Legendre Polynomials, Associated Legendre Functions and Spherical Harmonics

A.1. LEGENDRE POLYNOMIALS

Let x be a real variable such that $-1 \leq x \leq 1$. We may also set $x=\cos \theta$, where θ is a real number. The polynomials of degree l

$$
\begin{equation*}
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}, \quad l=0,1,2, \ldots \tag{A.1}
\end{equation*}
$$

are known as the Legendre polynomials. An equivalent definition of $P_{l}(x)$ can be given in terms of a generating function, namely

$$
\begin{equation*}
\left(1-2 x s+s^{2}\right)^{-1 / 2}=\sum_{l=0}^{\infty} P_{l}(x) s^{l}, \quad|s|<1 \tag{A.2}
\end{equation*}
$$

The Legendre polynomials satisfy the differential equation

$$
\begin{equation*}
\left[\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}+l(l+1)\right] P_{l}(x)=0 \tag{A.3}
\end{equation*}
$$

We have the recurrence relations

$$
\begin{align*}
& (2 l+1) x P_{l}-(l+1) P_{l+1}-l P_{l-1}=0 \tag{A.4a}\\
& \left(x^{2}-1\right) \frac{d P_{l}}{d x}=l\left(x P_{l}-P_{l-1}\right)=\frac{l(l+1)}{2 l+1}\left(P_{l+1}-P_{l-1}\right) \tag{A.4b}
\end{align*}
$$

which are also valid for the case $l=0$ if one defines $P_{-1}=0$.
The orthogonality relations are

$$
\begin{equation*}
\int_{-1}^{+1} P_{l}(x) P_{l^{\prime}}(x) d x=\frac{2}{2 l+1} \delta_{l l^{\prime}} \tag{A.5}
\end{equation*}
$$

and the closure relation is given by

$$
\begin{equation*}
\frac{1}{2} \sum_{l=0}^{\infty}(2 l+1) P_{l}(x) P_{l}\left(x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \tag{A.6}
\end{equation*}
$$

The Legendre polynomial $P_{l}(x)$ has the parity $(-)^{l}$ and has l zeros in the interval $(-1,+1)$. Furthermore,

$$
\begin{equation*}
P_{l}(1)=1, \quad P_{l}(-1)=(-1)^{l} \tag{A.7}
\end{equation*}
$$

For the lowest values of l the Legendre polynomials are given explicitly by

$$
\begin{align*}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \tag{A.8}\\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{align*}
$$

A.2. ASSOCIATED LEGENDRE FUNCTIONS

The associated Legendre functions $P_{l}^{m}(x)$ are defined by the relations

$$
\begin{equation*}
P_{l}^{m}(x)=\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{l}(x), \quad m=0,1,2, \ldots, l \tag{A.9}
\end{equation*}
$$

They are the product of the function $\left(1-x^{2}\right)^{m / 2}$ and of a polynomial of degree $(l-m)$ and parity $(-)^{l-m}$, having $(l-m)$ zeros in the interval $(-1,+1)$. The functions $P_{l}^{m}(x)$ can also be obtained from a generating function, namely

$$
\begin{aligned}
& (2 m-1)!!\left(1-x^{2}\right)^{m / 2} s^{m}\left(1-2 x s+s^{2}\right)^{-m-1 / 2}=\sum_{l=m}^{\infty} P_{l}^{m}(x) s^{l} \\
& |s|<1
\end{aligned}
$$

with

$$
\begin{align*}
(2 m-1)!! & =1.3 .5 \ldots(2 m-1), \quad m=1,2, \ldots \tag{A.11}\\
& =1, \quad m=0
\end{align*}
$$

In particular, we have

$$
\begin{align*}
P_{l}^{0}(x) & =P_{l}(x) \tag{A.12}\\
P_{l}^{l}(x) & =(2 l-1)!!\left(1-x^{2}\right)^{l / 2} \tag{A.13}
\end{align*}
$$

The associated Legendre functions satisfy the differential equation

$$
\begin{equation*}
\left[\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-2 x \frac{d}{d x}+l(l+1)-\frac{m^{2}}{1-x^{2}}\right] P_{l}^{m}(x)=0 \tag{A.14}
\end{equation*}
$$

We also have the recurrence relations

$$
\left.\begin{array}{l}
(2 l+1) x P_{l}^{m}-(l-m+1) P_{l+1}^{m}-(l+m) P_{l-1}^{m}=0 \\
\left(x^{2}-1\right) \frac{d P_{l}^{m}}{d x}=-(l+1) x P_{l}^{m}+(l-m+1) P_{l+1}^{m} \\
=
\end{array} \begin{array}{l}
l x P_{l}^{m}-(l+m) P_{l-1}^{m}, \quad 0 \leq m \leq l-1
\end{array}, \begin{array}{r}
P_{l}^{m+2}-2(m+1) \frac{x}{\left(1-x^{2}\right)^{1 / 2}} P_{l}^{m+1}+(l-m)(l+m+1) P_{l}^{m}=0 \\
0 \leq m \leq l-2,
\end{array}\right\}
$$

and the orthogonality relations

$$
\begin{equation*}
\int_{-1}^{+1} P_{l}^{m}(x) P_{l^{\prime}}^{m}(x) d x=\frac{2}{2 l+1} \frac{(l+m)!}{(l-m)!} \delta_{l l^{\prime}} . \tag{A.19}
\end{equation*}
$$

Important particular values are

$$
\begin{equation*}
P_{l}^{m}(1)=P_{l}^{m}(-1)=0, \quad m \neq 0 \tag{A.20}
\end{equation*}
$$

[for $m=0$, see eq. (A.7)] and

$$
\begin{align*}
P_{l}^{m}(0) & =(-)^{s} \frac{(2 s+2 m)!}{2^{l} s!(s+m)!}, & & l-m=2 s \tag{A.21}\\
& =0, & & l-m=2 s+1 .
\end{align*}
$$

The first few associated Legendre functions are given by

$$
\begin{align*}
& P_{1}^{1}(x)=\left(1-x^{2}\right)^{1 / 2} \\
& P_{2}^{1}(x)=3\left(1-x^{2}\right)^{1 / 2} x \\
& P_{2}^{2}(x)=3\left(1-x^{2}\right) \\
& P_{3}^{1}(x)=\frac{3}{2}\left(1-x^{2}\right)^{1 / 2}\left(5 x^{2}-1\right), \tag{A.22}\\
& P_{3}^{2}(x)=15 x\left(1-x^{2}\right) \\
& P_{3}^{3}(x)=15\left(1-x^{2}\right)^{3 / 2}
\end{align*}
$$

A.3. ORBITAL ANGULAR MOMENTUM AND SPHERICAL HARMONICS

In classical mechanics the orbital angular momentum of a particle is given by

$$
\begin{equation*}
l=\mathbf{r} \times \mathbf{p} \tag{A.23}
\end{equation*}
$$

where \mathbf{r} and \mathbf{p} are the position and momentum vectors of the particle, respectively. In wave mechanics \mathbf{p} is represented by the operator $-i \boldsymbol{\nabla}$ (with $\hbar=1$) so that l is represented by the operator $-i(\mathbf{r} \times \boldsymbol{\nabla})$. The Cartesian components of l are therefore given by

$$
\begin{align*}
& l_{x}=y p_{z}-z p_{y}=-i\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \\
& l_{y}=z p_{x}-x p_{z}=-i\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \tag{A.24}\\
& l_{z}=x p_{y}-y p_{x}=-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
\end{align*}
$$

Using the rules of commutator algebra, together with the basic commutation relations

$$
\begin{equation*}
\left[x, p_{x}\right]=\left[y, p_{y}\right]=\left[z, p_{z}\right]=i \tag{A.25}
\end{equation*}
$$

we find that the operators l_{x}, l_{y} and l_{z} satisfy the characteristic commutation relations of angular momenta, namely

$$
\begin{equation*}
\left[l_{x}, l_{y}\right]=i l_{z}, \quad\left[l_{y}, l_{z}\right]=i l_{x}, \quad\left[l_{z}, l_{x}\right]=i l_{y} \tag{A.26}
\end{equation*}
$$

Thus the three operators l_{x}, l_{y}, l_{z} do not mutually commute. However, if we consider the operator

$$
\begin{equation*}
l^{2}=l_{x}^{2}+l_{y}^{2}+l_{z}^{2} \tag{A.27}
\end{equation*}
$$

we readily find that each of the operators l_{x}, l_{y} and l_{z} commutes with l^{2},

$$
\begin{equation*}
\left[l_{x}, l^{2}\right]=\left[l_{y}, l^{2}\right]=\left[l_{z}, l^{2}\right]=0 \tag{A.28}
\end{equation*}
$$

As a result, it is always possible to construct simultaneous eigenfunctions of \boldsymbol{l}^{2} and one component of l, which we shall choose to be l_{z}.

Let us use spherical polar coordinates (r, θ, ϕ), with

$$
\begin{align*}
& x=r \sin \theta \cos \phi, \\
& y=r \sin \theta \sin \phi, \tag{A.29}\\
& z=r \cos \theta
\end{align*}
$$

We then have

$$
\begin{align*}
& l_{x}=i\left(\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right) \tag{A.30a}\\
& l_{y}=i\left(-\cos \phi \frac{\partial}{\partial \theta}+\cot \theta \sin \phi \frac{\partial}{\partial \phi}\right) \tag{A.30b}\\
& l_{z}=-i \frac{\partial}{\partial \phi} \tag{A.30c}
\end{align*}
$$

and

$$
\begin{equation*}
\boldsymbol{l}^{2}=-\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \tag{A.31}
\end{equation*}
$$

The spherical harmonics $Y_{l m}(\theta, \phi)$ are simultaneous eigenfunctions of the operators l^{2} and l_{z}. That is (with $\hbar=1$)

$$
\begin{align*}
& l^{2} Y_{l m}=l(l+1) Y_{l m}, \quad l=0,1,2, \ldots \tag{A.32}\\
& l_{z} Y_{l m}=m Y_{l m}, \quad m=-l,-l+1, \ldots, l \tag{A.33}
\end{align*}
$$

They are given by

$$
\begin{aligned}
& Y_{l m}(\theta, \phi)=(-1)^{m}\left[\frac{(2 l+1)(l-m)!}{4 \pi(l+m)!}\right]^{1 / 2} P_{l}^{m}(\cos \theta) \exp (i m \phi) \\
& m \geq 0
\end{aligned}
$$

$$
\begin{equation*}
Y_{l,-m}(\theta, \phi)=(-1)^{m} Y_{l m}^{*}(\theta, \phi) \tag{A.34b}
\end{equation*}
$$

and have the parity $(-)^{l}$. Hence, in a reflection about the origin such that $(\theta, \phi) \rightarrow(\pi-\theta, \phi+\pi)$, we have

$$
\begin{equation*}
Y_{l m}(\pi-\theta, \phi+\pi)=(-1)^{l} Y_{l m}(\theta, \phi) \tag{A.35}
\end{equation*}
$$

The spherical harmonics satisfy the orthonormality relations

$$
\begin{align*}
\int Y_{l^{\prime} m^{\prime}}^{*}(\theta, \phi) Y_{l m}(\theta, \phi) d \Omega & \equiv \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta Y_{l^{\prime} m^{\prime}}^{*}(\theta, \phi) Y_{l m}(\theta, \phi) \tag{A.36}\\
& =\delta_{l l^{\prime}} \delta_{m m^{\prime}}
\end{align*}
$$

where we have written $d \Omega=\sin \theta d \theta d \phi$. The closure relation for the $Y_{l m}$ is

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{m=-l}^{+l} Y_{l m}^{*}(\theta, \phi) Y_{l m}\left(\theta^{\prime}, \phi^{\prime}\right)=\delta\left(\Omega-\Omega^{\prime}\right) \tag{A.37a}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta\left(\Omega-\Omega^{\prime}\right)=\frac{\delta\left(\theta-\theta^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)}{\sin \theta} \tag{A.37b}
\end{equation*}
$$

The spherical harmonics constitute a complete orthonormal set of functions on the unit sphere.

The $Y_{l m}$ also satisfy recurrence relations. Introducing the operators

$$
\begin{equation*}
l_{ \pm}=l_{x} \pm i l_{y}=\exp (\pm i \phi)\left(\pm \frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right) \tag{A.38}
\end{equation*}
$$

we have

$$
\begin{align*}
l_{ \pm} Y_{l m} & =[l(l+1)-m(m \pm 1)]^{1 / 2} Y_{l, m \pm 1} \tag{A.39a}\\
& =[(l \mp m)(l+1 \pm m)]^{1 / 2} Y_{l, m \pm 1} \tag{A.39b}\\
l_{+} Y_{l, l} & =0 \tag{A.39c}\\
l_{-} Y_{l,-l} & =0 \tag{A.39d}
\end{align*}
$$

and also

$$
\begin{align*}
\cos \theta Y_{l m} & =\left[\frac{(l+1+m)(l+1-m)}{(2 l+1)(2 l+3)}\right]^{1 / 2} Y_{l+1, m} \\
& +\left[\frac{(l+m)(l-m)}{(2 l+1)(2 l-1)}\right]^{1 / 2} Y_{l-1, m} \tag{A.40}
\end{align*}
$$

For $m=0$ and $m=l$ the spherical harmonics are given by the simple expressions

$$
\begin{equation*}
Y_{l, 0}(\theta, \phi)=\left(\frac{2 l+1}{4 \pi}\right)^{1 / 2} P_{l}(\cos \theta) \tag{A.41}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{l, l}(\theta, \phi)=(-1)^{l}\left[\frac{2 l+1}{4 \pi} \frac{(2 l)!}{2^{2 l}(l!)^{2}}\right]^{1 / 2} \sin ^{l} \theta \exp (i l \phi) \tag{A.42}
\end{equation*}
$$

It should be noted that the equations (A.32),(A.33) and (A.36) determine the functions $Y_{l m}(\theta, \phi)$ only up to a phase. Since different phase factor conventions exist in the literature, it is important to carefully check this point in dealing with the functions $Y_{l m}$ used by various authors. The phase of the $Y_{l m}$ is chosen here so that:

1) the functions $Y_{l m}$ verify the recurrence relations (A.39)
2) $Y_{l, 0}(\theta=0)$ is real and positive.

The first few spherical harmonics are given by

$$
\begin{align*}
& Y_{00}=(4 \pi)^{-1 / 2} \\
& Y_{1,0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta, \\
& Y_{1, \pm 1}=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta \exp (\pm i \phi), \\
& Y_{2,0}=\left(\frac{5}{16 \pi}\right)^{1 / 2}\left(3 \cos ^{2} \theta-1\right) \\
& Y_{2, \pm 1}=\mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \sin \theta \cos \theta \exp (\pm i \phi), \\
& Y_{2, \pm 2}=\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \exp (\pm 2 i \phi) \tag{A.43}\\
& Y_{3,0}=\left(\frac{7}{16 \pi}\right)^{1 / 2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) \\
& Y_{3, \pm 1}=\mp\left(\frac{21}{64 \pi}\right)^{1 / 2} \sin ^{1 / 2} \theta\left(5 \cos { }^{2} \theta-1\right) \exp (\pm i \phi), \\
& Y_{3, \pm 2}=\left(\frac{105}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \cos \theta \exp (\pm 2 i \phi), \\
& Y_{3, \pm 3}=\mp\left(\frac{35}{64 \pi}\right)^{1 / 2} \sin ^{3} \theta \exp (\pm 3 i \phi)
\end{align*}
$$

A.4. USEFUL FORMULAE

Let \mathbf{r}_{1} and \mathbf{r}_{2} be two vectors having polar angles $\left(\theta_{1}, \phi_{1}\right)$ and $\left(\theta_{2}, \phi_{2}\right)$, respectively, and let θ be the angle between them. The "addition (or biaxial) theorem" of the spherical harmonics states that

$$
\begin{equation*}
P_{l}(\cos \theta)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{+l} Y_{l m}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{l m}\left(\theta_{2}, \phi_{2}\right) \tag{A.44a}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{l}(\cos \theta)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{+l} Y_{l m}^{*}\left(\hat{\mathbf{r}}_{1}\right) Y_{l m}\left(\hat{\mathbf{r}}_{2}\right) \tag{A.44b}
\end{equation*}
$$

where $\hat{\mathbf{x}}$ denotes the polar angles of a vector \mathbf{x}.

Using the generating function of the Legendre polynomials [see eq. (A.2)] we also see that

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=\sum_{l=0}^{\infty} \frac{\left(r_{<}\right)^{l}}{\left(r_{>}\right)^{l+1}} P_{l}(\cos \theta) \tag{A.45}
\end{equation*}
$$

where $r_{<}$is the smaller and $r_{>}$the larger of r_{1} and r_{2}. This result may also be written with the help of eq. (A.44b) as

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=\sum_{l=0}^{\infty} \sum_{m=-l}^{+l} \frac{4 \pi}{2 l+1} \frac{\left(r_{<}\right)^{l}}{\left(r_{>}\right)^{l+1}} Y_{l m}^{*}\left(\hat{\mathbf{r}}_{1}\right) Y_{l m}\left(\hat{\mathbf{r}}_{2}\right) . \tag{A.46}
\end{equation*}
$$

We also have

$$
\begin{align*}
& \frac{\exp \left(i k\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=i k \sum_{l=0}^{\infty}(2 l+1) j_{l}\left(k r_{<}\right) h_{l}^{(1)}\left(k r_{>}\right) P_{l}(\cos \theta) \tag{A.47a}\\
& =4 \pi i k \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} j_{l}\left(k r_{<}\right) h_{l}^{(1)}\left(k r_{>}\right) Y_{l m}^{*}\left(\hat{\mathbf{r}}_{1}\right) Y_{l m}\left(\hat{\mathbf{r}}_{2}\right) \tag{A.47b}
\end{align*}
$$

where j_{l} and $h_{l}^{(1)}$ are respectively a spherical Bessel function and a spherical Hankel function of the first kind (see Appendix B).

The development in spherical harmonics of a plane wave $\exp (i \mathbf{k} . \mathbf{r})$ is given by

$$
\begin{equation*}
\exp (i \mathbf{k} \cdot \mathbf{r})=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} i^{l} j_{l}(k r) Y_{l m}^{*}(\hat{\mathbf{k}}) Y_{l m}(\hat{\mathbf{r}}) \tag{A.48}
\end{equation*}
$$

Using the addition theorem (A.44), we may also write

$$
\begin{equation*}
\exp (i \mathbf{k} . \mathbf{r})=\sum_{l=0}^{\infty}(2 l+1) i^{l} j_{l}(k r) P_{l}(\cos \theta) \tag{A.49}
\end{equation*}
$$

where θ is the angle between the vectors \mathbf{k} and \mathbf{r}. In particular, if we choose the z -axis to coincide with the direction of k , we have

$$
\begin{equation*}
\exp (i \mathbf{k} . \mathbf{r})=\exp (i k z)=\sum_{l=0}^{\infty}(2 l+1) i^{l} j_{l}(k r) P_{l}(\cos \theta) \tag{A.50}
\end{equation*}
$$

It may also be shown (see for example Edmonds, 1957) that

$$
\begin{align*}
& \int Y_{l_{1} m_{1}}(\theta, \phi) Y_{l_{2} m_{2}}(\theta, \phi) Y_{l_{3} m_{3}}(\theta, \phi) d \Omega \\
& =\left[\frac{\left(2 l_{1}+1\right)\left(2 l_{2}+1\right)\left(2 l_{3}+1\right)}{4 \pi}\right]^{1 / 2} \tag{A.51}\\
& \times\left(\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)
\end{align*}
$$

where we have introduced the Wigner $3-j$ symbols (see Appendix E). From eq. (A.51) we find that

$$
\begin{align*}
& Y_{l_{1} m_{1}}(\theta, \phi) Y_{l_{2} m_{2}}(\theta, \phi)=\sum_{L=\left|l_{1}-l_{2}\right|}^{l_{1}+l_{2}} \sum_{M=-L}^{+L}(-1)^{M} \\
& \times\left[\frac{\left(2 l_{1}+1\right)\left(2 l_{2}+1\right)(2 L+1)}{4 \pi}\right]^{1 / 2} \tag{A.52}\\
& \times\left(\begin{array}{ccc}
l_{1} & l_{2} & L \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{1} & l_{2} & L \\
m_{1} & m_{2} & M
\end{array}\right) Y_{L,-M}(\theta, \phi)
\end{align*}
$$

This last equation may also be written in terms of vector addition (or ClebschGordan) coefficients (see Appendix E) as

$$
\begin{align*}
& Y_{l_{1} m_{1}}(\theta, \phi) Y_{l_{2} m_{2}}(\theta, \phi)=\sum_{L=\left|l_{1}-l_{2}\right|}^{l_{1}+l_{2}} \sum_{M=-L}^{+L}\left[\frac{\left(2 l_{1}+1\right)\left(2 l_{2}+1\right)}{4 \pi(2 L+1)}\right]^{1 / 2} \tag{А.53}\\
& \times\left(l_{1} 0 l_{2} 0 \mid L 0\right)\left(l_{1} m_{1} l_{2} m_{2} \mid L M\right) Y_{L M}(\theta, \phi)
\end{align*}
$$

We remark that in eqs. (A.52) and (A.53), the summation over M reduces to one term with $M=m_{1}+m_{2}$.

Additional useful formulae may be found for example in Abramowitz and Stegun (1964, Chapter 8), Rose (1957) and Edmonds (1957).

AppendixB

Bessel Functions, Modified Bessel Functions, Spherical Bessel Functions and Related Functions

B.1. BESSEL FUNCTIONS

Let us consider the differential equation

$$
\begin{equation*}
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0 \tag{B.1}
\end{equation*}
$$

where ν is a parameter which is assumed to be real. The so-called cylindrical functions are solutions of this equation. Special cylindrical functions are the Bessel functions $J_{\nu}(z)$ [also called Bessel functions of the first kind], the Neumann functions $N_{\nu}(z)$ [also called Bessel functions of the second kind and sometimes denoted $Y_{\nu}(z)$] and the Hankel functions $H_{\nu}^{(1)}(z), H_{\nu}^{(2)}(z)$ [also called Bessel functions of the third kind]. These functions may be defined by the following relations (Abramowitz and Stegun, 1964, Chapter 9; Watson, 1966)

$$
\begin{equation*}
J_{\nu}(z)=(z / 2)^{\nu} \sum_{k=0}^{\infty} \frac{\left(-z^{2} / 4\right)^{k}}{k!\Gamma(\nu+k+1)}, \quad|\arg z|<\pi \tag{B.2}
\end{equation*}
$$

where Γ is the Gamma-function,

$$
\begin{align*}
& N_{\nu}(z)=\frac{1}{\sin (\nu \pi)}\left[\cos (\nu \pi) J_{\nu}(z)-J_{-\nu}(z)\right], \nu \neq 0, \pm 1, \pm 2, \ldots \\
& |\arg z|<\pi \tag{B.3}\\
& N_{n}(z)=\lim _{\nu \rightarrow n} N_{\nu}(z), \quad n=0, \pm 1, \pm 2, \ldots ;|\arg z|<\pi \tag{B.4}\\
& J_{-n}(z)=(-1)^{n} J_{n}(z) ; N_{-n}(z)=(-1)^{n} N_{n}(z), n=0,1,2, \ldots, \tag{B.5}\\
& H_{\nu}^{(1)}(z)=J_{\nu}(z)+i N_{\nu}(z) \tag{B.6}\\
& H_{\nu}^{(2)}(z)=J_{\nu}(z)-i N_{\nu}(z) \tag{B.7}
\end{align*}
$$

The functions pairs $\left\{J_{\nu}(z), N_{\nu}(z)\right\}$ and $\left\{H_{\nu}^{(1)}(z), H_{\nu}^{(2)}(z)\right\}$ are linearly independent solutions of eq. (B.1) for all values of ν.

We also note the integral representations

$$
\begin{align*}
J_{\nu}(z)= & \frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \phi-\nu \phi) d \phi-\frac{\sin (\nu \pi)}{\pi} \int_{0}^{\infty} \exp (-z \sinh t-\nu t) d t \\
& |\arg z|<\pi / 2 \tag{B.8a}
\end{align*}
$$

$$
\begin{align*}
N_{\nu}(z) & =\frac{1}{\pi} \int_{0}^{\pi} \sin (z \sin \phi-\nu \phi) d \phi \\
& -\frac{1}{\pi} \int_{0}^{\infty}[\exp (\nu t)+\exp (-\nu t) \cos (\nu \pi)] \exp (-z \sinh t) d t \tag{B.8b}\\
& |\arg z|<\pi / 2
\end{align*}
$$

and

$$
\begin{align*}
J_{n}(z) & =\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \phi-n \phi) d \phi \tag{B.8c}\\
& =\frac{i^{-n}}{\pi} \int_{0}^{\pi} \exp (i z \cos \phi) \cos (n \phi) d \phi, n=0,1,2, \ldots
\end{align*}
$$

If C denotes $J, N, H^{(1)}, H^{(2)}$ or any linear combination of these functions (the coefficients of which are independent of z and ν) we have the recurrence relations

$$
\begin{align*}
& C_{\nu-1}(z)+C_{\nu+1}(z)=\frac{2 \nu}{z} C_{\nu}(z) \tag{B.9a}\\
& C_{\nu-1}(z)-C_{\nu+1}(z)=2 \frac{d C_{\nu}(z)}{d z} \tag{B.9b}\\
& \frac{d C_{\nu}(z)}{d z}=C_{\nu-1}(z)-\frac{\nu}{z} C_{\nu}(z) \tag{B.9c}\\
& \frac{d C_{\nu}(z)}{d z}=-C_{\nu+1}(z)-\frac{\nu}{z} C_{\nu}(z) \tag{B.9d}
\end{align*}
$$

We also have

$$
\begin{equation*}
\frac{d J_{0}(z)}{d z}=-J_{1}(z) ; \quad \frac{d N_{0}(z)}{d z}=-N_{1}(z) \tag{B.9e}
\end{equation*}
$$

A generating function for the Bessel functions is given by

$$
\begin{equation*}
\exp \left[\frac{z}{2}\left(t-\frac{1}{t}\right)\right]=\sum_{k=-\infty}^{+\infty} t^{k} J_{k}(z), \quad t \neq 0 . \tag{B.10}
\end{equation*}
$$

When ν is fixed and $z \rightarrow 0$, we have

$$
\begin{align*}
& J_{\nu}(z) \underset{z \rightarrow 0}{\rightarrow} \frac{(z / 2)^{\nu}}{\Gamma(\nu+1)} \quad(\nu \neq-1,-2,-3, \ldots) \tag{B.11a}\\
& N_{0}(z) \underset{z \rightarrow 0}{\rightarrow} \frac{2}{\pi} \ln z \tag{B.11b}\\
& N_{\nu}(z) \underset{z \rightarrow 0}{\rightarrow}-\frac{\Gamma(\nu)}{\pi}(z / 2)^{-\nu}, \quad \operatorname{Re} \nu>0 . \tag{B.11c}
\end{align*}
$$

For ν fixed and $|z| \rightarrow \infty$ we have the asymptotic expressions

$$
\begin{align*}
& J_{\nu}(z) \underset{|z| \rightarrow \infty}{\rightarrow}\left(\frac{2}{\pi z}\right)^{1 / 2} \cos \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right), \quad|\arg z|<\pi, \tag{B.12a}\\
& N_{\nu}(z) \underset{|z| \rightarrow \infty}{\rightarrow}\left(\frac{2}{\pi z}\right)^{1 / 2} \sin \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right), \quad|\arg z|<\pi, \tag{B.12b}\\
& H_{\nu}^{(1)}(z) \underset{|z| \rightarrow \infty}{\rightarrow}\left(\frac{2}{\pi z}\right)^{1 / 2} \exp \left[i\left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)\right],-\pi<\arg z<2 \pi, \tag{B.12c}\\
& H_{\nu}^{(2)}(z) \underset{|z| \rightarrow \infty}{\rightarrow}\left(\frac{2}{\pi z}\right)^{1 / 2} \exp \left[-i\left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)\right],-2 \pi<\arg z<\pi \text {. } \tag{B.12d}
\end{align*}
$$

B.2. MODIFIED BESSEL FUNCTIONS

Let us now consider the differential equation

$$
\begin{equation*}
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0 \tag{B.13}
\end{equation*}
$$

The modified cylindrical functions are solutions of this equation. Particular modified cylindrical functions are the modified Bessel functions $I_{\nu}(z)$ and $K_{\nu}(z)$ such that

$$
\begin{align*}
I_{\nu}(z) & =\exp (-\nu \pi i / 2) J_{\nu}[z \exp (i \pi / 2)], \quad-\pi<\arg z \leq \frac{\pi}{2} \tag{B.14a}\\
& =\exp (3 \nu \pi i / 2) J_{\nu}[z \exp (-3 i \pi / 2)], \quad \frac{\pi}{2}<\arg z \leq \pi \tag{B.14b}
\end{align*}
$$

and

$$
\begin{aligned}
& K_{\nu}(z)=\frac{\pi i}{2} \exp (\nu \pi i / 2) H_{\nu}^{(1)}[z \exp (i \pi / 2)], \quad-\pi<\arg z \leq \frac{\pi}{2} \text { (B.15a) } \\
& =-\frac{\pi i}{2} \exp (-\nu \pi i / 2) H_{\nu}^{(2)}[z \exp (-i \pi / 2)], \quad-\frac{\pi}{2}<\arg z \leq \pi .(\mathrm{B} .15 \mathrm{~b})
\end{aligned}
$$

We also have

$$
\begin{align*}
I_{\nu}(z) & =(z / 2)^{\nu} \sum_{k=0}^{\infty} \frac{\left(z^{2} / 4\right)^{k}}{k!\Gamma(\nu+k+1)} \tag{B.16}\\
K_{\nu}(z) & =\frac{\pi}{2 \sin (\nu \pi)}\left[I_{-\nu}(z)-I_{\nu}(z)\right], \quad \nu \neq 0, \pm 1, \pm 2, \ldots \tag{B.17}\\
K_{n}(z) & =\lim _{\nu \rightarrow n} K_{\nu}(z), \quad n=0, \pm 1, \pm 2, \ldots \tag{B.18}\\
K_{0}(z) & =-\{\ln (z / 2)+\gamma\} I_{0}(z)+\frac{z^{2} / 4}{(1!)^{2}} \\
& +\left(1+\frac{1}{2}\right) \frac{\left(z^{2} / 4\right)^{2}}{(2!)^{2}}+\left(1+\frac{1}{2}+\frac{1}{3}\right) \frac{\left(z^{2} / 4\right)^{3}}{(3!)^{2}}+\ldots \tag{B.19}
\end{align*}
$$

where $\gamma=0.5772156649 \ldots$ is Euler's constant,

$$
\begin{align*}
I_{-n}(z) & =I_{n}(z), \quad n=0,1,2, \ldots \tag{B.20}\\
K_{-\nu}(z) & =K_{\nu}(z) \tag{B.21}
\end{align*}
$$

We also note the integral representations

$$
\begin{gather*}
I_{\nu}=\frac{1}{\pi} \int_{0}^{\pi} \exp (z \cos \phi) \cos (\nu \phi) d \phi-\frac{\sin (\nu \pi)}{\pi} \int_{0}^{\infty} \exp (-z \cosh t-\nu t) d t \\
|\arg z|<\frac{\pi}{2} \tag{B.22a}\\
K_{\nu}(z)=\int_{0}^{\pi} \exp (-z \cosh t) \cosh (\nu t) d t, \quad|\arg z|<\frac{\pi}{2}, \tag{B.22b}\\
K_{\nu}(z)=\frac{\pi^{1 / 2}(z / 2)^{\nu}}{\Gamma\left(\nu+\frac{1}{2}\right)} \int_{1}^{\infty} \frac{\exp (-z t)}{\left(t^{2}-1\right)^{1 / 2-\nu}} d t \tag{B.22c}\\
\operatorname{Re} \nu>-\frac{1}{2},|\arg z|<\frac{\pi}{2} .
\end{gather*}
$$

In particular,

$$
\begin{align*}
K_{0}(z)= & \int_{1}^{\infty} \frac{\exp (-z t)}{\left(t^{2}-1\right)^{1 / 2}} d t=\int_{0}^{\infty} \frac{\exp \left[-z\left(u^{2}+1\right)^{1 / 2}\right]}{\left(u^{2}+1\right)^{1 / 2}} d u \tag{B.22d}\\
& |\arg z|<\frac{\pi}{2}
\end{align*}
$$

If Z denotes $I_{\nu}, \exp (\nu \pi i) K_{\nu}$ or any linear combination of these functions (the coefficients of which are independent of z and ν), we have the recurrence relations

$$
\begin{align*}
& Z_{\nu-1}(z)-Z_{\nu+1}(z)=\frac{2 \nu}{z} Z_{\nu}(z) \tag{B.23a}\\
& \frac{d Z_{\nu}(z)}{d z}=Z_{\nu-1}(z)-\frac{\nu}{z} Z_{\nu}(z) \tag{B.23b}\\
& Z_{\nu-1}(z)+Z_{\nu+1}(z)=2 \frac{d Z_{\nu}(z)}{d z} \tag{B.23c}\\
& \frac{d Z_{\nu}(z)}{d z}=Z_{\nu+1}(z)+\frac{\nu}{z} Z_{\nu}(z) \tag{B.23d}
\end{align*}
$$

We also have

$$
\begin{equation*}
\frac{d I_{0}(z)}{d z}=I_{1}(z) ; \quad \frac{d K_{0}(z)}{d z}=-K_{1}(z) \tag{B.23e}
\end{equation*}
$$

When ν is fixed and $z \rightarrow 0$,

$$
\begin{align*}
& I_{\nu}(z) \underset{z \rightarrow 0}{\rightarrow} \frac{(z / 2)^{\nu}}{\Gamma(\nu+1)} \quad(\nu \neq-1,-2,-3, \ldots) \tag{B.24a}\\
& K_{0}(z) \underset{z \rightarrow 0}{\rightarrow}-\ln z \tag{B.24b}\\
& K_{\nu}(z) \underset{z \rightarrow 0}{\rightarrow} \frac{1}{2} \Gamma(\nu)(z / 2)^{-\nu} \quad \operatorname{Re} \nu>0 . \tag{B.24c}
\end{align*}
$$

B.3. SPHERICAL BESSEL FUNCTIONS

Let us consider the differential equation

$$
\begin{equation*}
\frac{d^{2} w}{d z^{2}}+\frac{2}{z} \frac{d w}{d z}+\left[1-\frac{l(l+1)}{z^{2}}\right] w=0 \tag{B.25}
\end{equation*}
$$

with $l=0,1,2, \ldots$ Particular solutions of this equation are the spherical Bessel functions (or spherical Bessel functions of the first kind)

$$
\begin{equation*}
j_{l}(z)=\left(\frac{\pi}{2 z}\right)^{1 / 2} J_{l+1 / 2}(z) \tag{B.26}
\end{equation*}
$$

the spherical Neumann functions (or spherical Bessel functions of the second kind)

$$
\begin{align*}
n_{l}(z) & =(-1)^{l+1}\left(\frac{\pi}{2 z}\right)^{1 / 2} J_{-l-1 / 2}(z) \tag{B.27}\\
& =\left(\frac{\pi}{2 z}\right)^{1 / 2} N_{l+1 / 2}(z)
\end{align*}
$$

and the spherical Hankel functions of the first and second kind

$$
\begin{align*}
h_{l}^{(1)}(z) & =j_{l}(z)+i n_{l}(z) \\
& =\left(\frac{\pi}{2 z}\right)^{1 / 2} H_{l+1 / 2}^{(1)}(z) \tag{B.28}\\
h_{l}^{(2)}(z) & =j_{l}(z)-i n_{l}(z) \\
& =\left(\frac{\pi}{2 z}\right)^{1 / 2} H_{l+1 / 2}^{(2)}(z) \tag{B.29}
\end{align*}
$$

The functions $j_{l}(z)$ are regular while the functions $n_{l}(z), h_{l}^{(1)}(z)$ and $h_{l}^{(2)}(z)$ are irregular at the origin. The functions pairs $\left\{j_{l}(z), n_{l}(z)\right\}$ and $\left\{h_{l}^{(1)}(z), h_{l}^{(2)}(z)\right\}$ are linearly independent solutions of eq. (B.25) for every l.

The first three functions $j_{l}(z)$ and $n_{l}(z)$ are given explicitly by

$$
\begin{align*}
& j_{0}(z)=\frac{\sin z}{z} \\
& j_{1}(z)=\frac{\sin z}{z^{2}}-\frac{\cos z}{z} \tag{B.30a}\\
& j_{2}(z)=\left(\frac{3}{z^{3}}-\frac{1}{z}\right) \sin z-\frac{3}{z^{2}} \cos z
\end{align*}
$$

and

$$
\begin{align*}
& n_{0}(z)=-\frac{\cos z}{z} \\
& n_{1}(z)=-\frac{\cos z}{z^{2}}-\frac{\sin z}{z} \tag{B.30b}\\
& n_{2}(z)=-\left(\frac{3}{z^{3}}+\frac{1}{z}\right) \cos z-\frac{3}{z^{2}} \sin z
\end{align*}
$$

The functions $j_{l}(z)$ and $n_{l}(z)$ may be represented by the ascending series

$$
\begin{align*}
j_{l}(z) & =\frac{z^{l}}{(2 l+1)!!} \\
& \times\left[1-\frac{z^{2} / 2}{1!(2 l+3)}+\frac{\left(z^{2} / 2\right)^{2}}{2!(2 l+3)(2 l+5)}-\ldots\right] \tag{B.31a}\\
n_{l}(z) & =-\frac{(2 l-1)!!}{z^{l+1}} \\
& \times\left[1-\frac{z^{2} / 2}{1!(1-2 l)}+\frac{\left(z^{2} / 2\right)^{2}}{2!(1-2 l)(3-2 l)}-\ldots\right] \tag{B.31b}
\end{align*}
$$

and for l fixed and $z \rightarrow 0$ we see that

$$
\begin{align*}
& j_{l}(z) \underset{z \rightarrow 0}{\rightarrow} \frac{z^{l}}{(2 l+1)!!}, \tag{B.32a}\\
& n_{l}(z) \underset{z \rightarrow 0}{\rightarrow}-\frac{(2 l-1)!!}{z^{l+1}} . \tag{B.32b}
\end{align*}
$$

For l fixed and real $x \rightarrow \infty$ [in fact for x somewhat larger than $l(l+1) / 2$] we have the asymptotic formulae

$$
\begin{gather*}
j_{l}(x) \underset{x \rightarrow \infty}{\rightarrow} \frac{1}{x} \sin \left(x-\frac{l \pi}{2}\right), \tag{B.33a}\\
n_{l}(x) \underset{x \rightarrow \infty}{\rightarrow}-\frac{1}{x} \cos \left(x-\frac{l \pi}{\pi}\right), \tag{B.33b}\\
h_{l}^{(1)}(x) \underset{x \rightarrow \infty}{\rightarrow}-i \frac{\exp [i(x-l \pi / 2)]}{x}, \tag{B.33c}\\
h_{l}^{(2)}(x) \underset{x \rightarrow \infty}{\rightarrow} i \frac{\exp [-i(x-l \pi / 2)]}{x} . \tag{B.33d}
\end{gather*}
$$

If f_{l} denotes $j_{l}, n_{l}, h_{l}^{(1)}$ or $h_{l}^{(2)}$, we have the recurrence relations (with $l>0$)

$$
\begin{align*}
& f_{l-1}(z)+f_{l+1}(z)=(2 l+1) z^{-1} f_{l}(z) \tag{B.34a}\\
& l f_{l-1}(z)-(l+1) f_{l+1}(z)=(2 l+1) \frac{d}{d z} f_{l}(z) \tag{B.34b}\\
& \frac{l+1}{z} f_{l}(z)+\frac{d}{d z} f_{l}(z)=f_{l-1}(z) \tag{B.34c}\\
& \frac{l}{z} f_{l}(z)-\frac{d}{d z} f_{l}(z)=f_{l+1}(z) \tag{B.34d}
\end{align*}
$$

We also have the differentiation formulae (with $m=1,2,3, \ldots$)

$$
\begin{align*}
\left(\frac{1}{z} \frac{d}{d z}\right)^{m}\left[z^{l+1} f_{l}(z)\right] & =z^{l-m+1} f_{l-m}(z) \tag{B.35a}\\
\left(\frac{1}{z} \frac{d}{d z}\right)^{m}\left[z^{-l} f_{l}(z)\right] & =(-1)^{m} z^{-l-m} f_{l+m}(z) \tag{B.35b}
\end{align*}
$$

and the additional useful relations

$$
\begin{align*}
j_{l}(z) n_{l-1}(z)-j_{l-1}(z) n_{l}(z) & =z^{-2}, \quad l>0 \tag{B.36a}\\
j_{l}(z) \frac{d}{d z} n_{l}(z)-n_{l}(z) \frac{d}{d z} j_{l}(z) & =z^{-2} \tag{B.36b}
\end{align*}
$$

We also quote the following indefinite integrals

$$
\begin{align*}
\int j_{0}^{2}(x) x^{2} d x & =\frac{1}{2} x^{3}\left[j_{0}^{2}(x)+n_{0}(x) j_{1}(x)\right] \tag{B.37a}\\
\int n_{0}^{2}(x) x^{2} d x & =\frac{1}{2} x^{3}\left[n_{0}^{2}(x)-j_{0}(x) n_{1}(x)\right] \tag{B.37b}\\
\int j_{1}(x) d x & =-j_{0}(x) \tag{B.37c}\\
\int j_{0}(x) x^{2} d x & =x^{2} j_{1}(x) \tag{B.37d}\\
\int j_{l}^{2}(x) x^{2} d x & =\frac{1}{2} x^{3}\left[j_{l}^{2}(x)-j_{l-1}(x) j_{l+1}(x)\right], \quad l>0 \tag{B.37e}
\end{align*}
$$

The following definite integrals involving the functions j_{l} often appear in electron-atom scattering calculations:

$$
\begin{align*}
& \int_{0}^{\infty} \exp (-a x) j_{l}(b x) x^{\mu-1} d x \\
& =\frac{\pi^{1 / 2} b l \Gamma(\mu+l)}{2^{l+1} a^{\mu+l} \Gamma(l+3 / 2)}{ }_{2} F_{1}\left(\frac{\mu+l}{2}, \frac{\mu+l+1}{2} ; l+\frac{3}{2} ;-\frac{b^{2}}{a^{2}}\right) \tag{B.38a}\\
& \operatorname{Re}(a+i b)>0, \operatorname{Re}(a-i b)>0, \operatorname{Re}(\mu+l)>0
\end{align*}
$$

where

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=1+\frac{a b}{c} \frac{z}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{z^{2}}{2!}+\ldots \tag{B.38b}
\end{equation*}
$$

is the hypergeometric function,

$$
\begin{align*}
& \int_{0}^{\infty} \exp (-a x) j_{l}(b x) x^{l+1} d x=\frac{(2 b)^{l} \Gamma(l+1)}{\left(a^{2}+b^{2}\right)^{l+1}}, \quad \operatorname{Re} a>|\operatorname{Im} b|, \tag{B.38c}\\
& \int_{0}^{\infty} \exp (-a x) j_{l}(b x) x^{l+2} d x=\frac{2 a(2 b)^{l} \Gamma(l+2)}{\left(a^{2}+b^{2}\right)^{l+2}}, \quad \operatorname{Re} a>|\operatorname{Im} b| . \tag{B.38d}
\end{align*}
$$

Similar integrals involving higher powers of x may be obtained by differentiation with respect to the quantity a.

Finally, we remark that

$$
\begin{equation*}
\int_{0}^{\infty} j_{l}(k r) j_{l}\left(k^{\prime} r\right) r^{2} d r=\frac{\pi}{2 k^{2}} \delta\left(k-k^{\prime}\right) \tag{B.39}
\end{equation*}
$$

Additional useful formulae are given for example in Abramowitz and Stegun (1964, Chapters 9 and 10) and Watson (1966).

Appendix C

DaLITZ InTEGRALS

In this appendix we shall study integrals of the type (Dalitz, 1951, Joachain, 1983)

$$
\begin{align*}
& I_{m, n}\left(\alpha, \beta ; \mathbf{k}_{i}, \mathbf{k}_{f} ; \bar{k}\right) \\
& =\int d \mathbf{q} \frac{1}{q^{2}-\bar{k}^{2}-i \epsilon} \frac{1}{\left[\alpha^{2}+\left(\mathbf{q}-\mathbf{k}_{i}\right)^{2}\right]^{m}} \frac{1}{\left[\beta^{2}+\left(\mathbf{q}-\mathbf{k}_{f}\right)^{2}\right]^{n}} \tag{C.1}
\end{align*}
$$

with $\epsilon \rightarrow 0^{+}$. Following Feynman (1949), we first set

$$
\begin{align*}
a & =\alpha^{2}+\left(\mathbf{q}-\mathbf{k}_{i}\right)^{2} \\
b & =\beta^{2}+\left(\mathbf{q}-\mathbf{k}_{f}\right)^{2} \tag{C.2}
\end{align*}
$$

and use the integral representation

$$
\begin{equation*}
\frac{1}{a b}=\int_{0}^{1} \frac{d t}{[a t+b(1-t)]^{2}} \tag{C.3a}
\end{equation*}
$$

By differentiating both sides of eq. (C.3a) with respect to a or (and) b, we also have

$$
\begin{align*}
\frac{1}{a^{2} b} & =2 \int_{0}^{1} \frac{t}{[a t+b(1-t)]^{3}} d t \tag{C.3b}\\
\frac{1}{a b^{2}} & =2 \int_{0}^{1} \frac{1-t}{[a t+b(1-t)]^{3}} d t, \tag{C.3c}\\
& \vdots \\
\frac{1}{a^{m} b^{n}} & =\frac{(m+n-1)!}{(m-1)!(n-1)!} \int_{0}^{1} \frac{t^{m-1}(1-t)^{n-1}}{[a t+b(1-t)]^{m+n}} d t \tag{C.3d}
\end{align*}
$$

so that we may rewrite eq. (C.1) as

$$
\begin{align*}
& I_{m, n}\left(\alpha, \beta ; \mathbf{k}_{i}, \mathbf{k}_{f} ; \bar{k}\right)=\frac{(m+n-1)!}{(m-1)!(n-1)!} \int_{0}^{1} d t t^{m-1}(1-t)^{n-1} \\
& \times \int d \mathbf{q} \frac{1}{q^{2}-\bar{k}^{2}-i \epsilon} \tag{C.4}\\
& \times \frac{1}{\left[\alpha^{2} t+\left(\mathbf{q}-\mathbf{k}_{i}\right)^{2} t+\beta^{2}(1-t)+\left(\mathbf{q}-\mathbf{k}_{f}\right)^{2}(1-t)\right]^{m+n}}
\end{align*}
$$

We now observe that

$$
\begin{equation*}
\alpha^{2} t+\left(\mathbf{q}-\mathbf{k}_{i}\right)^{2} t+\beta^{2}(1-t)+\left(\mathbf{q}-\mathbf{k}_{f}\right)^{2}(1-t)=\Gamma^{2}+(\mathbf{q}-\boldsymbol{\Lambda})^{2} \tag{C.5}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{\Lambda} & =t \mathbf{k}_{i}+(1-t) \mathbf{k}_{f}, \tag{C.6}\\
\Gamma^{2} & =\alpha^{2} t+\beta^{2}(1-t)+t(1-t)\left(\mathbf{k}_{i}-\mathbf{k}_{f}\right)^{2} \\
& =\alpha^{2} t+\beta^{2}(1-t)+t(1-t) \Delta^{2} \tag{C.7}
\end{align*}
$$

and we recall that $\Delta=\mathbf{k}_{i}-\mathbf{k}_{f}$ is the momentum transfer.
Apart from a one-dimensional integral on the t variable, the calculation of $I_{m, n}\left(\alpha, \beta ; \mathbf{k}_{i}, \mathbf{k}_{f} ; \bar{k}\right)$ therefore reduces to the evaluation of integrals of the type

$$
\begin{equation*}
L_{S}=\int d \mathbf{q} \frac{1}{q^{2}-\bar{k}^{2}-i \epsilon} \frac{1}{\left[\Gamma^{2}+(\mathbf{q}-\mathbf{\Lambda})^{2}\right]^{S}} \tag{C.8}
\end{equation*}
$$

Let us begin by considering the case $S=1$. Using spherical coordinates $\left(q, \theta_{q}, \phi_{q}\right)$ in \mathbf{q} space, taking the z -axis along the vector $\boldsymbol{\Lambda}$ and performing the integration over the azimuthal angle ϕ_{q}, we find that

$$
\begin{align*}
L_{1} & =2 \pi \int_{0}^{\pi} d \theta_{q} \sin \theta_{q} \int_{0}^{+\infty} d q q^{2} \tag{C.9}\\
& \frac{1}{q^{2}-\bar{k}^{2}-i \epsilon} \times \frac{1}{\Gamma^{2}+q^{2}+\Lambda^{2}-2 q \Lambda \cos \theta_{q}}
\end{align*}
$$

Upon changing the integration variables in this equation to $q^{\prime}=-q$ and $\theta_{q^{\prime}}=$ $\pi-\theta_{q}$, we can also write

$$
\begin{align*}
L_{1} & =2 \pi \int_{0}^{\pi} d \theta_{q^{\prime}} \sin \theta_{q^{\prime}} \int_{-\infty}^{0} d q^{\prime} q^{\prime 2} \tag{C.10}\\
& \times \frac{1}{q^{\prime 2}-\bar{k}^{2}-i \epsilon} \frac{1}{\Gamma^{2}+q^{\prime 2}+\Lambda^{2}-2 q^{\prime} \Lambda \cos \theta_{q^{\prime}}}
\end{align*}
$$

so that, by comparing eqs. (C.9) and (C.10), we have

$$
\begin{align*}
L_{1} & =\pi \int_{0}^{\pi} d \theta_{q} \sin \theta_{q} \int_{-\infty}^{+\infty} d q q^{2} \tag{C.11}\\
& \times \frac{1}{q^{2}-\bar{k}^{2}-i \epsilon} \frac{1}{\Gamma^{2}+q^{2}+\Lambda^{2}-2 q \Lambda \cos \theta_{q}}
\end{align*}
$$

The integral on the q variable may be performed by considering q as a complex variable and closing the contour with a semi-circle of infinite radius in the upper-half complex q-plane. The poles of the denominator in this upper-half q-plane are located at q_{1} and q_{2}, with

$$
\begin{equation*}
q_{1}=\bar{k}+i \epsilon, \quad q_{2}=\Lambda \cos \theta_{q}+i\left(\Gamma^{2}+\Lambda^{2} \sin ^{2} \theta_{q}\right)^{1 / 2} \tag{C.12}
\end{equation*}
$$

Hence, using the residue theorem, we have

$$
\begin{equation*}
L_{1}=\pi^{2} i \bar{k} \int_{-1}^{+1} \frac{d \omega}{\Gamma^{2}+\bar{k}^{2}+\Lambda^{2}-2 \bar{k} \Lambda \omega}+\frac{\pi^{2} i}{\Lambda} \int_{i \Gamma-\Lambda}^{i \Gamma+\Lambda} \frac{q_{2}}{q_{2}^{2}-\bar{k}^{2}-i \epsilon} d q_{2} \tag{C.13}
\end{equation*}
$$

where we have set $\omega=\cos \theta_{q}$ in the first integral. Performing the integrals in eq. (C.13), we obtain

$$
\begin{equation*}
L_{1}(\bar{k}, \Gamma, \Lambda)=\frac{\pi^{2} i}{\Lambda} \ln \left(\frac{\bar{k}+\Lambda+i \Gamma}{\bar{k}-\Lambda+i \Gamma}\right) \tag{C.14}
\end{equation*}
$$

The integrals L_{S} for $S=2,3, \ldots$ may be readily obtained from L_{1} by successive differentiations with respect to Γ. Thus we have

$$
\begin{align*}
L_{2}(\bar{k}, \Gamma, \Lambda) & =-\frac{1}{2 \Gamma} \frac{\partial}{\partial \Gamma} L_{1}(\bar{k}, \Gamma, \Lambda) \\
& =-\frac{\pi^{2}}{\Gamma\left(\bar{k}^{2}-\Gamma^{2}-\Lambda^{2}+2 i \bar{k} \Gamma\right)} \tag{C.15a}\\
& \vdots \tag{C.15b}\\
L_{S}(\bar{k}, \Gamma, \Lambda) & =-\frac{1}{2(S-1) \Gamma} \frac{\partial}{\partial \Gamma} L_{S-1}(\bar{k}, \Gamma, \Lambda)
\end{align*}
$$

Let us now return to the expression for $I_{m, n}\left(\alpha, \beta ; \mathbf{k}_{i}, \mathbf{k}_{f} ; \bar{k}\right)$ given by eq. (C.4). In certain cases simple closed form expressions may be obtained for the integration on the variable t. For example, when $m=n=1$ we have (Lewis, 1956)

$$
\begin{equation*}
I_{1,1}\left(\alpha, \beta ; \mathbf{k}_{i}, \mathbf{k}_{f} ; \bar{k}\right)=\pi^{2}\left(A^{2}-B\right)^{-1 / 2} \ln \left[\frac{A+\left(A^{2}-B\right)^{1 / 2}}{A-\left(A^{2}-B\right)^{1 / 2}}\right] \tag{C.16a}
\end{equation*}
$$

where

$$
\begin{equation*}
A=-i \bar{k}\left[\Delta^{2}+(\alpha+\beta)^{2}\right]+\alpha\left(k_{f}^{2}+\beta^{2}-\bar{k}^{2}\right)+\beta\left(k_{i}^{2}+\alpha^{2}-\bar{k}^{2}\right) \tag{C.16b}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\left[\Delta^{2}+(\alpha+\beta)^{2}\right]\left[k_{i}^{2}+(\alpha-i \bar{k})^{2}\right]\left[k_{f}^{2}+(\beta-i \bar{k})^{2}\right] \tag{C.16c}
\end{equation*}
$$

It should be noted that the function on the right of eq. (C.16a) is single valued, even when we cross a branch cut of $\left(A^{2}-B\right)^{1 / 2}$, i.e. either square root can be chosen. This function is therefore analytic, the only problem being the specification of the branch of the logarithm; examination shows that we must take the arguments of numerator and denominator from $-\pi$ to $+\pi$.

Let us look in more detail at the particular case for which $\alpha=\beta \neq 0$ and $k_{i}=k_{f}=\bar{k}=k$. Using eqs. (C.16), we find that

$$
\begin{align*}
I_{1,1}\left(\alpha, \alpha ; \mathbf{k}_{i}, \mathbf{k}_{f} ; k\right) & =\frac{2 \pi^{2}}{\Delta\left[\alpha^{4}+4 k^{2} \alpha^{2}+k^{2} \Delta^{2}\right]^{1 / 2}} \\
& \times\left\{\tan ^{-1} \frac{\alpha \Delta}{2\left[\alpha^{4}+4 k^{2} \alpha^{2}+k^{2} \Delta^{2}\right]^{1 / 2}}\right. \tag{C.17}\\
& \left.+\frac{1}{2} i \ln \left[\frac{\left(\alpha^{4}+4 k^{2} \alpha^{2}+k^{2} \Delta^{2}\right)^{1 / 2}+k \Delta}{\left(\alpha^{4}+4 k^{2} \alpha^{2}+k^{2} \Delta^{2}\right)^{1 / 2}-k \Delta}\right]\right\}
\end{align*}
$$

We remark that this result may also be obtained by using eqs. (C.4), (C.15a) and the fact that we have here $\Gamma^{2}+\Lambda^{2}=k^{2}+\alpha^{2}$. Thus we may write

$$
\begin{equation*}
I_{1,1}\left(\alpha, \alpha ; \mathbf{k}_{i}, \mathbf{k}_{f} ; k\right)=\pi^{2} \int_{0}^{1} \frac{d t}{\Gamma\left(\alpha^{2}-2 i k \Gamma\right)} \tag{C.18}
\end{equation*}
$$

with $\Gamma=\left(\alpha^{2}+t(1-t) \Delta^{2}\right)^{1 / 2}$. The integral (C.18) is then readily performed in closed form to yield the expression given by eq. (C.17). Substitution of the result (C.17) in eq. (2.37) yields the second Born term (2.38) corresponding to scattering by the Yukawa potential (2.26).

Appendix D

The Density Matrix

A quantum system is said to be in a pure state when it is completely specified by a single state vector, which is fully determined apart from a constant phase factor. Quantum systems in pure states are prepared by performing a "maximal measurement" or "complete experiment" in which all values of a complete set of commuting observables are determined. Hence pure states represent the ultimate limit of precise observation as allowed by the uncertainty principle; for this reason they are also called states of "maximum knowledge".

In many cases, however, the measurement made on the system is not maximal. For instance, a beam of particles may be prepared in such a way that certain quantum numbers (e.g. the spin orientation) are only known through a probability distribution. Such systems, which cannot be described by a single state vector, are said to be in mixed states. The study of these systems can conveniently be made using the density matrix formalism (von Neumann, 1927; Fano, 1957; ter Haar, 1961; Blum, 1981). This method also presents the advantage of treating pure and mixed systems on the same footing. In this appendix we shall briefly discuss the general properties of the density matrix.

Let us consider a system consisting of an ensemble of N subsystems $\alpha=$ $1,2, \ldots, N$. We suppose that each of these subsystems is in a pure state and is therefore characterized by a distinct state vector $\Psi^{(\alpha)}$, which we denote by $|\alpha\rangle$ in the Dirac notation. The state vectors $|\alpha\rangle$ are assumed to be normalized, but need not be orthogonal to each other.

Next, we choose a complete set of basis states $|n\rangle$, namely orthonormal eigenvectors of some complete set of operators. Since these basis states are orthonormal,

$$
\begin{equation*}
\left\langle n^{\prime} \mid n\right\rangle=\delta_{n^{\prime} n} \text { or } \delta\left(n^{\prime}-n\right) \tag{D.1}
\end{equation*}
$$

and because they are complete

$$
\begin{equation*}
\sum_{n}|n\rangle\langle n|=1 . \tag{D.2}
\end{equation*}
$$

Let us expand the pure state $|\alpha\rangle$ in the basis states $|n\rangle$. We have

$$
\begin{equation*}
|\alpha\rangle=\sum_{n} c_{n}^{(\alpha)}|n\rangle \tag{D.3}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{n}^{(\alpha)}=\langle n \mid \alpha\rangle \tag{D.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n}\left|c_{n}^{(\alpha)}\right|^{2}=1 \tag{D.5}
\end{equation*}
$$

Consider now an observable represented by an operator A. The expectation value of this operator in the pure state $|\alpha\rangle$ is

$$
\begin{align*}
\langle A\rangle_{\alpha} & =\langle\alpha| A|\alpha\rangle=\sum_{n} \sum_{n^{\prime}} c_{n^{\prime}}^{(\alpha) *} c_{n}^{(\alpha)}\left\langle n^{\prime}\right| A|n\rangle \\
& =\sum_{n} \sum_{n^{\prime}}\langle n \mid \alpha\rangle\left\langle\alpha \mid n^{\prime}\right\rangle\left\langle n^{\prime}\right| A|n\rangle \tag{D.6}
\end{align*}
$$

The average value of A over the ensemble is therefore given by

$$
\begin{equation*}
\langle A\rangle=\sum_{\alpha=1}^{N} W_{\alpha}\langle A\rangle_{\alpha} \tag{D.7}
\end{equation*}
$$

where W_{α} is the statistical weight of the subsystem α, namely the probability of obtaining this subsystem among the ensemble. The statistical weights W_{α} must obviously be such that

$$
\begin{equation*}
0 \leq W_{\alpha} \leq 1 \tag{D.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\alpha=1}^{N} W_{\alpha}=1 \tag{D.9}
\end{equation*}
$$

Using the result (D.6), we may write eq. (D.7) explicitly as

$$
\begin{align*}
\langle A\rangle & =\sum_{\alpha=1}^{N} W_{\alpha} \sum_{n} \sum_{n^{\prime}} c_{n^{\prime}}^{(\alpha) *} c_{n}^{(\alpha)}\left\langle n^{\prime}\right| A|n\rangle \tag{D.10}\\
& =\sum_{\alpha=1}^{N} \sum_{n} \sum_{n^{\prime}}\langle n \mid \alpha\rangle W_{\alpha}\left\langle\alpha \mid n^{\prime}\right\rangle\left\langle n^{\prime}\right| A|n\rangle .
\end{align*}
$$

Let us now introduce the density operator (or statistical operator) which is defined as

$$
\begin{equation*}
\rho=\sum_{\alpha=1}^{N}|\alpha\rangle W_{\alpha}\langle\alpha| \tag{D.11}
\end{equation*}
$$

Taking matrix elements of the density operator between the basis states $|n\rangle$, we obtain the elements of the density matrix in the $\{|n\rangle\}$ representation, namely

$$
\begin{align*}
\rho_{n n^{\prime}} \equiv\langle n| \rho\left|n^{\prime}\right\rangle & =\sum_{\alpha=1}^{N}\langle n \mid \alpha\rangle W_{\alpha}\left\langle\alpha \mid n^{\prime}\right\rangle \\
& =\sum_{\alpha=1}^{N} W_{\alpha} c_{n^{\prime}}^{(\alpha) *} c_{n}^{(\alpha)} \tag{D.12}
\end{align*}
$$

Returning to eq. (D.10), we see that

$$
\begin{align*}
\langle A\rangle & =\sum_{n} \sum_{n^{\prime}}\langle n| \rho\left|n^{\prime}\right\rangle\left\langle n^{\prime}\right| A|n\rangle \\
& =\sum_{n}\langle n| \rho A|n\rangle \tag{D.13}\\
& =\operatorname{Tr}(\rho A)
\end{align*}
$$

where the symbol Tr denotes the trace. Hence the knowledge of ρ enables us to obtain the statistical average of A. We also remark that if we take A to be the identity operator, we obtain the normalization condition

$$
\begin{equation*}
\operatorname{Tr} \rho=1 \tag{D.14}
\end{equation*}
$$

As seen from its definition (D.11), the density operator ρ is Hermitian, namely

$$
\begin{equation*}
\rho=\rho^{\dagger} \tag{D.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\langle n| \rho\left|n^{\prime}\right\rangle=\left\langle n^{\prime}\right| \rho|n\rangle^{*} . \tag{D.16}
\end{equation*}
$$

As a result, the density matrix may always be diagonalized by means of a unitary transformation.

The diagonal elements of the density matrix,

$$
\begin{equation*}
\rho_{n n}=\langle n| \rho|n\rangle=\sum_{\alpha=1}^{N} W_{\alpha}\left|c_{n}^{(\alpha)}\right|^{2} \tag{D.17}
\end{equation*}
$$

have a simple physical interpretation. Indeed, the probability of finding the system in the pure state $|\alpha\rangle$ is W_{α} and the probability that $|\alpha\rangle$ is to be found in the state $|n\rangle$ is $\left|c_{n}^{(\alpha)}\right|^{2}$. Thus the diagonal element $\rho_{n n}$ gives the probability of finding a member of the ensemble in the state n. We also note from eqs. (D.8) and (D.17) that

$$
\begin{equation*}
\rho_{n n} \geq 0 \tag{D.18}
\end{equation*}
$$

so that ρ is a positive semi-definite operator. Moreover, combining the above result with eq. (D.14), we see that all diagonal elements of the density matrix must be such that

$$
\begin{equation*}
0 \leq \rho_{n n} \leq 1 \tag{D.19}
\end{equation*}
$$

Let us choose a representation $\{k\}$ in which the density matrix is diagonal. In that representation, we clearly have

$$
\begin{equation*}
\rho_{k k^{\prime}}=\rho_{k k} \delta_{k k^{\prime}} \tag{D.20}
\end{equation*}
$$

where $\rho_{k k}$ is the fraction of the members of the ensemble in the state $|k\rangle$. Moreover, using eqs (D.14) and (D.19), we have

$$
\begin{equation*}
\operatorname{Tr}\left(\rho^{2}\right) \leq \operatorname{Tr} \rho=1 \tag{D.21}
\end{equation*}
$$

This relation remains valid in any representation since the trace is invariant under a unitary transformation. It is worth noting that because the density matrix is Hermitian the result (D.21) may also be written in the form

$$
\begin{equation*}
\sum_{n} \sum_{n^{\prime}}\left|\rho_{n n^{\prime}}\right|^{2} \leq 1 \tag{D.22}
\end{equation*}
$$

Let us now consider the particular case such that the system is in a pure state $|\lambda\rangle$. Then $W_{\alpha}=\delta_{\alpha \lambda}$ and we see from eq. (D.11) that the density operator is just

$$
\begin{equation*}
\rho^{\lambda}=|\lambda\rangle\langle\lambda| \tag{D.23}
\end{equation*}
$$

This is a projection operator onto the state $|\lambda\rangle$, with

$$
\begin{equation*}
\left(\rho^{\lambda}\right)^{2}=\rho^{\lambda} . \tag{D.24}
\end{equation*}
$$

Hence, in this case the relation (D.21) becomes

$$
\begin{equation*}
\operatorname{Tr}\left(\rho^{\lambda}\right)^{2}=\operatorname{Tr} \rho^{\lambda}=1 \tag{D.25}
\end{equation*}
$$

and eqs. (D.10) and (D.13) reduce to

$$
\begin{equation*}
\langle A\rangle=\operatorname{Tr}\left(\rho^{\lambda} A\right)=\langle\lambda| A|\lambda\rangle \tag{D.26}
\end{equation*}
$$

It is worth noting that the equation $\operatorname{Tr}\left(\rho^{\lambda}\right)^{2}=1$ gives us a criterion for deciding whether a state is pure or not that is invariant under all unitary transformations.

If we choose to work in a representation $\{k\}$ such that ρ^{λ} is diagonal, we see that

$$
\begin{equation*}
\rho_{k k^{\prime}}^{\lambda}=\delta_{k \lambda} \delta_{k^{\prime} \lambda} \tag{D.27}
\end{equation*}
$$

and therefore the only non-vanishing matrix element of ρ^{λ} is the diagonal element in the λ th row and column, which is equal to one. As a result, all the eigenvalues of the pure state density operator ρ^{λ} are equal to zero, except one which is equal to unity. This last property is independent of the choice of the representation, and may therefore be used to characterize the density matrix of a pure state.

Let us return to the general density operator (D.11) and density matrix (D.12). Until now we have assumed that the pure states $|\alpha\rangle$ were normalized to unity. If this requirement is dropped, then $0<\operatorname{Tr} \rho \neq 1$ and the basic result (D.13) is replaced by

$$
\begin{equation*}
\langle A\rangle=\frac{\operatorname{Tr}(\rho A)}{\operatorname{Tr} \rho} . \tag{D.28}
\end{equation*}
$$

In the above discussion we have labelled the rows and columns of the density matrix $\rho_{n n^{\prime}}$ by simple indices n and n^{\prime}. In general, of course, the symbol n refers to a collection of indices, some of which taking on discrete values while others vary continuously. In many cases, however, we are interested in some particular property of the system (for example the spin). We then omit the dependence on all other variables, keep only the relevant indices and define in that way a reduced density matrix. This is the case for example in Chapter 4, where we discuss the density matrix for a spin $-1 / 2$ system.

Appendix E

Clebsch-Gordan and Racah Coefficients

In this appendix we summarize the formulae describing the coupling of two or more angular momenta. This leads to the introduction of Clebsch-Gordan and Racah coefficients as well as higher order $3 n-j$ symbols. For a complete discussion of these topics reference should be made to specialized monographs on angular momentum such as those by Rose (1957) and by Edmonds (1957).

E.1. CLEBSCH-GORDAN COEFFICIENTS

Let us first consider two independent quantum systems, or parts of a single system, having angular momenta \mathbf{j}_{1} and \mathbf{j}_{2} respectively. We denote by $\psi_{j_{1} m_{1}}(1)$ and $\psi_{j_{2} m_{2}}(2)$ the angular momentum eigenfunctions of these systems which diagonalize the square and the z component of the angular momentum. Thus (with $\hbar=1$)

$$
\begin{align*}
\mathbf{j}_{1}^{2} \psi_{j_{1} m_{1}}(1) & =j_{1}\left(j_{1}+1\right) \psi_{j_{1} m_{1}}(1) \tag{E.1}\\
j_{1 z} \psi_{j_{1} m_{1}}(1) & =m_{1} \psi_{j_{1} m_{1}}(1)
\end{align*}
$$

where

$$
\begin{equation*}
m_{1}=-j_{1},-j_{1}+1, \ldots, j_{1} \tag{E.2}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbf{j}_{2}^{2} \psi_{j_{2} m_{2}}(2) & =j_{2}\left(j_{2}+1\right) \psi_{j_{2} m_{2}}(2), \tag{E.3}\\
j_{2 z} \psi_{j_{2} m_{2}}(2) & =m_{2} \psi_{j_{2} m_{2}}(2)
\end{align*}
$$

where

$$
\begin{equation*}
m_{2}=-j_{2},-j_{2}+1, \ldots, j_{2} \tag{E.4}
\end{equation*}
$$

Here $j_{1 z}$ and $j_{2 z}$ are the z components of \mathbf{j}_{1} and \mathbf{j}_{2} respectively. Simultaneous eigenfunctions of the operators $\mathbf{j}_{1}^{2}, j_{1 z}, \mathbf{j}_{2}^{2}$ and $j_{2 z}$ are then given by the tensor products $\psi_{j_{1} m_{1}}(1) \psi_{j_{2} m_{2}}(2)$.

We now define the total angular momentum \mathbf{j} of the two systems by

$$
\begin{equation*}
\mathbf{j}=\mathbf{j}_{1}+\mathbf{j}_{2} \tag{E.5}
\end{equation*}
$$

and its z component j_{z} by

$$
\begin{equation*}
j_{z}=j_{1 z}+j_{2 z} \tag{E.6}
\end{equation*}
$$

The operators $\mathbf{j}_{1}^{2}, \mathbf{j}_{2}^{2}, \mathbf{j}^{2}$ and j_{z} form a set of commuting operators. Let us denote by $\psi_{j_{1} j_{2} j m}(1,2)$ the coupled eigenfunctions common to the operators $\mathbf{j}_{1}^{2}, \mathbf{j}_{2}^{2}, \mathbf{j}^{2}$ and j_{z}. These coupled eigenfunctions satisfy

$$
\begin{align*}
& \mathbf{j}^{2} \psi_{j_{1} j_{2} j m}(1,2)=j(j+1) \psi_{j_{1} j_{2 j m}}(1,2) \\
& j_{z} \psi_{j_{1} j_{2} j m}(1,2)=m \psi_{j_{1} j_{2} j m}(1,2) \tag{E.7}
\end{align*}
$$

where

$$
\begin{equation*}
j=\left|j_{1}-j_{2}\right|, \quad\left|j_{1}-j_{2}\right|+1, \ldots, j_{1}+j_{2} \tag{E.8}
\end{equation*}
$$

and

$$
\begin{equation*}
m=-j,-j+1, \ldots, j \tag{E.9}
\end{equation*}
$$

The $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$ coupled eigenfunctions $\psi_{j_{1} j_{2} j m}(1,2)$ common to the operators $\mathbf{j}_{1}^{2}, \mathbf{j}_{2}^{2}, \mathbf{j}^{2}$ and j_{z} are related to the $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$ eigenfunctions $\psi_{j_{1} m_{1}}(1) \psi_{j_{2} m_{2}}(2)$ common to the operators $\mathbf{j}_{1}^{2}, j_{1 z}, \mathbf{j}_{2}^{2}$ and $j_{2 z}$ by the unitarity transformation

$$
\begin{equation*}
\psi_{j_{1} j_{2} j m}(1,2)=\sum_{m_{1} m_{2}}\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right) \psi_{j_{1} m_{1}}(1) \psi_{j_{2} m_{2}}(2) \tag{E.10}
\end{equation*}
$$

The coefficients $\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right)$ of this transformation are called vector coupling or Clebsch-Gordan coefficients. These coefficients vanish unless eqs. (E.8) and (E.9) are satisfied and $m=m_{1}+m_{2}$. To define these coefficients unambiguously, the relative phases of the eigenfunctions $\psi_{j_{1} m_{1}}(1) \psi_{j_{2} m_{2}}(2)$ and $\psi_{j_{1} j_{2} j m}(1,2)$ must be specified. We shall adopt here the phase convention of Condon and Shortley (1935) where

$$
\begin{equation*}
\left(j_{1} j_{1} j_{2} j_{2} \mid j_{1}+j_{2} j_{1}+j_{2}\right)=1 \tag{E.11}
\end{equation*}
$$

With this choice of phase the Clebsch-Gordan coefficients are real and satisfy the orthogonality relations

$$
\begin{equation*}
\sum_{m_{1} m_{2}}\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right)\left(j_{1} m_{1} j_{2} m_{2} \mid j^{\prime} m^{\prime}\right)=\delta_{j j^{\prime}} \delta_{m m^{\prime}} \tag{E.12}
\end{equation*}
$$

which reduces to a single summation since $m_{1}+m_{2}=m$, and

$$
\begin{equation*}
\sum_{j m}\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right)\left(j_{1} m_{1}^{\prime} j_{2} m_{2}^{\prime} \mid j m\right)=\delta_{m_{1} m_{1}^{\prime}} \delta_{m_{2} m_{2}^{\prime}} \tag{E.13}
\end{equation*}
$$

Using eq. (E.13) we can invert eq. (E.10) to yield

$$
\begin{equation*}
\psi_{j_{1} m_{1}}(1) \psi_{j_{2} m_{2}}(2)=\sum_{j}\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right) \psi_{j_{1} j_{2} j m}(1,2) \tag{E.14}
\end{equation*}
$$

The Clebsch-Gordan coefficients also satisfy the symmetry relations

$$
\begin{align*}
\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right) & =(-1)^{j_{1}+j_{2}-j}\left(j_{1}-m_{1} j_{2}-m_{2} \mid j-m\right) \tag{E.15a}\\
\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right) & =(-1)^{j_{1}+j_{2}-j}\left(j_{2} m_{2} j_{1} m_{1} \mid j m\right) \tag{E.15b}\\
\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right) & =(-1)^{j_{2}+m_{2}}\left(\frac{2 j+1}{2 j_{1}+1}\right)^{1 / 2} \\
& \times\left(j-m j_{2} m_{2} \mid j_{1}-m_{1}\right) \tag{E.15c}\\
\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right) & =(-1)^{j_{1}-m_{1}}\left(\frac{2 j+1}{2 j_{2}+1}\right)^{1 / 2} \\
& \times\left(j_{1} m_{1} j-m \mid j_{2}-m_{2}\right) \tag{E.15d}
\end{align*}
$$

Further symmetry relations can be obtained by combining these equations.
These symmetry relations can be simplified by introducing the $3-j$ symbols defined by Wigner (1940). These are defined by

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{E.16}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{j_{1}-j_{2}-m_{3}}\left(2 j_{3}+1\right)^{-1 / 2}\left(j_{1} m_{1} j_{2} m_{2} \mid j_{3}-m_{3}\right)
$$

The $3-j$ symbols are invariant for even permutations of the columns and are multiplied by $(-1)^{j_{1}+j_{2}+j_{3}}$ for odd permutations or when the signs of m_{1}, m_{2} and m_{3} are changed. Thus

$$
\begin{align*}
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) & =\left(\begin{array}{ccc}
j_{2} & j_{3} & j_{1} \\
m_{2} & m_{3} & m_{1}
\end{array}\right)=\left(\begin{array}{ccc}
j_{3} & j_{1} & j_{2} \\
m_{3} & m_{1} & m_{2}
\end{array}\right) \\
& =(-1)^{j_{1}+j_{2}+j_{3}}\left(\begin{array}{ccc}
j_{1} & j_{3} & j_{2} \\
m_{1} & m_{3} & m_{2}
\end{array}\right) \tag{E.17}
\end{align*}
$$

and

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{E.18}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{j_{1}+j_{2}+j_{3}}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
-m_{1} & -m_{2} & -m_{3}
\end{array}\right)
$$

The orthogonality relations satisfied by the $3-j$ symbols are

$$
\sum_{m_{1} m_{2}}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{E.19}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3}^{\prime} \\
m_{1} & m_{2} & m_{3}^{\prime}
\end{array}\right)=\left(2 j_{3}+1\right)^{-1} \delta_{j_{3} j_{3}^{\prime}} \delta_{m_{3} m_{3}^{\prime}}
$$

and

$$
\sum_{j_{3} m_{3}}\left(2 j_{3}+1\right)\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{E.20}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1}^{\prime} & m_{2}^{\prime} & m_{3}
\end{array}\right)=\delta_{m_{1} m_{1}^{\prime}} \delta_{m_{2} m_{2}^{\prime}}
$$

TABLE E.1. Explicit values for the Clebsch-Gordan coefficients $\left(j_{1} m-m_{2}^{1 / 2} m_{2} \mid j m\right)$
$\left.\begin{array}{cc}\hline j & m_{2}=\frac{1}{2} \\ j_{1}+\frac{1}{2} & {\left[\frac{j_{1}+m+(1 / 2)}{2 j_{1}+1}\right]^{1 / 2}} \\ j_{1}-\frac{1}{2} & -\left[\frac{j_{1}-m+(1 / 2)}{2 j_{1}+1}\right]^{1 / 2} \\ \hline 2 j_{1}+1\end{array}\right]^{1 / 2} \quad\left[\frac{j_{1}+m+(1 / 2)}{2 j_{1}+1}\right]^{1 / 2}$

Returning to Clebsch-Gordan coefficients we have the following important relations

$$
\begin{equation*}
\left(j_{1} 0 j_{2} 0 \mid j 0\right)=0 \text { unless } j_{1}+j_{2}+j_{3} \text { is even } \tag{E.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(j_{1} m_{1} 00 \mid j m\right)=\delta_{j_{1} j} \delta_{m_{1} m} \tag{E.22}
\end{equation*}
$$

The Clebsch-Gordan coefficients can be calculated using the orthogonality and the symmetry relations which they satisfy (Edmonds, 1957). Since the general formula is quite complicated we limit ourselves here to giving their values in Tables E. 1 and E. 2 for the cases of most interest in this monograph when $j_{2}=$ $1 / 2$ and $j_{2}=1$.

E.2. RACAH COEFFICIENTS

We now consider the addition of three angular momenta $\mathbf{j}_{1}, \mathbf{j}_{2}$ and \mathbf{j}_{3} to form the total angular momentum \mathbf{j} given by

$$
\begin{equation*}
\mathbf{j}=\mathbf{j}_{1}+\mathbf{j}_{2}+\mathbf{j}_{3} \tag{E.23}
\end{equation*}
$$

There is no unique way of carrying out this addition. We may first couple \mathbf{j}_{1} and \mathbf{j}_{2} to give the resultant \mathbf{j}_{12} and then couple this to \mathbf{j}_{3} to give \mathbf{j}. Alternatively, we may couple \mathbf{j}_{1} to the resultant \mathbf{j}_{23} of coupling \mathbf{j}_{2} and \mathbf{j}_{3} to give \mathbf{j}. Finally, we may couple \mathbf{j}_{1} and \mathbf{j}_{3} to give the resultant \mathbf{j}_{13} which is then coupled with \mathbf{j}_{2} to give \mathbf{j}. These three representations are related by unitary transformations which are expressed in terms of Racah coefficients introduced by Racah (1942, 1943).

Let us consider the connection between the first two representations described above which are characterized by the intermediate angular momenta

$$
\begin{equation*}
\mathbf{j}_{12}=\mathbf{j}_{1}+\mathbf{j}_{2} \text { and } \mathbf{j}_{23}=\mathbf{j}_{2}+\mathbf{j}_{3} \tag{E.24}
\end{equation*}
$$

where the corresponding eigenfunctions are denoted by

$$
\begin{equation*}
\psi_{j m}\left(j_{12}\right) \text { and } \psi_{j m}\left(j_{23}\right) \tag{E.25}
\end{equation*}
$$

TABLE E.2. Explicit values for the Clebsch-Gordan coefficients ($\left.j_{1} m-m_{2} 1 m_{2} \mid j m\right)$

j	$m_{2}=1$	$m_{2}=0$	$m_{2}=-1$
$j_{1}+1$	$\left[\frac{\left(j_{1}+m\right)\left(j_{1}+m+1\right)}{\left(2 j_{1}+1\right)\left(2 j_{1}+2\right)}\right]^{1 / 2}$	$\left[\frac{\left(j_{1}-m+1\right)\left(j_{1}+m+1\right)}{\left(2 j_{1}+1\right)\left(j_{1}+1\right)}\right]^{1 / 2}$	$\left[\frac{\left(j_{1}-m\right)\left(j_{1}-m+1\right)}{\left(2 j_{1}+1\right)\left(2 j_{1}+2\right)}\right]^{1 / 2}$
j_{1}	$-\left[\frac{\left(j_{1}+m\right)\left(j_{1}-m+1\right)}{2 j_{1}\left(j_{1}+1\right)}\right]^{1 / 2}$	$\frac{m}{\left[j_{1}\left(j_{1}+1\right)\right]^{1 / 2}}$	$\left[\frac{\left(j_{1}-m\right)\left(j_{1}+m+1\right)}{2 j_{1}\left(j_{1}+1\right)}\right]^{1 / 2}$
$j_{1}-1$	$\left[\frac{\left(j_{1}-m\right)\left(j_{1}-m+1\right)}{2 j_{1}\left(2 j_{1}+1\right)}\right]^{1 / 2}$	$-\left[\frac{\left(j_{1}-m\right)\left(j_{1}+m\right)}{j_{1}\left(2 j_{1}+1\right)}\right]^{1 / 2}$	$\left[\frac{\left(j_{1}+m+1\right)\left(j_{1}+m\right)}{2 j_{1}\left(2 j_{1}+1\right)}\right]^{1 / 2}$

respectively. These two representations are related by the transformation

$$
\begin{equation*}
\psi_{j m}\left(j_{12}\right)=\sum_{j_{23}} R\left(j_{23} j_{12}\right) \psi_{j m}\left(j_{23}\right) . \tag{E.26}
\end{equation*}
$$

The Racah coefficient W is defined by the equation

$$
\begin{equation*}
R\left(j_{23} j_{12}\right)=\left[\left(2 j_{23}+1\right)\left(2 j_{12}+1\right)\right]^{1 / 2} W\left(j_{1} j_{2} j j_{3} ; j_{12} j_{23}\right) \tag{E.27}
\end{equation*}
$$

We can derive a relation between the Racah coefficients and the ClebschGordan coefficients by expressing $\psi_{j m}\left(j_{12}\right)$ and $\psi_{j m}\left(j_{23}\right)$ in terms of $\psi_{j_{1} m_{1}}$, $\psi_{j_{2} m_{2}}$ and $\psi_{j_{3} m_{3}}$ using eq. (E.10). We obtain

$$
\begin{align*}
\psi_{j m}\left(j_{12}\right)= & \sum_{m_{1} m_{12}}\left(j_{1} m_{1} j_{2} m_{12}-m_{1} \mid j_{12} m_{12}\right) \tag{E.28}\\
& \times\left(j_{12} m_{12} j_{3} m-m_{12} \mid j m\right) \psi_{j_{1} m_{1}} \psi_{j_{2} m_{12}-m_{1}} \psi_{j_{3} m-m_{12}}
\end{align*}
$$

and

$$
\begin{align*}
\psi_{j m}\left(j_{23}\right)= & \sum_{m_{2} m_{23}}\left(j_{2} m_{2} j_{3} m_{23}-m_{2} \mid j_{23} m_{23}\right) \tag{E.29}\\
& \times\left(j_{1} m-m_{23} j_{23} m_{23} \mid j m\right) \psi_{j_{1} m-m_{23}} \psi_{j_{2} m_{2}} \psi_{j_{3} m_{23}-m_{2}}
\end{align*}
$$

Substituting these results into eq. (E.26) and using eq. (E.27) gives

$$
\begin{align*}
& \sum_{f}[(2 e+1)(2 f+1)]^{1 / 2} W(a b c d ; e f)(b \beta d \delta \mid f \beta+\delta)(a \alpha f \beta+\delta \mid c \alpha+\beta+\delta) \\
&=(a \alpha b \beta \mid e \alpha+\beta)(e \alpha+\beta d \delta \mid c \alpha+\beta+\delta) \tag{E.30a}
\end{align*}
$$

Also, using the properties of the Clebsch-Gordan coefficients defined by eqs. (E.12) - (E.15) we obtain the following additional relations

$$
\begin{align*}
& {[(2 e+1)(2 f+1)]^{1 / 2} W(a b c d ; e f)(a \alpha f \beta+\delta \mid c \alpha+\beta+\delta)} \\
& \quad=\sum_{\beta}(a \alpha b \beta \mid e \alpha+\beta)(e \alpha+\beta d \delta \mid c \alpha+\beta+\delta)(b \beta d \delta \mid f \beta+\delta) \tag{E.30b}
\end{align*}
$$

where $\beta+\delta$ is a fixed parameter and

$$
\begin{align*}
& {[(2 e+1)(2 f+1)]^{1 / 2} W(a b c d ; e f)=\sum_{\alpha \beta}(a \alpha b \beta \mid e \alpha+\beta)} \tag{E.30c}\\
& \times(e \alpha+\beta d \delta \mid c \alpha+\beta+\delta)(b \beta d \delta \mid f \beta+\delta)(a \alpha f \beta+\delta \mid c \alpha+\beta+\delta)
\end{align*}
$$

where $\alpha+\beta+\delta$ is a fixed parameter.

FIGURE E.1. The tetrahedron illustrating the triangular relations satisfied by the arguments of the Racah coefficient $W(a b c d ; e f)$.

It is clear from the above definitions that the six angular momenta in $W(a b c d ; e f)$ satisfy the four triangular relations

$$
\begin{equation*}
\Delta(a b e), \quad \Delta(c d e), \quad \Delta(a c f), \quad \Delta(b d f) \tag{E.31}
\end{equation*}
$$

where, for example, the notation $\Delta(a b e)$ means that the three angular momenta a, b and e form the sides of a triangle. These four triangular relations can be combined by representing the angular momenta by the sides of a tetrahedron as illustrated in figure E.1.

The Racah coefficients also satisfy certain symmetry relations under the twenty-four possible permutations of the six arguments which preserve the four triangular relations. These symmetry relations can be simplified using the $6-j$ symbol introduced by Wigner (1940), which is defined by

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{E.32}\\
j_{4} & j_{5} & j_{6}
\end{array}\right\}=(-1)^{j_{1}+j_{2}+j_{4}+j_{5}} W\left(j_{1} j_{2} j_{5} j_{4} ; j_{3} j_{6}\right)
$$

The $6-j$ symbol is left invariant under any permutations of the three columns. It is also invariant under interchange of the upper and lower arguments in any two columns, e.g.

$$
\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \tag{E.33}\\
j_{4} & j_{5} & j_{6}
\end{array}\right\}=\left\{\begin{array}{lll}
j_{1} & j_{5} & j_{6} \\
j_{4} & j_{2} & j_{3}
\end{array}\right\} .
$$

Returning to the Racah coefficients, one can show that they satisfy the orthogonality relation

$$
\begin{equation*}
\sum_{e}(2 e+1)(2 f+1) W(a b c d ; e f) W(a b c d ; e g)=\delta_{f g} \tag{E.34}
\end{equation*}
$$

and the Racah sum rule

$$
\begin{equation*}
\sum_{e}(-1)^{a+b-e}(2 e+1) W(a b c d ; e f) W(b a c d ; e g)=W(a g f b ; d c) \tag{E.35}
\end{equation*}
$$

In addition

$$
\begin{equation*}
W(a b c d ; 0 f)=\frac{(-1)^{f-b-d} \delta_{a b} \delta_{c d}}{[(2 b+1)(2 d+1)]^{1 / 2}} \tag{E.36}
\end{equation*}
$$

The general closed expression for the Racah coefficient is too complicated to reproduce here but may be found for example in Rose (1957) or Edmonds (1957).

E.3. $9-j$ SYMBOLS

In many applications, we are interested in determining the transformation between two coupling schemes of four angular momenta. This occurs for example in the transformation from $L S$ to $j j$ coupling for two particles possessing both orbital and spin angular momenta. The $9-j$ symbol introduced by Wigner (1940) is defined by the following relation

$$
\begin{align*}
& \left\langle\left(j_{1} j_{2}\right) j_{12},\left(j_{3} j_{4}\right) j_{34}, j m \mid\left(j_{1} j_{3}\right) j_{13},\left(j_{2} j_{4}\right) j_{24}, j m\right\rangle \\
& =\left[\left(2 j_{12}+1\right)\left(2 j_{34}+1\right)\left(2 j_{13}+1\right)\left(2 j_{24}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{4} & j_{34} \\
j_{13} & j_{24} & j
\end{array}\right\} . \tag{E.37}
\end{align*}
$$

The $9-j$ symbol can be written as the sum over a product of three Racah coefficients by expressing the bra vector in eq. (E.37) in terms of the ket vector in eq. (E.37) by repeated use of the recoupling transformation defined by eqs. (E.26) and (E.27). We find that

$$
\begin{align*}
\left\{\begin{array}{lll}
j_{11} & j_{12} & j_{13} \\
j_{21} & j_{22} & j_{23} \\
j_{31} & j_{32} & j_{33}
\end{array}\right\} & =\sum_{\kappa}(-1)^{2 \kappa}(2 \kappa+1)\left\{\begin{array}{ccc}
j_{11} & j_{21} & j_{31} \\
j_{32} & j_{33} & \kappa
\end{array}\right\} \tag{E.38}\\
& \times\left\{\begin{array}{ccc}
j_{12} & j_{22} & j_{32} \\
j_{21} & \kappa & j_{23}
\end{array}\right\}\left\{\begin{array}{ccc}
j_{13} & j_{23} & j_{33} \\
\kappa & j_{11} & j_{12}
\end{array}\right\}
\end{align*}
$$

An even permutation of the rows or columns of the $9-j$ symbol leaves the symbol unchanged as does the transposition obtained by interchanging rows and columns. An odd transposition of the rows or columns causes the symbol to be multiplied by the factor

$$
\begin{equation*}
(-1)^{j_{11}+j_{12}+j_{13}+j_{21}+j_{22}+j_{23}+j_{31}+j_{32}+j_{33}} . \tag{E.39}
\end{equation*}
$$

The $9-j$ symbols also satisfy the orthogonality relation

$$
\begin{align*}
& \sum_{j_{12} j_{34}}\left(2 j_{12}+1\right)\left(2 j_{34}+1\right)\left(2 j_{13}+1\right)\left(2 j_{24}+1\right) \\
& \quad \times\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{4} & j_{34} \\
j_{13} & j_{24} & j
\end{array}\right\}\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{4} & j_{34} \\
j_{13}^{\prime} & j_{24}^{\prime} & j
\end{array}\right\}=\delta_{j_{13} j_{13}^{\prime}} \delta_{j_{24} j_{24}^{\prime}} \tag{E.40}
\end{align*}
$$

and the sum rule

$$
\begin{align*}
& \sum_{j_{13} j_{24}}(-1)^{2 j_{2}+j_{24}+j_{23}-j_{34}\left(2 j_{13}+1\right)\left(2 j_{24}+1\right)} \\
& \times\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{12} \\
j_{3} & j_{4} & j_{34} \\
j_{13} & j_{24} & j
\end{array}\right\}\left\{\begin{array}{ccc}
j_{1} & j_{3} & j_{13} \\
j_{4} & j_{2} & j_{24} \\
j_{14} & j_{23} & j
\end{array}\right\}=\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{12} \\
j_{4} & j_{3} & j_{34} \\
j_{14} & j_{23} & j
\end{array}\right\} \tag{E.41}
\end{align*}
$$

When one argument of a $9-j$ symbol is zero it reduces to a $6-j$ symbol times a factor. As an example we have

$$
\left\{\begin{array}{lll}
a & b & e \tag{E.42}\\
c & d & e \\
f & f & 0
\end{array}\right\}=\frac{(-1)^{b+c+e+f}}{[(2 e+1)(2 f+1)]^{1 / 2}}\left\{\begin{array}{lll}
a & b & e \\
d & c & f
\end{array}\right\}
$$

The corresponding results when the zero appears in one of the other positions can be obtained using the symmetry properties of the $9-j$ symbols discussed above.

E.4. HIGHER ORDER $3 n-j$ SYMBOLS

In the theory of electron collisions with complex atoms, $3 n-j$ symbols with $n \geq 4$ often arise involving the recoupling of more than four angular momenta. These recoupling coefficients can be expressed as sums over products of Racah coefficients by repeated use of eqs. (E.26) and (E.27) in the same way as eq. (E.38) for the $9-j$ symbol was derived. We shall not discuss here the detailed properties of these higher order $3 n-j$ symbols. We remark, however, that a computer code NJSYM has been written by Burke (1970) which enables a general recoupling coefficient for an arbitrary number of angular momenta to be calculated. This code has been incorporated into a number of atomic structure and electron atom collision program packages.

References

Abarbanel, H. D. I. and Itzykson, C., 1969, Phys. Rev. Lett. 23, 53.
Abdullah, J. and Truhlar, D. G., 1974, J. Chem. Phys. 60, 4670.
Abramowitz, M. and Stegun, I. A., 1964, Handbook of Mathematical Functions (Dover, New York).
Adhikari, S. K., 1974, Phys. Rev. C 10, 1623.
Adhikari, S. K. and Sloan, I. H., 1975, Phys. Rev. C 11, 1133.
Baluja, K. L., Burke, P. G. and Morgan, L. A., 1982, Comput. Phys. Commun. 27, 299.

Bargmann, V., 1949, Rev. Mod. Phys. 21, 488.
Bargmann, V., 1952, Proc. Nat. Acad. Sc. U. S. 38, 961.
Barrett, R. F., Biedenharn, L. C., Danos, M., Delsanto, P. P., Greiner, W. and Wahsweiler, H. G., 1973, Rev. Mod. Phys. 45, 44.
Barrett, R. F., Robson, B. A. and Tobocman, W., 1983, Rev. Mod. Phys. 55, 155.
Bates, D. R. and Seaton, M. J., 1949, Mon. Not. R. Astr. Soc. 109, 698.
Bederson, B., 1969, Comm. Atom. Molec. Phys. 1, 41.
Berger, R. O. and Spruch, L., 1965, Phys. Rev. 138, B1106.
Bethe, H. A., 1949, Phys. Rev. 76, 38.
Bjorken, J. D. and Drell, S. D., 1964, Relativistic Quantum Mechanics (McGraw-Hill, New York).
Blatt, J. M. and Jackson, J. D., 1949, Phys. Rev. 76, 18.
Bloch, C., 1957, Nucl. Phys. 4, 503.
Blum, K., 1981, Density Matrix Theory and Applications (Plenum, New York).
Bottino, A., Longoni, A. M. and Regge, T., 1962, Nuovo Cimento 23, 954.
Breit, G., 1959, Handbuch der Physik (Springer, Berlin), 41, Part 1, $\mathrm{n}^{\circ} 1$.
Breit, G. and Wigner, E. P., 1936, Phys. Rev. 49, 519.
Brenig, W. and HaAG, R., 1959, Fortschr. Phys. 7, 183.
Brillouin, L., 1926, Comptes Rendus 183, 24.
Brownstein, K. R. and McKinley, W. A., 1968, Phys. Rev. 170, 1255.
Buckingham, R. A., 1937, Proc. Roy. Soc. (London) A 160, 94.
Bunyan, P. J. and Schonfelder, J. L., 1965, Proc. Phys. Soc. 85, 455.
Burgess, A., 1963, Proc. Phys. Soc. 81, 442.
Burke, P. G., 1968, Adv. Atom. Molec. Phys. 4, 173.
Burke, P. G., 1970, Comput. Phys. Commun. 1, 241.
Burke, P. G., 1977, Potential Scattering in Atomic Physics (Plenum, New York).
Burke, P. G., and Berrington, K. A., 1993, Atomic and Molecular Processes: An R-matrix Approach, (IOP Publishing, Bristol and Philadelphia).
Burke, P. G., Hibbert, A. and Robb, W. D., 1971, J. Phys. B 4, 153.

Burke, P. G. and Robb, W. D., 1972, J. Phys. B 5, 44.
Burke, P. G. and Robb, W. D., 1975, Adv. Atom. Molec. Phys. 11, 143.
Burke, P. G., Mackey, I. and Shimamura, I., 1977, J. Phys. B 10, 2497.
Buttle, P. J. A., 1967, Phys. Rev. 160, 719.
Byron, F. W., Jr. and Joachain, C. J., 1973a, Physica 66, 33.
Byron, F. W., Jr. and Joachain, C. J., 1973b, Phys. Rev. A 8, 1267.
Byron, F. W., Jr. and Joachain, C. J., 1974, J. Phys. B 7, L212.
Byron, F. W., Jr. and Joachain, C. J., 1977, Phys. Rep. 34 C, 233.
Byron, F. W., Jr., Joachain, C. J. and Mund, E. H., 1973, Phys. Rev. D 8, 2622.
Byron, F. W., Jr., Joachain, C. J. and Mund, E. H., 1975, Phys. Rev. D 11, 1662.
Byron, F. W., Jr., Joachain, C. J. and Mund, E. H., 1979, Phys. Rev. C 20, 2325.
Byron, F. W., Jr., Joachain, C. J. and Potvlege, R. M., 1985, J. Phys. B 18, 1637.
Callaway, J., 1978, Phys. Rep. 45, 89.
Callaway, J., 1980, Phys. Lett. 77 A, 137.
Calogero, F., 1967 Variable Phase Approach to Potential Scattering (Academic Press, New York).
Chatwin, R. A. and Purcell, J. E., 1971, J. Math. Phys. 12, 2024.
Condon, E. U. and Shortley, G. H., 1935, The Theory of Atomic Spectra (Cambridge University Press).
Dalitz, R. H., 1951, Proc. Roy. Soc. A 206, 509.
Danos, M. and Greiner, W., 1966, Phys. Rev. 146, 708.
Darwin, C. G., 1928, Proc. Roy. Soc. (London) A 118, 654.
Demkov, Yu. N., 1963, Variational Principles in the Theory of Collisions (Pergamon, London).
Demkov, Yu. N. and Shepelenko, F. P., 1958, Sov. Phys. JEtP 6, 1144.
Edmonds, A. R., 1957, Angular Momentum in Quantum Mechanics (Princeton University Press).
Fano, U., 1957, Rev. Mod. Phys. 29, 74.
Fano, U., 1961, Phys. Rev. 124, 1866.
Fano, U. and Lee, C. M., 1973, Phys. Rev. Letters 31, 1573.
Faxén, H. and Holtsmark, J., 1927, Z. f. Physik 45, 307.
Feenberg, E., 1932, Phys. Rev. 40, 40.
Feynman, R. P., 1949, Phys. Rev. 76, 769.
Gailitis, M., 1963, Soviet Physics JETP 17, 1328.
Gamow, G., 1928, Z. f. Physik 51, 204.
Glauber, R. J., 1953, Phys. Rev. 91, 459.
Glauber, R. J., 1959, in: Lectures in Theoretical Physics, W. E. Brittin and L. G. Dunham, eds. (Interscience, New York), Vol. 1, p. 315.
Goldberger, M. L. and Watson, K. M., 1964, Collision Theory (Wiley, New York).
Gordon, W., 1928, Z. f. Physik 48, 180.
Greene, C. H., 1983, Phys. Rev. A28, 2209.
Greene, C. H., 1985, Phys. Rev. A32, 1880.
Ham, F. S., 1955, Solid St. Phys. 1, 217.
Harris, F. E., 1967, Phys. Rev. Letters 19, 173.
Harris, F. E. and Michels, H. H., 1969, Phys. Rev. Letters 22, 1036.
Harris, F. E. and Michels, H. H., 1971, Meth. Comput. Phys. 10, 143.
Hartree, D. R., 1928, Proc. Camb. Phil. Soc. 24, 426.

Hazi, A. U. and Taylor, H. S., 1970, Phys. Rev. A 1, 1109.
Hulthén, L., 1944, Kgl. Fysiogr. Sallsk. Lund Forrh. 14 (21).
Hulthén, L., 1948, Arkiv. Mat. Ast. Fys. 35 A, 25.
Hylleraas, E. A. and Undheim, B., 1930, Z. Phys. 65, 759.
Jackson, J. L., 1951, Phys. Rev. 83, 301.
Jeffreys, H., 1923, Proc. Lond. Math. Soc. (2) 23, 428.
Joachain, C. J., 1968, in: Symposia on Theoretical Physics and Mathematics, A. Ramakrishnan, ed. (Plenum, New York), Vol. 8, p. 61.
Joachain, C. J., 1983, Quantum Collision Theory (North Holland, Amsterdam, 3rd ed.).
Jost, R., 1947, Helv. Phys. Acta 20, 256.
Jost, R. and Pais, A., 1951, Phys. Rev. 82, 840.
Jost, K. and Kessler, J., 1966, Z. Phys. 195, 1.
Kato, T., 1951, Progr. Theor. Phys. 6, 295, 394.
Kemble, E. C., 1937, The Fundamental Principles of Quantum Mechanics (McGraw-Hill, New York), Section 21.
Kessler, J., 1985, Polarized Electrons (Springer, Berlin, 2nd ed.).
Klein, A. and Zemach, C., 1959, Ann. Phys. (N. Y.) 7, 440.
Kohn, W., 1948, Phys. Rev. 74, 1763.
Kohn, W., 1954, Rev. Mod. Phys. 26, 292.
Kramers, H. A., 1926, Z. Phys. 39, 828.
Landau, L. D. and Lifshitz, E. M., 1959, Quantum Mechanics (Addison-Wesley, Reading, Mass.), Chapter 7.
Lane, A. M. and Robson, D., 1969a, Phys. Rev. 178, 1715.
Lane, A. M. and Robson, D., 1969b, Phys. Rev. 185, 1403.
Lane, A. M. and Thomas, R. G., 1958, Rev. Mod. Phys. 30, 257.
Langer, R. E., 1937, Phys. Rev. 51, 669.
Lee, C. M., 1974, Phys. Rev. A 10, 584.
Le Rouzo, H. and Raseev, G., 1984, Phys. Rev. A 29, 1214.
Levinson, N., 1949, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 25, 9.
Levy, B. R. and Keller, J. B., 1963, J. Math. Phys. 4, 54.
Lewis, Jr., R. R., 1956, Phys. Rev. 102, 537.
Light, J. C. and Walker, R. B., 1976, J. Chem. Phys. 65, 4272.
Light, J. C., Walker, R. B., Stechal, E. B. and Schmalz, T. G., 1979, Comput. Phys. Commun. 17, 89.
Lippmann, B. A. and Schwinger, J., 1950, Phys. Rev. 79, 459.
Lippmann, B. A. and Schey, H. M., 1961, Phys. Rev. 121, 1112.
Lucchese, R. R., Watson, D. K. and McKoy, V., 1980, Phys. Rev. A 22, 421.
Malik, F. B., 1962, Ann. Phys. (N. Y.) 20, 464.
Malik, F. B., 1963, Ann. Phys. (N. Y.) 21, 1.
Messiah, A., 1968, Quantum Mechanics (Wiley, New York), Vol. 1.
Miller, W. H. and Jansen op de Haar, B. M. D. D., 1987, J. Chem. Phys. 86, 6213.
Miller, W. H., 1988, Comm. Atom. Molec. Phys. 22, 115.
Moiseiwitsch, B. L., 1966, Variational Principles (Wiley-Interscience, New York).
Molière, G., 1947, Z. Naturforsch 2 A, 133.
Morgan, L. A., 1984, Comput. Phys. Commun. 31, 419.
Mott, N. F., 1929, Proc. Roy. Soc. (London) A 124, 425.

Mott, N. F. and Massey, H. S. W., 1965, The Theory of Atomic Collisions (Oxford University Press, 3rd ed.).
Nesbet, R. K., 1968, Phys. Rev. 175, 134.
Nesbet, R. K., 1969, Phys. Rev. 179, 60.
Nesbet, R. K., 1978, Phys. Rev. A 18, 955.
Nesbet, R. K., 1980, Variational Methods in Electron-Atom Scattering Theory (Plenum, New York).
Nesbet, R. K., 1981a, J. Phys. B 14, L415.
Nesbet, R. K., 1981b, Phys. Rev. A 24, 2975.
Nesbet, R. K. and Oberoi, R. S., 1972, Phys. Rev. A 6, 1855.
Noble, C. J., Burke, P. G. and Salvini, S., 1982, J. Phys. B 15, 3779.
Norcross, D. W. and Seaton, M. J., 1969, J. Phys. B 2, 731.
Nordholm, S. and Bacskay, G., 1978, J. Phys. B 11, 193.
Nussenzveig, H. M., 1959, Nucl. Phys. 11, 499.
Nuttall, J., 1969, Ann. Phys. (N. Y.) 52, 428.
Oberoi, R. S. and Nesbet, R. K., 1973a, Phys. Rev. A 8, 215.
Oberoi, R. S. and Nesbet, R. K., 1973b, J. Comput. Phys. 12, 526.
Oberoi, R. S. and Nesbet, R. K., 1974, Phys. Rev. A 9, 2804.
O'Malley, T. F., 1963, Phys. Rev. 130, 1020.
O’Malley, T. F., Spruch, L. and Rosenberg, L., 1961, J. Math. Phys. 2, 491.
O'Malley, T. F., Burke, P. G. and Berrington, K. A., 1979, J. Phys. B 12, 953.
O'Mahony, P. F. and Greene, C. H., 1985, Phys. Rev. A31, 250.
Percival, I. C., 1957, Proc. Phys. Soc. 70, 494.
Percival, I. C., 1960, Phys. Rev. 119, 159.
Philpott, R. J. and George, J., 1974, Nucl. Phys. A 233, 164.
Poincaré, H., 1884, Acta. Math. 4, 201.
Potvliege, R. M., 1985, Thése de Doctorat (Université Libre de Bruxelles).
Purcell, J. E., 1969, Phys. Rev. 185, 1279.
Racah, G., 1942, Phys. Rev. 62, 438.
Racah, G., 1943, Phys. Rev. 63, 367.
Rayleigh, Lord, 1873, The Theory of Sound (reprinted by Dover, New York).
Regge, T., 1959, Nuovo Cimento 14, 951.
Regge, T., 1960, Nuovo Cimento 18, 947.
Rose, M. E., 1957, Elementary Theory of Angular Momentum (Wiley, New York).
Rosenberg, L., Spruch, L. and O'Malley, T. F., 1960, Phys. Rev. 118, 184.
Rubinow, S. I., 1955, Phys. Rev. 98, 183.
Rudge, M. R. H., 1973, J. Phys. B 6, 1788.
Rudge, M. R. H., 1975, J. Phys. B 8, 940.
Rudge, M. R. H., 1990, J. Phys. B 23, 4275.
Rudkjöbing, M., 1941, Publ. Kbn. Obs. 18, 1.
Rutherford, E., 1911, Phil. Mag. 21, 669.
Schlessinger, L. and Payne, G. L., 1974, Phys. Rev. A 10, 1559.
Schneider, B. I., 1975a, Chem. Phys. Letters 31, 237.
Schneider, B. I., 1975b, Phys. Rev. A 11, 1957.
Schneider, B. I., 1977, in: The Physics of Electronic and Atomic Collisions, G. Watel, ed. (North Holland, Amsterdam), 257.
Schneider, B. I. and Walker, R. B., 1979, J. Chem. Phys. 70, 2466.

Schneider, B. I. and Taylor, H. S., 1982, J. Chem. Phys. 77, 379.
Schonfelder, J. L., 1966, Proc. Phys. Soc. 87, 163.
Schwartz, C., 1961a, Phys. Rev. 124, 1468.
Schwartz, C., 1961b, Ann. Phys. (N. Y.) 16, 36.
Schwinger, J., 1947, unpublished lecture notes, (Harvard University), Phys. Rev. 72, 742.

Seaton, M. J., 1955, Comp. Rend. 240, 1317.
Seaton, M. J., 1958, Mon. Not. R. Astron. Soc. 118, 504.
Seaton, M. J., 1966a, Proc. Phys. Soc. 88, 801.
Seaton, M. J., 1966b, Proc. Phys. Soc. 88, 815.
Seaton, M. J., 1983, Rep. Prog. Phys. 46, 167.
Sherman, N., 1956, Phys. Rev. 103, 1601.
Shimamura, I., 1977a, J. Phys. B 10, 2597.
Shimamura, I., 1977b, in: The Physics of Electronic and Atomic Collisions, G. Watel, ed. (North Holland, Amsterdam), 257.
Siegert, A. J. F., 1939, Phys. Rev. 56, 750.
Sloan, I. H., 1964, Proc. Roy. Soc. (London) A 281, 151.
Spruch, L., 1962, in: Lectures in Theoretical Physics, W. E. Brittin, B. W. Downs and J. Downs, eds. (Interscience, New York), Vol. 4, p. 161.

Spruch, L. and Rosenberg, L., 1959, Phys. Rev. 116, 1034.
Sugar, R. and Blankenbecler, R., 1964, Phys. Rev. B 136, 472.
Swift, A., 1974, Phys. Rev. D 9, 1740.
Takatsuka, K., Lucchese, R. R. and McKoy, V., 1981, Phys. Rev. A 24, 18×12.
Tamm, I. G., 1944, Sh. Eksper. i. Teor. Fiz. 14, 21.
Tamm, I. G., 1948, Sh. Eksper. i. Teor. Fiz. 18, 337.
Tamм, I. G., 1949, Sh. Eksper. i. Teor. Fiz. 19, 74.
Temiin, A., 1966, in: Autoionization, ed. A. Temkin (Mono Book Corp., Baltimore), 55.
Temple, G., 1928, Proc. Roy. Soc. (London) A 121, 673.
ter Haar, D., 1961, Rep. Progr. Phys. 24, 304.
Thirumalai, D. and Truhlar, D. G., 1980, Chem. Phys. Letters 70, 330.
Tobocman, W. and Nagarajan, M. A., 1965a, Phys. Rev. 138, B1351.
Tobocman, W. and Nagarajan, M. A., 1965b, Phys. Rev. 140, B63.
von Neumann, J., 1927, Nachr. Deut. Akad. Wiss. G"ottingen, Math. -Phys. Kl., 245 and 273.

Walker, D. W., 1971, Adv. Phys. 20, 257.
Wallace, S. J., 1973a, Ann. Phys. (N. Y.) 78, 190.
Wallace, S. J., 1973b, Phys. Rev. D 8, 1846, 1934.
Watson, G. N., 1966, A Treatise on the Theory of Bessel Functions (Cambridge University Press, 2nd ed.).
Watson, D. K., Lucchese, R. R. and McKoy, V., 1980, Phys. Rev. A 21, 738.
Wentzel, G., 1926, Z. f. Physik 38, 518.
Whittaker, E. T. and Watson, G. N., 1935, A Course of Modern Analysis (Cambridge University Press, 4th ed.), 337.
Wigner, E. P., 1940, unpublished paper reproduced in: Quantum Theory of Angular Momentum L. C. Biedenharn and H. Van Dam, eds., (Academic Press, New York, 1965) p. 89.

Wigner, E. P., 1946a, Phys. Rev. 70, 15.

Wigner, E. P., 1946b, Phys. Rev. 70, 606.
Wigner, E. P., 1955, Phys. Rev. 98, 145.
Wigner, E. P. and Eisenbud, L., 1947, Phys. Rev. 72, 29.
Wladawski, I., 1973, J. Chem. Phys. 58, 1826.
Wübker, W., Möllenkamp, R. and Kessler, J., 1982, Phys. Rev. Lett. 49, 272.
Yost, F. L., Wheeler, J. and Breit, G., 1936, Phys. Rev. 49, 174.
Zemach, C. and Klein, A., 1958, Nuovo Cimento 10, 1078.
Zhang, J. Z. H., Chu, S. -I. and Miller, W. H., 1988, J. Chem. Phys. 88, 6233.
Zvijac, D. J., Heller, J. and Light, J. C., 1975, J. Phys. B 8, 1016.

InDEX

Absorption factor, 26
Angular momentum
coupling of, 231-239
density matrix for spin, 148-151
operators for, 206
orbital, 5, 206-207
orbital eigenfunctions for, 207-209
spin, 143-148
spin-angle eigenfunctions for, 176-177
spin eigenfunctions for, 143-145
Anomalous singularities, 65-75; see also Hulthén-Kohn variational methods
Argon, collisions of electrons with
Ramsauer minimum in, 125-126
scattering length in, 125-126
Associated Legendre functions, properties of, 204-205
Asymmetry parameter, 197-198
Asymptotic behaviour
of Coulomb radial wave functions, 15
of Dirac wave function, 164,171
of radial wave function for finite range potential, 6, 25, 184
of Schrödinger wave function, 2

Bargmann inequalities, 104, 139
Barrier penetration, 113-114
Bessel functions
asymptotic behaviour of, 215, 219
modified, 215-217
power series expansions of, 213, 218
properties of, 213-220
spherical, 6, 217-220

Bloch operator, 87; see also R-matrix method
Blatt-Jackson formula, 117; see also Effective range theory
Born approximation, first
for Buckingham potential, 35-36
for Coulomb potential, 34-35, 169-170
for hydrogen atom static potential, 53-54
for polarization potential, 123-124
for relativistic collisions, 168-170
for scattering amplitude, $30,33,168$
for $\tan \delta_{\ell}, 31$
for Yukawa potential, 34-35
Born approximation, second
eikonal approximation and, 45-50
eikonal Born series (EBS) and, 49-50
for hydrogen atom static potential, 53-54
for scattering amplitude, 30
for superposition of Yukawa potentials, 37-38
for $\tan \delta_{\boldsymbol{\ell}}, 31$
for Yukawa potential, 36-37
Born series
asymptotic form of, 37-38, 46-50
convergence of, 32
eikonal series and, 45-50
eikonal Born series (EBS) and, 49-50
multiple scattering series and, 32
optical theorem and, 38
for scattering amplitude, 30-32
for superposition of Yukawa potentials, 37-38
unitarity relation and, 38
for Yukawa potential, 36-37

Bound principles: see Extremum principles
Bound states
convergence of Born series and, 32
Coulomb potential, 14,132
dispersion relations and, 139-142
Levinson's theorem and, 114-116
quantum defect theory (QDT) and, 132
resonances and, 108-111
Siegert states and, 108
S-matrix poles and, 108-109
Branch cuts, 105, 137-138
Breit-Wigner resonance formula, 110
Buckingham potential, 35-36, 55
Buttle correction, 91-92; see also R-matrix method

Causality and time delay, 113
Clebsch-Gordan coefficients
properties of, 231-234
tables of, 234-235
three-j symbols and, 233
Collisions of electrons
with argon atoms, 125-126
with helium atoms, 92-93
with He^{+}ions, 133
with hydrogen atoms, 53-54, 72-73
with krypton atoms, 125-126
with mercury atoms, 198-199
with xenon atoms, 125-126, 200-201
Collision matrix: see S-matrix, T-matrix
Complex potential scattering, 24-28
Confluent hypergeometric function, 10-11
Connection formulae for JWKB approximation, 57-58
Coulomb penetration factor, 134
Coulomb scattering
amplitude, 12
Born approximation for, 34-35, 169-170
bound states and, 14,132
differential cross section for, $12,34-35$, 169-170
effective range theory for, 129-134
Gamow factor for, 134
Mott formula for, 170
parabolic coordinates solution for, 10-12
phase shift, 13
quantum defect theory (QDT) for, 132134
radial wave function for, $12-15$

Coulomb scattering (cont.)
relativistic, 169-170
by repulsive potential, 134
Rutherford formula for, 12
Coulomb wave functions
analytic properties of, 129-130
asymptotic behaviour of, 15
definition of, 13
Wronskian for, 130
Cross section: see Total cross section, Differential cross section

Dalitz integrals, 36, 221-224
Darwin term, 182
Decaying states: see Resonances
Density matrix
density operator and, 226
differential cross section in terms of, 192
properties of, 225-229
reduced, 148, 229
for spin polarized electrons, 148-151, 191-193
Differential cross section; see also Total cross section
asymmetry parameter in terms of, 197
for Buckingham potential, 35, 55
for complex potential. 26
for Coulomb potential, 12,16, 170
definition of, 4
and density matrix, 192
and direct and spin-flip amplitudes, 187188
for double scattering, 197
eikonal-Born series (EBS) for, 49-50
for finite range potential, 7
first Born approximation for, 33, 168-170
for hydrogen atom static potential, 53-54
for long-range r^{-2} potential, 129
and M-matrix, 172, 187
Mott formula for, 170
for relativistic collisions, 168-170, 187192
relativistic first Born approximation for, 168-170
Rutherford formula for, 12
spin polarization dependence of, 191-192
Wallace approximation for, 53-54
Dirac equation
for central potential, 174-180

Dirac equation (cont.)
covariant form of, 154-155
Dirac spinor for, 153
direct and spin-flip scattering amplitudes for, 173,186
for electron in an electromagnetic field, 153-155
first Born approximation for, 168-170
for free electrons, 152, 156-164
helicity operator for, 161
Lippmann-Schwinger equation for, 165166
Mott solution for Coulomb potential, 169-170
non-relativistic limit of, 180-183
parity operator for, 174
partial wave analysis of, 176-180, 183-186
positive and negative energy solutions of, 158, 161-162
projection operators for positive and negative energy solutions of, 163164
radial wave equations for, 177-178
scattering amplitude for, 166-168, 170172
solution for Coulomb potential, 169-170
solution for elastic electron-mercury atom collisions, 198-199
solution for elastic electron-xenon atom collisions, 200-201
transition matrix for, 166
Direct scattering amplitude: see Scattering amplitude
Dispersion relations
branch cuts in, 137-138
Cauchy's theorem and, 135
for forward scattering amplitude, 138142
index of refraction and, 135
mathematical background for, 135-138
optical theorem and, 142
subtracted, 136
Double scattering experiments, 196-200

Effective range, definition, 117
Effective range theory
Blatt-Jackson formula and, 117
for Coulomb potential, 129-134
effective range in, 117-120, 123

Effective range theory (cont.)
for finite range potentials, 116-123
for long range r^{-s} potentials, 123-129
for polarization potential, 124-126
quantum defect theory (QDT) and, 132-134
Ramsauer minimum and, 125-126
relation with R-matrix, 116-117
scattering length in, 117, 123
Eigenchannel method, 96-99; see also R-matrix method
Eikonal approximation
for Buckingham potential, 55
conditions for validity of, 39
eikonal Born series (EBS) and, 49-50
Glauber approximation and, 39-41
for Green's function, 40
for hydrogen atom static potential, 53-54
impact parameter in, 40-45, 51-53
JWKB approximation and, 59
Lippmann-Schwinger equation for, 39-40
optical theorem satisfied by, 44
partial wave analysis of, 43
phase shift function in, 41-43
relationship with Born series, 45-50
for scattering amplitude, 41-43
series expansion of, 44-45
in strong coupling case, 55
for superposition of Yukawa potentials, 47-50
Wallace amplitude in, 50-54
for wave function. 40
for Yukawa potential, 46
Eikonal-Born series (EBS), 49-50; see also Eikonal approximation, Born series
Electron-atom collisions: see Collisions of electrons
Electron spin
direct and spin-flip amplitudes for, 173, 186
eigenfunctions for, 144
operators for, 143
Pauli spin matrices for, 145
polarization and the density matrix for, 148-151
Sherman function and, 188
Exponential potential, 37, 81-82
Extremum principles
bound on phase shift, $84-86,100-101$
bound on scattering length, 83-84

Fano line shape parameter, 110
Feynman integral parametrization, 36, 221
First Born approximation: see Born approximation, first
Flux of particles, 2-5

Gamow factor, 134
Glauber approximation, 39-41; see also
Eikonal approximation
Green's function
Born series for, 31
for Dirac equation, 165
eikonal approximation for, 40
free particle, 17-19
ingoing wave, 19
outgoing wave, 18
partial wave analysis of, 23
total, 20-22

Hankel functions, 213-215; see also Bessel functions
Helicity operator, 161
Helium atoms, collision of electrons with, 92-93
He^{+}ions, collisions of electrons with, 133
Hulthén-Kohn variational methods
anomalous singularities in, 65-75
anomaly-free (AF) method, 73, 81-82
bound on scattering length, 83-84
for full scattering amplitude, 75-76
Harris method, 72
Hulthén variational method, 64, 71
inverse Kohn variational method for $\cot \delta_{\ell}, 62-63,68$
Kato identity and, 61
Kohn variational method for $\tan \delta_{\ell}, 62,68$
minimum-norm-inverse-Kohn (MNR) method, 74, 81-82
minimum-norm-Kohn (MNK) method, $74,81-82$
optimized-anomaly-free (OAF) method. 73-74, 81-82
optimized-minimum norm (OMN) method, 74, 81-82
restricted-interpolated-anomaly-free (RIAF) method, 73
Rubinow variational method for $\cot \delta_{\ell}$, 62-63, 68
for scattering length, 64-66

Hulthén-Kohn variational methods (cont.)
Schwartz singularities in, 65-75
Schwinger variational method and, 80-82
S-matrix form of, 63-64, 74-75
for s-wave scattering by an exponential potential, 81-82
for s-wave scattering by the hydrogen atom static potential, 65-66, 72-73
for s-wave scattering by a square well potential, 70
variational-least-squares (VLS) method, 74
Hulthén variational method, 64, 71; see also Hulthén-Kohn variational methods
Hydrogen atoms, collisions of electrons with
differential cross sections for, 53-54
s-wave static phase shifts for, 72-73
Hydrogen atom static potential, 53-54, 6566
Hylleraas-Undheim theorem, 100

Impact parameter, 40-45, 51-53, 59
Index of refraction, 135; see also Dispersion relations
Integral equation: see Lippmann-Schwinger equation
Inverse Kohn variational method, 62-63, 68; see also Hulthén-Kohn variational methods

Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation
connection formulae, 57-58
eikonal approximation and, 59
higher-order approximations, 59-60
impact parameter in, 59
for phase shift, 58-59
for radial wave function, 57
Jost functions
branch cuts in, 105
conditions on the potential for, 104-105
definition of, 104, 106
differential equation satisfied by, 104, 106-107
Levinson's theorem, application of, 114 116
representation of radial wave function in terms of, 106

Jost functions (cont.)
representation of S-matrix in terms of, 106-107
Wronskian relations for, 106
Yukawa cuts in, 105
for Yukawa potentials, 105

Kato identity, 61, 83
K-matrix
definition of, 9
effective range expansion of, 117
Hulthén-Kohn variational method for, 62, 68
Schwinger variational method for, 78-82
Kohn variational method, 62,68 ; see also Hulthén-Kohn variational methods
Krypton, collisions of electrons with
Ramsauer minimum in, 125-126
scattering length in, 125-126

Left-right asymmetry, 197-198
Legendre polynomials, properties of, 203204
Levinson's theorem, 114-116
Lippmann-Schwinger equation
Born series derivation using, 29-30
for Dirac equation, 165-166
for eikonal approximation, 39-40
for finite range potentials, 16-19
partial wave analysis of, 22-23
Schwinger variational method derived from, 76-77

Mass correction term, 182
Mercury atoms, collisions of electrons with, 198-199
M-matrix
definition of, 171
differential cross section in terms of, 172, 187, 192
direct and spin-flip scattering amplitudes and, 173, 186
invariant form of, 187
partial wave analysis of, 185-186
Momentum transfer cross section
definition of, 8
for long-range r^{-2} potential, 128-129
Mott cross section, 170

Mott detector, 188, 200
Multiple scattering series, 32

Neumann functions, 213-215; see also Bessel functions
Nine-j symbols, properties of, 238-239
Optical potential, 24-28
Optical theorem
application in dispersion relations, 142
Born series form of, 38
for complex potentials, 28
definition of, 5,8
eikonal approximation form of, 44
Parabolic coordinates, 10
Parity
of Dirac Hamiltonian, 174
of spherical harmonics, 207
Partial wave analysis
of Coulomb scattering problem, 12-14
of cross section, 7-8, 27-28
of Dirac equation, 176-180, 183-186
of direct and spin-flip scattering amplitudes, 186
of eikonal scattering amplitude, 43
of Green's function, 23
of Lippmann-Schwinger equation, 22-23
of M-matrix, 185-186
of plane wave, 7,210
of scattering amplitude for complex potential, 26
of scattering amplitude for Coulomb plus short range potential, 15
of scattering amplitude for finite range potential, 7
of Schrödinger equation, 5-9, 12-16, 2528
Pauli spin matrices, 145
Perfect scattering experiment, 196
Phase shift
Blatt-Jackson effective range formula for, 117
causality relation for, 113
complex, 25
Coulomb, 13
eikonal approximation for, 43
for finite range potential, 6
first Born approximation for, 31, 123

Phase shift (cont.)
Hulthén variational method for, 64, 71
inverse Kohn variational method for, 6263, 68
JWKB approximation for, 58-59
Kato identity for, 61
Kohn variational method for, 62,68
Levinson's theorem for, 114-116
for polarization potential, 124
quantum defect theory (QDT) relation for, 132-134
resonance behaviour of, 109-111
R-matrix bound on, 100-101
R-matrix method for, 90
Schwinger variational method for, 7882
second Born approximation for, 31
for s-wave scattering by helium atom static exchange potential, 92-93
for s-wave scattering by hydrogen atom static potential, 72-73
variational bounds on, 84-86
variational methods for, 60-86
Wigner bound on, 101, 113
zero-energy, 114-116, 133-134
Plane wave
Coulomb modified, 11-12
expansion in partial waves, 7,210
Poincaré theorem, 106
Polarization potential
Buckingham form of, 35-36, 55
effective range theory for, 124-126, 134
in electron-argon atom collisions, 125-126
in electron-krypton atom collisions, 125126
in electron-xenon atom collisions, 125 126, 200-201
first Born approximation for, 123-124
radial Schrödinger equation for, 124
Ramsauer minimum due to, 125
Potential
Bargmann inequalities for, 104, 139
Buckingham, 35-36, 55
complex, 24-28
Coulomb, 10-16, 34-35, 129-134, 169170
exponential, 81-82
finite range, 5-9, 16-23, 104-105, 116123

Potential (cont.)
helium atom static exchange, 92
hydrogen atom static, 53-54, 65-66, 7273
long-range $r^{-s}, 123-124$
long-range $r^{-2}, 126-129$
optical, 24-28
polarization, 35-36, 124-126, 134, 200201
repulsive tail, 113-114
screened Coulomb: see Yukawa
separable, 84-86
spin-orbit, 183-185, 191
square well, $70,108,122$
superposition of Yukawa, 37-38, 105
Yukawa, 34-38, 105
Probability current density, 2-5

Quantum defect theory (QDT); see also Effective range theory
electron-ion collisions and, 133-134
quantum defect in, 132
Racah coefficients, properties of, 234-238
Radial wave function
asymptotic behaviour for Coulomb potential, 15
asymptotic behaviour for finite range potential, 6, 25, 184
behaviour at the origin, 6
for Coulomb scattering, 12-15
for Dirac equation, 177, 184-185
JWKB approximation for, 57
for Lippmann-Schwinger equation, 2223
representation in terms of Jost functions, 106
scattering length and zero-energy, 117118
for Schrödinger equation, 5-7, 12-15, 25
Ramsauer mimimum, 125
Rayleigh-Ritz variational principle, 83
Reaction cross section, 27-28
Relativistic scattering: see Dirac equation
Resonances
behaviour of cross section near, 110-111
behaviour of phase shift near, 109-111
bound states and, 108-111
Breit-Wigner resonance formula for, 110

Resonances (cont.)
Fano line shape parameter for, 110
poles in the S-matrix and, 108-111
position of, 110
shape, 113-114
Siegert states and, 108
trajectories of resonance poles, 122-123
width of, 110
Wigner time delay and, 111-114
R-matrix method
analytic properties of, 117
arbitrary boundary conditions in, 94-95
Bloch operator in, 87
bound on phase shift using, 100-101
Buttle correction in, 91-92
convergence of, 92-94
definition of R-matrix in, 88
effective range theory and, 116-117
eigenchannel method in, 96-99
generalizations of, 99-100
homogeneous boundary conditions in, 91-92
phase shift given by, 90
propagator methods in, 95-96
for s-wave helium static exchange phase shifts, 92-93
variational correction to, 92
variational methods for, 88-90, 97-99
zero-order radial basis functions in, 91
Rubinow variational method, 62-63, 68; see also Hulthén-Kohn variational methods
Rutherford scattering formula, 12
Scattering amplitude
Born series for, 30
for complex potential, 26
Coulomb, 12, 15
for Dirac equation, 166-168, 170-172
direct and spin-flip, 173, 186
dispersion relation for, 135-142
eikonal approximation for, 41-43
eikonal-Born series (EBS) for, 49
for finite range potential, 2-5, 7-8
first Born approximation for, 30, 33, 168
high energy behaviour of, 37-38, 47-49, 53
Hulthén-Kohn variational method for, 75-76

Scattering amplitude (cont.)
optical theorem for, $5,8,28,142$
partial wave analysis of, $7,15,26,186$
for Schrödinger equation, 2-5, 7-8, 12, 15, 26
Schwinger variational method for, 76-77
second Born approximation for, 30
unitarity relation for, 8
Scattering length
definition of, 117
dependence on potential strength, 118
effective range theory and. 117
extremum principle for, 83-84
for hydrogen atom static potential, 65-66
Kohn variational method for, 64-65
low energy cross section and, 120
s-wave zero-energy wave function and. 117-118
Schrödinger equation
for Coulomb potential, 10
partial wave analysis of, 5-9, 12-16, 2526
scattering amplitude for, $2-5,7-8,12$, 15, 26
time-independent, 1
Schwartz singularities, 65-75; see also Hulthén-Kohn variational methods
Schwinger variational method
bilinear form of, 76
bound on phase shift, $84-86$
comparison with Born series, 77-78
comparison with Hulthén-Kohn variational methods, 80-82
fractional form of, 77
for scattering amplitude, 76-77
separable potential approximation for, 79-80, 85-86
for s-wave scattering by an exponential potential, 81-82
for $\tan \delta_{\ell}, 78-82$
Screened Coulomb potential: see Yukawa potential
Second Born approximation: see Born approximation, second
Semi-classical approximation, 39-60; see also Eikonal approximation, JWKB approximation
Shape resonances, 113-114

Sherman function
asymmetry parameter and, 197
definition of, 188,192
differential cross section in terms of, 188-190
for elastic electron mercury atom collisions, 198-199
spin polarization in terms of, 192-196
Siegert states, 108; see also Bound states, Resonances
Six-j symbols, 234-238; see also Racah coefficients
S-matrix
analytic properties of, 106-111
bound states and resonances in, 108-111
for Coulomb potential, 14
definition of, 9
poles in, 108-111
representation in terms of Jost functions, 106-107
resonance behaviour of, 109-110
unitarity of, 9
variational methods for, 63-64, 74-75
Spherical Bessel functions, 6, 217-220; see also Bessel functions
Spherical Hankel functions, 218-219; see also Bessel functions
Spherical harmonics
addition theorem for, 209
coupling rule for, 211
expansion of a plane wave in, 7,210
explicit expressions for, 209
parity of, 207
properties of, 207-211
Spherical Neumann functions, 6, 218-220; see also Bessel functions
Spin-angle eigenfunctions, 176-177
Spin-flip scattering amplitude: see Scattering amplitude
Spin-orbit potential, 183-185, 191
Spin polarization
definition of, 150
density matrix and, 148-151, 191-193
differential cross section in terms of, 188, 191-192
in double scattering, 196-200
measurement by Mott detector of, 188, 200
of scattered electrons, 192-196

Spin polarization (cont.)
Sherman function and, 192-196
$S(\theta), T(\theta)$ and $U(\theta)$ parameters in, 194 196, 199-200
Square well potential, 70, 108, 122
Static exchange approximation, 92
Static potential for electron-hydrogen atom collisions, 53
Stationary values: see Hulthén-Kohn variational methods, Schwinger variational method, R-matrix method
Statistical operator: see Density matrix
Three-j symbols, 233; see also Clebsch-Gordan coefficients
Three n-j symbols, 239
Time delay: see Wigner time delay
T-matrix
definition of, 9
low energy resonance behaviour of, 120
relation with phase shift, 9
relation with S-matrix, 9
Total cross section; see also Differential cross section
behaviour near a resonance, 110-111
Breit-Wigner resonance form of, 110
for complex potential, 27
definition of, 2-5
dispersion relation for, 142
for finite range potential, 4, 7-8
first Born approximation for, 33
for long-range r^{-2} potential, 128-129
low energy behavior of, 120-121
momentum transfer, 8
optical theorem for, $5,28,142$
partial wave analysis of, $7-8,27$
for polarization potential, 125
Ramsauer minimum in, 125
reaction, 27-28
Transition matrix
definition of, 20
for Dirac equation, 166
partial wave analysis of, 23
Triple scattering experiments, 199-201
Unitarity relation
Born series form of, 38
definition of, 8

Variable phase method, 7
Variational methods, 60-86; see also Hulthén-Kohn variational methods, Schwinger variational method, R-matrix method

Wallace amplitude, 50-54; see also Eikonal approximation
Wave packet: see Wigner time delay
Wentzel-Kramers-Brillouin (WKB) approximation: see Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation
Wigner bound on phase shift. 101, 113
Wigner R-matrix: see R-matrix
Wigner time delay; see also Resonances
causality and, 113

Wigner time delay (cont.)
near a resonance, 112-113
for a wave packet, 111-112
Wronskian, 106, 130
Xenon, collisions of electrons with
Ramsauer minimum in, 125-126
scattering length in, 125-126
triple scattering experiment, 200-201
Yukawa cut, 105
Yukawa potential, 34-38, 105
Zero-energy collisions
cross section for, 120-121
phase shift for, 114-116, 133-134
radial wave function for, 117-118

