain cases simple closed fonn expressions may be obtained for the 
integration on the variable t. For example, when m = n = 1 we have (Lewis, 
1956) 

(C.16a) 
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where 

and 

(C.16c) 

It should be noted that the function on the right of eq. (C.16a) is single valued, 
even when we cross a branch cut of (A 2 - B) 1/2, i.e. either square root can be 
chosen. This function is therefore analytic, the only problem being the specifi­
cation of the branch of the logarithm; examination shows that we must take the 
arguments of numerator and denominator from -7r to +7r. 

Let us look in more detail at the particular case for which a = f3 "I 0 and 
ki = kf = k = k. Using eqs. (C.l6), we fmd that 

(C.l7) 

We remark that this result may also be obtained by using eqs. (C.4), (C.l5a) and 
the fact that we have here r2 + A 2 = k 2 + a 2 . Thus we may write 

(C.l8) 

with r = (a 2 + t(l - t)~2)1/2. The integral (C.l8) is then readily performed 
in closed form to yield the expression given by eq. (C.l7). Substitution of the 
result (C.17) in eq. (2.37) yields the second Born term (2.38) corresponding to 
scattering by the Yukawa potential (2.26). 
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THE DENSITY MATRIX 

A quantum system is said to be in a pure state when it is completely specified 
by a single state vector, which is fully determined apart from a constant phase 
factor. Quantum systems in pure states are prepared by performing a "maximal 
measurement" or "complete experiment" in which all values of a complete set of 
commuting observables are determined. Hence pure states represent the ultimate 
limit of precise observation as allowed by the uncertainty principle; for this 
reason they are also called states of "maximum knowledge". 

In many cases, however, the measurement made on the system is not max­
imal. For instance, a beam of particles may be prepared in such a way that 
certain quantum numbers (e.g. the spin orientation) are only known through a 
probability distribution. Such systems, which cannot be described by a single 
state vector, are said to be in mixed states. The study of these systems can 
conveniently be made using the density matrix formalism (von Neumann, 1927; 
Fano, 1957; ter Haar, 1961; Blum, 1981). This method also presents the advan­
tage of treating pure and mixed systems on the same footing. In this appendix 
we shall briefly discuss the general properties of the density matrix. 

Let us consider a system consisting of an ensemble of N subsystems a = 
1,2, ... ,N. We suppose that each of these subsystems is in a pure state and is 
therefore characterized by a distinct state vector \]1 (C», which we denote by I a) 

in the Dirac notation. The state vectors la) are assumed to be normalized, but 
need not be orthogonal to each other. 

Next, we choose a complete set of basis states In), namely orthonormal 
eigenvectors of some complete set of operators. Since these basis states are 
orthonormal, 

(n'ln) = on'n or o(n' - n) 

and because they are complete 

Lin) (nl = 1 
n 

Let us expand the pure state la) in the basis states In). We have 

la) = L c~C» In) 
n 
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(D.1) 

(D.2) 

(D.3) 
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with 
c~a) = (nla) (D.4) 

and 

L Ic~a)12 = 1 (D.S) 
n 

Consider now an observable represented by an operator A. The expectation 
value of this operator in the pure state I a) is 

n n' 
(D.6) 

= LL{nla){alnl) (n'l A In) 
n n' 

The average value of A over the ensemble is therefore given by 

N 

(A) = L Wa (A)a (D.7) 
a=l 

where Wa is the statistical weight of the subsystem a, namely the probability of 
obtaining this subsystem among the ensemble. The statistical weights Wa must 
obviously be such that 

(D.8) 

and 

(D.9) 

Using the result (D.6), we may write eq. (D.7) explicitly as 

N 

(A) = L Wa L L c~~)* c~a) (n'l A In) 
0=1 n n' 

(D. 10) 
N 

= L LL(nla) Wa (aln') (n'l A In) 
0=1 n 71,' 

Let us now introduce the density operator (or statistical operator) which is 
defmed as 

N 

p=Lla)Wa(al (D.ll) 
a=l 
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Taking matrix elements of the density operator between the basis states In), we 
obtain the elements of the density matrix in the {I n)} representation, namely 

N 

Pnn' == (nl pin') = L(nla) Wo (aln') 
0=1 

(D.I2) 

Returning to eq. (D.IO), we see that 

(A) = L L (nl pin') (n'l A In) 
n n' 

(D.l3) 
n 

= Tr(pA) 

where the symbol Tr denotes the trace. Hence the knowledge of p enables us to 
obtain the statistical average of A. We also remark that if we take A to be the 
identity operator, we obtain the normalization condition 

Trp = 1 . (D. 14) 

As seen from its defmition (D.ll), the density operator p is Hermitian, 
namely 

(D.IS) 

or 
(nl pin') = (n.'1 p In)* (D.I6) 

As a result, the density matrix may always be diagonalized by means of a unitary 
transformation. 

The diagonal elements of the density matrix, 

N 

Pnn = (nl pin) = L Wo Ic~0)12 , (D. 17) 
0=1 

have a simple physical interpretation. Indeed, the probability of finding the 
system in the pure state I a) is W 0 and the probability that I a) is to be found in 

the state In) is Ic~0)12. Thus the diagonal element Pnn gives the probability of 
finding a member of the ensemble in the state n. We also note from eqs. (D.8) 
and (D.I7) that 

Pnn ~ 0 (D.I8) 
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so that p is a positive semi-defmite operator. Moreover, combining the above 
result with eq. (D.14), we see that all diagonal elements of the density matrix 
must be such that 

0:::; Pnn :::; 1 . (0.19) 

Let us choose a representation {k} in which the density matrix is diagonal. 
In that representation, we clearly have 

(0.20) 

where Pkk is the fraction of the members of the ensemble in the state Ik). 
Moreover, using eqs (D.14) and (0.19), we have 

(0.21) 

This relation remains valid in any representation since the trace is invariant under 
a unitary transformation. It is worth noting that because the density matrix is 
Hermitian the result (0.21) may also be written in the form 

(D.22) 
n n' 

Let us now consider the particular case such that the system is in a pure state 
1'\). Then Wa = OaA and we see from eq. (D.11) that the density operator is 
just 

pA = 1'\) ('\1 (0.23) 

This is a projection operator onto the state 1'\), with 

(D.24) 

Hence, in this case the relation (D.21) becomes 

(0.25) 

and eqs. (D.IO) and (D. 13) reduce to 

(A) = Tr(pA A) = ('\1 A 1'\) (D.26) 

It is worth noting that the equation Tr(pA)2 = 1 gives us a criterion for deciding 
whether a state is pure or not that is invariant under all unitary transformations. 

If we choose to work in a representation {k} such that pA is diagonal, we 
see that 

(0.27) 
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and therefore the only non-vanishing matrix element of p>\ is the diagonal element 
in the >.. th row and column, which is equal to one. As a result, all the eigenvalues 
of the pure state density operator p>\ are equal to zero, except one which is equal 
to unity. This last property is independent of the choice of the representation, 
and may therefore be used to characterize the density matrix of a pure state. 

Let us return to the general density operator (0.11) and density matrix 
(0.12). Until now we have assumed that the pure states Io:} were normalized 
to unity. If this requirement is dropped, then 0 < Tr p "# 1 and the basic result 
(0.13) is replaced by 

(A) = Tr(pA) 
Trp 

(0.28) 

In the above discussion we have labelled the rows and columns of the density 
matrix Pnn' by simple indices n and n'. In general, of course, the symbol n refers 
to a collection of indices, some of which taking on discrete values while others 
vary continuously. In many cases, however, we are interested in some particular 
property of the system (for example the spin). We then omit the dependence 
on all other variables, keep only the relevant indices and defme in that way a 
reduced density matrix. This is the case for example in Chapter 4, where we 
discuss the density matrix for a spin -112 system. 
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CLEBSCH-GORDAN AND RACAH COEFFICIENTS 

In. this appendix we summarize the formulae describing the coupling of two or 
more angular momenta. This leads to the introduction of Clebsch-Gordan and 
Racah coefficients as well as higher order 3n - j symbols. For a complete 
discussion of these topics reference should be made to specialized monographs 
on angular momentum such as those by Rose (1957) and by Edmonds (1957). 

E.l. CLEBSCH-GORDAN COEFFICIENTS 

Let us first consider two independent quantum systems, or parts of a single 
system, having angular momenta jl and j2 respectively. We denote by VJilml (1) 
and V'i2m2 (2) the angular momentum eigenfunctions of these systems which 
diagonalize the square and the z component of the angular momentum. Thus 
(with h = 1) 

where 

and 

where 

j~VJilml (1) = h(h + 1)'l/Jilml (1) , 

hzVJjlml (1) = mlV'ilml (1) 

ml=-h,-h+l,···,h 

j~V'i2m2(2) = h(h + l)vJi2m2(2) , 

hzV'i2m2 (2) = m2V'i2m2 (2) 

(E.t) 

(E.2) 

(E.3) 

(E.4) 

Here jlz and hz are the z components of jl and j2 respectively. Simultaneous 
eigenfunctions of the operators j~, hz, j~ and hz are then given by the tensor 
products V'ilml (1)v'i2m2(2). 

We now define the total angular momentum j of the two systems by 

(E.5) 
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and its z component j z by 
(E.6) 

The operators j ~ , j ~, j 2 and j z form a set of commuting operators. Let us denote 
by VJjl32jm(l, 2) the coupled eigenfunctions common to the operators j~,j~,j2 
and j z. These coupled eigenfunctions satisfy 

where 

and 

j2VJMdm(1,2) = j(j + 1)VJM2jm(1, 2) , 

jzVJilhjm(l, 2) = mVJilhim(l, 2) 

j = Iji - hi, Ih - hi + 1, ... , h + j2 

m=-j,-j+1, ... ,j . 

(E.7) 

(E.8) 

(E.9) 

The (2h + 1)(2h + 1) coupled eigenfunctions 1/!M2im(1,2) common to the 
operators j~,j~,j2 and jz are related to the (2h + 1)(2h + 1) eigenfunctions 
V'ilml (1)V'hm2(2) common to the operators j~,jIz,j~ and i2z by the unitarity 
transformation 

V'ilhim(1,2) = L (jImIi2m 2Ijm)VJilml (1)V'hm2(2) . (E.IO) 
mlm2 

The coefficients (jlmli2m2Ijm) of this transformation are called vector cou­
pling or Clebsch--Gordan coefficients. These coefficients vanish unless eqs. 
(E.8) and (E.9) are satisfied and m = mi + m2. To define these coefficients 
unambiguously, the relative phases of the eigenfunctions VJilml (1)VJhm2 (2) and 
V'ilhim(1,2) must be specified. We shall adopt here the phase convention of 
Condon and Shortley (1935) where 

(E.ll) 

With this choice of phase the Clebsch--Gordan coefficients are real and 
satisfy the orthogonality relations 

L (jImIhm 2Ijm)(hm Ii2m 21j'm') = Ojj'omml, 
mlm2 

which reduces to a single summation since m I + m 2 = m, and 

L(hmIhm2\jm)(hm~hm~ljm) = omlm~ om2m~ 
jm 

Using eq. (E. 13) we can invert eq. (E.IO) to yield 

V'jl ml (l)V'hm2 (2) = L(hm Ii2m 2Ijm )VJilhjm(l, 2) 
i 

(E.12) 

(E. 13) 

(E. 14) 
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The Clebsch-Gordan coefficients also satisfy the symmetry relations 

233 

(E.15a) 

(E.15b) 

(E.15c) 

(E. 15d) 

Further symmetry relations can be obtained by combining these equations. 
These symmetry relations can be simplified by introducing the 3 - j symbols 

defined by Wigner (1940). These are defined by 

( h 
ml 

h h) _ ( 1)31-12-m3(2° + 1)-1/2(. 0 1 0 
) - - J3 JIm1J2m 2 J3 - m3 

m2 m3 
(E.16) 

The 3 - j symbols are invariant for even permutations of the columns and are 
multiplied by (-1)31 +12+j3 for odd permutations or when the signs of ml, m2 
and m 3 are changed. Thus 

(h h h) (h 13 h) (j3 h h) 
ml m2 m3 - m2 m3 ml - m3 ml m2 

(E.17) 
= (-1)]1 +12+is ( h 13 h) 

ml m3 m2 

and 

(E.18) 

The orthogonality relations satisfied by the 3 - j symbols are 

and 

h) (h 
m3 m~ 

h) = 8m m,8m m' m3 1 1 2 2 

(E.20) 
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TABLE E.l. Explicit values for the Clebsch-Gordan 
coefficients (j1m - m~/2m2Ijm) 

j m2 = t m2 =-t 

j1 + t [j1 + m + (1/2)] 1/2 
2j1 + 1 

[j1 - m + (1/2)] 1/2 
2j1 + 1 

. 1 _ [j1 - m + (1/2) f/2 [j1 + m + (1/2)] 1/2 
J1 - 2' 2j1 + 1 2il + 1 

ApPENDIX E 

Returning to Clebsch--Gordan coefficients we have the following important 
relations 

(it OhOIjO) = 0 unless it + h + is is even (E.21) 

and 
(E.22) 

The Clebsch--Gordan coefficients can be calculated using the orthogonality and 
the symmetry relations which they satisfy (Edmonds, 1957). Since the general 
formula is quite complicated we limit ourselves here to giving their values in 
Tables E.l and E.2 for the cases of most interest in this monograph when h = 
1/2 and h = 1. 

E.2. RACAH COEFFICIENTS 

We now consider the addition of three angular momenta jl,j2 and j3 to 
form the total angular momentum j given by 

(E.23) 

There is no unique way of carrying out this addition. We may fIrst couple jl and 
j2 to give the resultant j12 and then couple this to j3 to give j. Alternatively, we 
may couple jl to the resultant j23 of coupling j2 and h to give j. Finally, we 
may couple jl and j3 to give the resultant j13 which is then coupled with j2 to 
give j. These three representations are related by unitary transformations which 
are expressed in terms of Racah coefficients introduced by Racah (1942, 1943). 

Let us consider the connection between the fIrst two representations de­
scribed above which are characterized by the intermediate angular momenta 

(E.24) 

where the corresponding eigenfunctions are denoted by 

(E.25) 
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respectively. These two representations are related by the transfonnation 

'ljJjm(j12) = 2: R(h3 h2)'1jJjm(j23). 
12a 

The Racah coefficient W is defmed by the equation 

R(j23 jd = [(2h3 + 1)(2h2 + 1)]1/2W (hhii3;h2h3) 

(E.26) 

(E.27) 

We can derive a relation between the Racah coefficients and the Clebsch­
Gordan coefficients by expressing 'ljJjm(j12) and 'ljJjm(j23) in tenns of 'l/Jilml' 
'ljJ12m2 and 'ljJjama using eq. (E.IO). We obtain 

(E.28) 

and 

(E.29) 

Substituting these results into eq. (E.26) and using eq. (E.27) gives 

2:[(2e + 1)(2J + 1)]1/2W(abcd; eJ)(b(3d8IJ(3 + 8)(aaJ(3 + 81ca + (3 + 8) 
f 

=(aab(3lea + (3)(ea + (3d8lca + (3 + 8) 
(E.30a) 

Also, using the properties of the Clebsch-Gordan coefficients defmed by eqs. 
(E.12) - (E.IS) we obtain the following additional relations 

[(2e + 1)(2J + 1)]1/2W(abcd;eJ)(aaJ(3 + 81ca + (3 + 8) 

= 2:(aab(3lea + (3)(ea + (3d8ica + (3 + 8)(b(3d8IJ(3 + 8) (E.30b) 
{3 

where (3 + 8 is a fIxed parameter and 

[(2e + 1)(2J + 1)]1/2W (abcd; eJ) = ~)aab(3lea + (3) 
a{3 

X (ea + (3d8lca + (3 + 8)(b(3d8IJ(3 + 8)(aaJ(J + 81ca + (J + 8) 

where a + (3 + 8 is a fIxed parameter. 

(E.30c) 
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FIGURE E. I. The tetrahedron illustrating the triangular relations satisfied by the arguments of the 
Racah coefficient W(abcd; e/). 

It is clear from the above defInitions that the six angular momenta in 
W (abed; e J) satisfy the four triangular relations 

~(abe), ~(cde), ~(acJ), ~(bdJ) (E.31) 

where, for example, the notation ~(abe) means that the three angular momenta 
a, b and e form the sides of a triangle. These four triangular relations can be 
combined by representing the angular momenta by the sides of a tetrahedron as 
illustrated in fIgure E.1. 

The Racah coefficients also satisfy certain symmetry relations under the 
twenty-four possible permutations of the six arguments which preserve the four 
triangular relations. These symmetry relations can be simplifIed using the 6 - i 
symbol introduced by Wigner (1940), which is defIned by 

{ i1 h i3} _ ( l)il+h+i4+i5W(' .... ' . ) . . . - - J112J5J4, J3J6 . 
J4 J5 J6 

(E.32) 

The 6 - i symbol is left invariant under any permutations of the three colUDlDS. 
It is also invariant under interchange of the upper and lower arguments in any 
two columns, e.g. 

{ ~1 ~2 ~3} = {~1 ~5 ~6} 
J4 J5 J6 J4 J2 J3 

(E.33) 

Returning to the Racah coefficients, one can show that they satisfy the 
orthogonality relation 

~)2e + 1)(2J + I)W(abcd; eJ)W(abcd; eg) = Ofg (E.34) 
e 

and the Racah sum rule 

~)_I)a+b-e(2e + I)W(abcd;eJ)W(bacd;eg) = W(agJb;dc) . (E.35) 
e 
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In addition 
(-1 )f-b-dDabDcd 

W (abed' 0 f) = ~---',-:-:--~-'-:'::-= 
,. [(2b+l)(2d+l)]l/2 

ApPENDIX E 

(E.36) 

The general closed expression for the Racah coefficient is too complicated to 
reproduce here but maybe found for example in Rose (1957) or Edmonds (1957). 

E.3. 9 - j SYMBOLS 

In many applications, we are interested in determining the transformation 
between two coupling schemes of four angular momenta. This occurs for exam­
ple in the transformation from LS to jj coupling for two particles possessing 
both orbital and spin angular momenta. The 9 - j symbol introduced by Wigner 
(1940) is defmed by the following relation 

((jlj2)jI2, (j3j4)j34,j~l(jlj3)jI3, (j2j4)j24,j~) 

= [(2h2 + 1) (2i34 + 1)(2h3 + 1)(2j24 + 1)]1/2 {;~ ~~ 
J13 h4 

h2} 
J;4 . 

(E.37) 
The 9 - j symbol can be written as the sum over a product of three Racah 
coefficients by expressing the bra vector in eq. (£.37) in terms of the ket vector 
in eq. (E.37) by repeated use of the recoupling transfonnation defmed by eqs. 
(£,26) and (E.27). We fmd that 

(E.38) 

x {;~~ j!2 ;:~} {j~3 ;~~ ;~:}. 
An even permutation of the rows or columns of the 9 - j symbol leaves 

the symbol unchanged as does the transposition obtained by interchanging rows 
and columns. An odd transposition of the rows or columns causes the symbol 
to be multiplied by the factor 

The 9 - j symbols also satisfy the orthogonality relation 

L (2h2 + 1) (2j34 + 1)(2h3 + 1)(2h4 + 1) 

~12 } { ~1 
J34 J3 . ., 
J lI3 

(E.39) 

(E.40) 
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and the sum rule 

(E.41) ~12 } 
J34 

j 

When one argument of a 9 - j symbol is zero it reduces to a 6 - j symbol times 
a factor. As an example we have 

{a be} (_I)b+c+e+f {a 
; ; ~ = [(2e + 1)(2/ + 1)]1/2 d 

be} 
c / 

(E.42) 

The corresponding results when the zero appears in one of the other positions 
can be obtained using the symmetry properties of the 9 - j symbols discussed 
above. 

E.4. HIGHER ORDER 3n - j SYMBOLS 

In the theory of electron collisions with complex atoms, 3n - j symbols with 
n ?: 4 often arise involving the recoupling of more than four angular momenta. 
These recoupling coefficients can be expressed as sums over products of Racah 
coefficients by repeated use of eqs. (E.26) and (E.27) in the same way as eq. 
(E.38) for the 9 - j symbol was derived. We shall not discuss here the detailed 
properties of these higher order 3n - j symbols. We remark, however, that 
a computer code NJSYM has been written by Burke (1970) which enables a 
general recoupling coefficient for an arbitrary number of angular momenta to be 
calculated. This code has been incorporated into a number of atomic structure 
and electron atom collision program packages. 
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INDEX 

Absorption factor. 26 
Angular momentum 

coupling of. 231-239 
density matrix for spin. 148-151 
operators for. 206 
orbital. 5. 206-207 
orbital eigenfunctions for. 207-209 
spin. 143-148 
spin-angle eigenfunctions for, 176-177 
spin eigenfunctions for. 143-145 

Anomalous singularities, 65-75; see also 
HultheJrKohn variational 
methods 

Argon, collisions of electrons with 
Ramsauer minimum in, 125-126 
scattering length in. 125-126 

Associated Legendre functions, properties 
of, 204-205 

Asymmetry parameter, 197-198 
Asymptotic behaviour 

of Coulomb radial wave functions, 15 
of Dirac wave function, 164, 171 
of radial wave function for finite range 

potential, 6, 25, 184 
of SchrOdinger wave function, 2 

Bargmann inequalities, 104, 139 
Barrier penetration, 113-114 
Bessel functions 

asymptotic behaviour of, 215, 219 
modified, 215-217 
power series expansions of, 213, 218 
properties of, 213-220 
spherical, 6, 217-220 

Bloch operator, 87; see also R-matrix 
method 

Blatt-Jackson formula. 117; see also 
Effective range theory 

Born approximation, first 
for Buckingham potential. 35-36 
for Coulomb potential. 34-35. 169-170 
for hydrogen atom static potential. 53-54 
for polarization potential. 123-124 
for relativistic collisions, 168-170 
for scattering amplitude, 30, 33. 168 
for tanllt, 31 
for Yukawa potential. 34-35 

Born approximation, second 
eikonal approximation and. 45-50 
eikonal Born series (EBS) and, 49-50 
for hydrogen atom static potential, 53-54 
for scattering amplitude, 30 
for superposition ofYukawa potentials. 

37-38 
for tanlle, 31 
for Yukawa potential, 36-37 

Born series 
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asymptotic form of, 37-38. 46-50 
convergence of, 32 
eikonal series and, 45-50 
eikonal Born series (EBS) and, 49-50 
multiple scattering series and, 32 
optical theorem and, 38 
for scattering amplitude. 30-32 
for superposition ofYukawa potentials, 

37-38 
unitarity relation and, 38 
for Yukawa potential, 36-37 
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Bound principles: see Extremum principles 
Bound states 

convergence of Born series and. 32 
Coulomb potential, 14, 132 
dispersion relations and, 139-142 
Levinson's theorem and, 114-116 
quantum defect theory (QDT) and, 132 
resonances and, 108-111 
Siegert states and, 108 
S-matrix poles and, 108-109 

Branch cuts, lOS, 137-138 
Breit-Wigner resonance formula, 110 
Buckingham potential, 35--36, 55 
Buttle correction. 91-92; see also R-matrix 

method 

Causality and time delay, 113 
Clebsch-Gordan coefficients 

properties of, 231-234 
tables of. 234-235 
three-j symbols and, 233 

Collisions of electrons 
with argon atoms, 125--126 
with helium atoms, 92-93 
with He+ ions, 133 
with hydrogen atoms, 53-54. 72-73 
with krypton atoms, 125--126 
with mercury atoms, 198-199 
with xenon atoms, 125--126,200-201 

Collision matrix: see S-matrix, T-matrix 
Complex potential scattering, 24-28 
Confluent hypergeometric function, 10-11 
Connection formulae for JWKB approxima-

tion,57-58 
Coulomb penetration factor, 134 
Coulomb scattering 

amplitUde, 12 
Born approximation for, 34-35,169-170 
bound states and, 14, 132 
differential cross section for, 12, 34-35, 

169-170 
effective range theory for, 129-134 
Gamow factor for, 134 
Mott formula for, 170 
parabolic coordinates solution for, 10-12 
phase shift, 13 
quantum defect theory (QDT) for. 132-

134 
radial wave function for, 12-15 

Coulomb scattering (cant.) 
relativistic. 169-170 
by repulsive potential, 134 
Rutherford formula for, 12 

Coulomb wave functions 
analytic properties of, 129-130 
asymptotic behaviour of, IS 
definition of, 13 
Wronskian for, 130 

INDEX 

Cross section: see Total cross section, Differ­
ential cross section 

Dalitz integrals, 36, 221-224 
Darwin term, 182 
Decaying states: see Resonances 
Density matrix 

density operator and, 226 
differential cross section in terms of, 192 
properties of, 225--229 
reduced, 148,229 
for spin polarized electrons, 148-151. 

191-193 
Differential cross section; see also Total 

cross section 
asymmetry parameter in terms of. 197 
for Buckingham potential. 35, 55 
for complex potential, 26 
for Coulomb potential, 12.16, 170 
definition of, 4 
and density matrix, 192 
and direct and spin-flip amplitudes. 187-

188 
for double scattering, 197 
eikonal-Bom series (EBS) for. 49-50 
for finite range potential, 7 
first Born approximation for, 33. 168-170 
for hydrogen atom static potential, 53-54 
for long-range r-2 potential, 129 
and M-matrix, 172, 187 
Mott formula for, 170 
for relativistic collisions, 168-170, 187-

192 
relativistic first Born approximation for, 

168-170 
Rutherford formula for, 12 
spin polarization dependence of, 191-192 
Wallace approximation for, 53-54 

Dirac equation 
for central potential, 174-180 
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Dirac equation (cont.) 
covariant form of, 154--155 
Dirac spinor for, 153 
direct and spin-flip scattering amplitudes 

for, 173, 186 
for electron in an electromagnetic field, 

153-155 
first Born approximation for, 168-170 
for free electrons, 152, 156--164 
helicity operator for, 161 
Lippmann-Schwinger equation for, 165-

166 
Mott solution for Coulomb potential, 

169-170 
non-relativistic limit of, 180-183 
parity operator for, 174 
partial wave analysis of, 176--180, 183-186 
positive and negative energy solutions 

of, 158, 161-162 
projection operators for positive and 

negative energy solutions of, 163-
164 

radial wave equations for, 177-178 
scattering amplitude for, 166--168, 170-

172 
solution for Coulomb potential, 169-170 
solution for elastic electron-mercury 

atom collisions, 198-199 
solution for elastic electron-xenon atom 

collisions, 200-201 
transition matrix for, 166 

Direct scattering amplitude: see Scattering 
amplitude 

Dispersion relations 
branch cuts in, 137-138 
Cauchy's theorem and, 135 
for forward scattering amplitude, 138-

142 
index of refraction and, 135 
mathematical background for, 135-138 
optical theorem and, 142 
subtracted, 136 

Double scattering experiments, 196--200 

Effective range, definition, 117 
Effective range theory 

Blatt-Jackson formula and, 117 
for Coulomb potential, 129-134 
effective range in, 117-120, 123 
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Effective range theory (cont.) 
for finite range potentials, 116--123 
for long range r- S potentials, 123-129 
for polarization potential, 124--126 
quantum defect theory (QDT) and, 132-134 
Ramsauer minimum and, 125-126 
relation with R-matrix, 116--117 
scattering length in, 117, 123 

Eigenchannel method, 96--99; see also 
R-matrix method 

Eikonal approximation 
for Buckingham potential, 55 
conditions for validity of, 39 
eikonal Born series (EBS) and, 49-50 
Glauber approximation and, 39--41 
for Green's function, 40 
for hydrogen atom static potential, 53-54 
impact parameter in, 40-45, 51-53 
JWKB approximation and, 59 
Lippmann-Schwinger equation for, 39--40 
optical theorem satisfied by, 44 
partial wave analysis of, 43 
phase shift function in, 41-43 
relationship with Born series. 45-50 
for scattering amplitude, 41-43 
series expansion of. 44-45 
in strong coupling case, 55 
for superposition ofYukawa potentials, 

47-50 
Wallace amplitude in, 50-54 
for wave function. 40 
for Yukawa potential, 46 

Eikonal-Born series (EBS), 49-50; see also 
Eikonal approximation. Born 
series 

Electron-atom collisions: see Collisions of 
electrons 

Electron spin 
direct and spin-flip amplitudes for, 173, 186 
eigenfunctions for, 144 
operators for, 143 
Pauli spin matrices for, 145 
polarization and the density matrix for, 

148-151 
Sherman function and, 188 

Exponential potential, 37,81-82 
Extremum principles 

bound on phase shift, 84-86, 1O0-1O1 
bound on scattering length, 83-84 
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Fano line shape parameter, 110 
Feynman integral parametrization. 36. 221 
First Born approximation: see Born approxi-

mation, first 
Flux of particles, 2-5 

Gamow factor, 134 
Glauber approximation. 39-41; see also 

Eikonal approximation 
Green's function 

Born series for, 31 
for Dirac equation, 165 
eikonal approximation for, 40 
free particle, 17-19 
ingoing wave, 19 
outgoing wave, 18 
partial wave analysis of, 23 
total, 20-22 

Hankel functions, 213-215; see also Bessel 
functions 

Helicity operator, 161 
Helium atoms, collision of electrons with, 

92-93 
He+ ions, collisions of electrons with, 133 
Hulthen-Kohn variational methods 

anomalous singularities in, 65-75 
anomaly-free (AF) method, 73, 81-82 
bound on scattering length, 83-84 
for full scattering amplitude, 75-76 
Harris method, 72 
Hulthen variational method, 64, 71 
inverse Kohn variational method for 

cot/)t, 62-{j3, 68 
Kato identity and, 61 
Kohn variational method for tan/)t, 62, 68 
minimum-norm-inverse-Kohn (MNR) 

method, 74, 81-82 
minimum-norm-Kohn (MNK) method, 

74,81-82 
optimized-anomaly-free (OAF) method. 

73-74.81-82 
optimized-minimum norm (OMN) 

method. 74, 81-82 
restricted-interpo lated-anomal y -free 

(RIAF) method, 73 
Rubinow variational method for cot/)t, 

62-{j3,68 
for scattering length, 64-{j6 

INDEX 

Hulthen-Kohn variational methods (cant.) 
Schwartz singularities in, 65-75 
Schwinger variational method and. 80-82 
S-matrix form of, 63-{j4. 74-75 
for s-wave scattering by an exponential 

potentia!. 81-82 
for s-wave scattering by the hydrogen 

atom static potential, 65-{j6. 72-73 
for s-wave scattering by a square well 

potential, 70 
variational-least-squares (VLS) method. 

74 
Hulthen variational method, 64. 71; see also 

Hulthen-Kohn variational 
methods 

Hydrogen atoms, collisions of electrons with 
differential cross sections for, 53-54 
s-wave static phase shifts for, 72-73 

Hydrogen atom static potentia!. 53-54, 65-
66 

Hylleraas-Undheim theorem, 100 

Impact parameter, 40-45, 51-53, 59 
Index of refraction, 135; see also Dispersion 

relations 
Integral equation: see Lippmann-Schwinger 

equation 
Inverse Kohn variational method, 62-{j3, 68; 

see also Hulthen-Kohn varia­
tional methods 

Jeffreys-Wentzel-Kramers-Brillouin 
(JWKB) approximation 

connection formulae, 57-58 
eikonal approximation and, 59 
higher-order approximations, 59-{i0 
impact parameter in, 59 
for phase shift, 58-59 
for radial wave function, 57 

Jost functions 
branch cuts in, 105 
conditions on the potential for. 104-105 
definition of, 104. 106 
differential equation satisfied by, 104, 

10(r-I07 
Levinson's theorem, application of, 114-

116 
representation of radial wave function in 

terms of, 106 
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Jost functions (cant.) 
representation of S-matrix in terms of, 

106-107 
Wronskian relations for, 106 
Yukawa cuts in, 105 
for Yukawa potentials, 105 

Kato identity, 61, 83 
K-matrix 

definition of, 9 
effective range expansion of, 117 
HulthCn-Kohn variational method for, 

62,68 
Schwinger variational method for, 78--82 

Kohn variational method, 62, 68; see also 
Hulthen-Kohn variational 
methods 

Krypton, collisions of electrons with 
Ramsauer minimum in, 125-126 
scattering length in, 125-126 

Left-right asymmetry, 197-198 
Legendre polynomials, properties of, 203-

204 
Levinson's theorem, 114-116 
Lippmann-Schwinger equation 

Born series derivation using, 29-30 
for Dirac equation, 165--166 
for eikonal approximation, 39-40 
for finite range potentials, 16-19 
partial wave analysis of, 22-23 
Schwinger variational method derived 

from, 76-77 

Mass correction term, 182 
Mercury atoms, collisions of electrons with, 

198-199 
M-matrix 

definition of, 171 
differential cross section in terms of, 

172, 187, 192 
direct and spin-flip scattering amplitudes 

and, 173, 186 
invariant form of. 187 
partial wave analysis of. 185--186 

Momentum transfer cross section 
definition of, 8 
for long-range r-2 potential, 128-129 

Mott cross section, 170 

Mott detector, 188, 200 
Multiple scattering series, 32 

Neumann functions. 213-215; see also 
Bessel functions 

Nine-j symbols, properties of, 238-239 

Optical potential, 24-28 
Optical theorem 

251 

application in dispersion relations, 142 
Born series form of, 38 
for complex potentials, 28 
definition of, 5,8 
eikonal approximation form of, 44 

Parabolic coordinates, 10 
Parity 

of Dirac Hamiltonian, 174 
of spherical harmonics, 207 

Partial wave analysis 
of Coulomb scattering problem, 12-14 
of cross section, 7-'6, 27-28 
of Dirac equation, 176-180, 183-186 
of direct and spin-flip scattering ampli-

tudes, 186 
of eikonal scattering amplitude, 43 
of Green's function, 23 
of Lippmann-Schwinger equation, 22-23 
ofM-matrix,185-186 
of plane wave, 7, 210 
of scattering amplitude for complex 

potential, 26 
of scattering amplitude for Coulomb plus 

short range potential, 15 
of scattering amplitude for finite range 

potential, 7 
ofSchrodinger equation, 5--9,12-16,25--

28 
Pauli spin matrices, 145 
Perfect scattering experiment, 196 
Phase shift 

Blatt-Jackson effective range formula 
for, 117 

causality relation for, 113 
complex, 25 
Coulomb, 13 
eikonal approximation for, 43 
for finite range potential, 6 
first Born approximation for. 31, 123 
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Phase shift (cont.) 
Hulthen variational method for, 64, 71 
inverse Kohn variational method for, 62-

63,68 
JWKB approximation for, 58-59 
Kato identity for, 61 
Kohn variational method for, 62, 68 
Levinson's theorem for, 114-116 
for polarization potential, 124 
quantum defect theory (QDT) relation 

for, 132-134 
resonance behaviour of. 109-111 
R-matrix bound on, 100--101 
R-matrix method for, 90 
Schwinger variational method for, 78-

82 
second Born approximation for, 31 
for s-wave scattering by helium atom 

static exchange potential, 92-93 
for s-wave scattering by hydrogen atom 

static potential, 72-73 
variational bounds on, 84-86 
variational methods for, 60--86 
Wigner bound on, 101, 113 
zero-energy, 114-116, 133-134 

Plane wave 
Coulomb modified, 11-12 
expansion in partial waves, 7, 210 

Poincare theorem, 106 
Polarization potential 

Buckingham form of, 35--36, 55 
effective range theory for, 124-126, 134 
in electrofHIrgon atom collisions, 125--126 
in electron-krypton atom collisions, 125--

126 
in electron-xenon atom collisions, 125--

126, 200--201 
first Born approximation for, 123--124 
radial SchrMinger equation for, 124 
Ramsauer minimum due to, 125 

Potential 
Bargmann inequalities for, 104, 139 
Buckingham, 35--36, 55 
complex, 24-28 
Coulomb, 10--16,34-35, 129-134, 169-

170 
exponential, 81-82 
finite range, 5--9, 16-23, 104-105, 116-

123 

INDEX 

Potential (cont.) 
helium atom static exchange, 92 
hydrogen atom static, 53--54, 65--66, 72-

73 
long-range r-s, 123-124 
long-range r-2, 126-129 
optical, 24-28 
polarization, 35--36,124-126, 134,200--

201 
repulsive tail, 113--114 
screened Coulomb: see Yukawa 
separable, 84-86 
spin-orbit, 183-185, 191 
square well, 70, 108, 122 
superposition ofYukawa, 37-38, 105 
Yukawa,34-38,105 

Probability current density, 2-5 

Quantum defect theory (QDT); see also 
Effective range theory 

electron-ion collisions and, 133--134 
quantum defect in, 132 

Racah coefficients, properties of, 234-238 
Radial wave function 

asymptotic behaviour for Coulomb poten­
tial. 15 

asymptotic behaviour for finite range 
potential. 6. 25, 184 

behaviour at the origin. 6 
for Coulomb scattering, 12-15 
for Dirac equation, 177, 184-185 
JWKB approximation for, 57 
for Lippmann-Schwinger equation, 22-

23 
representation in terms of J ost functions, 

106 
scattering length and zero-energy, 117-

118 
for SchrMinger equation, 5--7, 12-15,25 

Ramsauer mimimum, 125 
Rayleigh-Ritz variational principle, 83 
Reaction cross section, 27-28 
Relativistic scattering: see Dirac equation 
Resonances 

behaviour of cross section near, 110--111 
behaviour of phase shift near, 109-111 
bound states and, 108-111 
Breit-Wigner resonance formula for, 110 
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Resonances (cont.) 
Fano line shape parameter for, 110 
poles in the S-matrix and. 108-11 I 
position of, 110 
shape, 113-114 
Siegert states and, 108 
trajectories ofresonance poles, 122-123 
width of, 110 
Wigner time delay and. 111-114 

R-matrix method 
analytic properties of, 117 
arbitrary boundary conditions in, 94-95 
Bloch operator in, 87 
bound on phase shift using, 100-101 
Buttle correction in, 91-92 
convergence of, 92-94 
definition ofR-matrix in, 88 
effective range theory and, 116-117 
eigenchannel method in, 96-99 
generalizations of, 99-100 
homogeneous boundary conditions in, 

91-92 
phase shift given by, 90 
propagator methods in, 95-96 
for s-wave helium static exchange phase 

shifts, 92-93 
variational correction to, 92 
variational methods for, 88-90, 97-99 
zero-order radial basis functions in, 91 

Rubinow variational method, 62-63, 68; see 
also Hulthen-Kohn variational 
methods 

Rutherford scattering formula, 12 

Scattering amplitude 
Born series for, 30 
for complex potential, 26 
Coulomb, 12. 15 
for Dirac equation, 166-168, 170-172 
direct and spin-flip, 173, 186 
dispersion relation for, 135-142 
eikonal approximation for, 41--43 
eikonal-Bom series (EBS) for, 49 
for finite range potential, 2-5, 7-8 
first Born approximation for. 30, 33. 168 
high energy behaviour of. 37-38. 47--49, 

53 
Hulthen-Kohn variational method for. 

75-76 
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Scattering amplitude (cont.) 
optical theorem for, 5, 8, 28, 142 
partial wave analysis of, 7, 15,26, 186 
for SchrMinger equation, 2-5, 7-8, 12, 

15,26 
Schwinger variational method for, 76-77 
second Born approximation for. 30 
unitarity relation for, 8 

Scattering length 
definition of, 117 
dependence on potential strength, 118 
effective range theory and. 117 
extremum principle for, 83-84 
for hydrogen atom static potential, 65-66 
Kohn variational method for, 64-65 
low energy cross section and, 120 
s-wave zero-energy wave function and. 

117-118 
SchrMinger equation 

for Coulomb potential, 10 
partial wave analysis of, 5-9. 12-16,25-

26 
scattering amplitude for, 2-5, 7-8, 12, 

15,26 
time-independent, I 

Schwartz singularities, 65-75; see also 
Hulthen-Kohn variational 
methods 

Schwinger variational method 
bilinear form of, 76 
bound on phase shift, 84-86 
comparison with Born series, 77-78 
comparison with Hulthen-Kohn varia-

tional methods, 80-82 
fractional form of, 77 
for scattering amplitude, 76-77 
separable potential approximation for, 

79-80, 85-86 
for s-wave scattering by an exponential 

potential, 81-82 
for tan 8(, 78-82 

Screened Coulomb potential: see Yukawa 
potential 

Second Born approximation: see Born 
approximation, second 

Semi-classical approximation. 39-60; see 
also Eikonal approximation, 
JWKB approximation 

Shape resonances. 113-114 
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Sherman function 
asymmetry parameter and, 197 
definition of, 188, 192 
differential cross section in terms of, 

188--190 
for elastic electron mercury atom colli­

sions, 198--199 
spin polarization in terms of, 192-196 

Siegert states, 108; see also Bound states, 
Resonances 

Six-j symbols, 234-238; see also Racah 
coefficients 

S-matrix 
analytic properties of, 106-111 
bound states and resonances in, 108--111 
for Coulomb potential, 14 
definition of, 9 
poles in, 108--111 
representation in terms of Jost functions, 

106-107 
resonance behaviour of, 109-110 
unitarity of, 9 
variational methods for, 63-M, 74-75 

Spherical Bessel functions, 6, 217-220; see 
also Bessel functions 

Spherical Hankel functions. 218--219; see 
also Bessel functions 

Spherical harmonics 
addition theorem for. 209 
coupling rule for, 211 
expansion ofa plane wave in, 7. 210 
explicit expressions for, 209 
parity of, 207 
properties of, 207-211 

Spherical Neumann functions, 6, 218--220; 
see also Bessel functions 

Spin-angle eigenfunctions, 176-177 
Spin-flip scattering amplitude: see Scatter­

ing amplitude 
Spin-orbit potential, 183-185, 191 
Spin polarization 

definition of, 150 
density matrix and, 148--151, 191-193 
differential cross section in terms of, 

188,191-192 
in double scattering, 196-200 
measurement by Mott detector of, 188, 

200 
of scattered electrons, 192-196 

INDEX 

Spin polarization (cont.) 
Sherman function and. 192-196 
S(9), T(9) and U(9) parameters in, 194-

196. 199-200 
Square well potential, 70, 108. 122 
Static exchange approximation. 92 
Static potential for electron-hydrogen atom 

collisions, 53 
Stationary values: see Hulthen-Kohn 

variational methods. Schwinger 
variational method. R-matrix 
method 

Statistical operator: see Density matrix 

Three-j symbols, 233; see also Clebsch--Gor-
dan coefficients 

Three n-j symbols, 239 
Time delay: see Wigner time delay 
T-matrix 

definition of, 9 
low energy resonance behaviour of, 120 
relation with phase shift. 9 
relation with S-matrix, 9 

Total cross section; see also Differential 
cross section 

behaviour near a resonance. 110-111 
Breit-Wigner resonance form of. 110 
for complex potential. 27 
definition of. 2-5 
dispersion relation for, 142 
for finite range potential. 4. 7--S 
first Born approximation for, 33 
for long-range r-2 potential. 128-129 
low energy behavior of. 120-121 
momentum transfer, 8 
optical theorem for, 5, 28. 142 
partial wave analysis of. 7--S. 27 
for polarization potential, 125 
Ramsauer minimum in, 125 
reaction, 27-28 

Transition matrix 
definition of, 20 
for Dirac equation, 166 
partial wave analysis of, 23 

Triple scattering experiments, 199-201 

Unitarity relation 
Born series form of, 38 
definition of, 8 
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Variable phase method, 7 
Variational methods, 60-86; see also 

Hulthen-Kohn variational 
methods, Schwinger variational 
method, R-matrix method 

Wallace amplitude, 50-54; see also Eikonal 
approximation 

Wave packet: see Wigner time delay 
Wentzel-Kramers-BriIIouin (WKB) approxi­

mation: see Jeffreys-Wentzel­
Kramers-BriIIouin (JWKB) 
approximation 

Wigner bound on phase shift, 101, 113 
Wigner R-matrix: see R-matrix 
Wigner time delay; see also Resonances 

causality and, 113 

Wigner time delay (cont.) 
near a resonance, 112-113 
for a wave packet, 111-112 

Wronskian, 106, 130 

Xenon, collisions of electrons with 
Ramsauer minimum in, 125--126 
scattering length in, 125--126 
triple scattering experiment, 200-20 I 

Yukawa cut, 105 
Yukawa potential, 34-38, 105 

Zero-energy collisions 
cross section for, 120-121 
phase shift for, 114-116, 133-134 
radial wave function for, 117-118 
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