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Chapter 9: Column Analysis and Design 
 

Introduction 

Columns are usually considered as vertical structural elements, but they can be 

positioned in any orientation (e.g. diagonal and horizontal compression elements in a 

truss).  

 

Columns are used as major elements in trusses, building frames, and sub-structure 

supports for bridges (e.g. piers).  

• Columns support compressive loads from roofs, floors, or bridge decks. 

• Columns transmit the vertical forces to the foundations and into the subsoil.  

 

The work of a column is simpler than the work of a beam. 

• The loads applied to a column are only axial loads.  

• Loads on columns are typically applied at the ends of the member, producing 

axial compressive stresses.  

• However, on occasion the loads acting on a column can include axial forces, 

transverse forces, and bending moments (e.g. beam-columns).  

 

Columns are defined by the length between support ends. 

• Short columns (e.g. footing piers). 

• Long columns (e.g. bridge and freeway piers).  

 

Virtually every common construction material is used for column construction. 

• Steel, timber, concrete (reinforced and pre-stressed), and masonry (brick, 

block, and stone). 

 

The selection of a particular material may be made based on the following. 

• Strength (material) properties (e.g. steel vs. wood).  

• Appearance (circular, square, or I-beam). 

• Accommodate the connection of other members. 

• Local production capabilities (i.e. the shape of the cross section). 

 

Columns are major structural components that significantly affect the building’s 

overall performance and stability.  

• Columns are designed with larger safety factors than other structural 

components.  
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• Failure of a joist or beam may be localized and may not severely affect the 

building’s integrity (e.g. there is redundancy with girders and beams, but not 

with columns). 

• Failure of a strategic column may be catastrophic for a large area of the 

structure. 

• Failure may be due to overstressed, loss of section (deterioration), 

accident/sabotage (terrorism). 

 

Safety factors for columns are used to account for the following. 

• Material irregularities (e.g. out of straightness). 

• Support fixity at the column ends. 

• Construction inaccuracies (e.g. out of plumbness). 

• Workmanship. 

• Unavoidable eccentric (off-axis) loading. 

 

9.1 Short and Long Columns – Modes of Failure 

Column slenderness and length greatly influence a column’s ability to carry load.  

• Very short, stout columns fail by crushing due to material failure.  

- Failure occurs once the stress exceeds the elastic (yield point) limit of the 

material. 

• Long, slender columns fail by buckling – a function of the column’s dimensions 

and its modulus of elasticity.  

- Buckling is the sudden uncontrolled lateral displacement of a column at which 

point no additional load can be supported. 

- Failure occurs at a lower stress level than the column’s material strength 

due to buckling (i.e. lateral instability).  

 

Short columns 

Short columns fail by crushing at very high stress levels that are above the elastic 

limit of the column material. 

 

Compressive stress for short columns is based on the basic stress equation 

developed at the beginning of Chapter 5.  

• If the load and column size (i.e. cross-sectional area) are known, the 

compressive stress may be computed as 

fa = Pactual/A   ≤  Fa 
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where 

fa = actual compressive stress (psi or ksi) 

A = cross-sectional area of the column (in2) 

Pactual = actual load on the column (pounds or kips) 

Fa = allowable compressive stress per code (psi or ksi) 

 

• This stress equation can be rewritten into a design form to determine the 

required short column size when the load and allowable material strength are 

known. 

Arequired = Pactual/Fa 

where 

 Arequired = minimum cross-sectional area of the column 

 

Long Columns – Euler Buckling 

Long columns fail by buckling at stress levels that are below the elastic limit of the 

column material.  

• Very short column lengths require extremely large loads to cause the member 

to buckle.  

• Large loads result in high stresses that cause crushing rather than buckling. 

 

Buckling in long, slender columns is due to the following. 

• Eccentricities in loading. 

• Irregularities in the column material. 

 

Buckling can be avoided (theoretically) if the loads were applied absolutely axially, 

the column material was totally homogeneous with no imperfections, and 

construction was true and plumb.  

 

A Swiss mathematician named Leonhard Euler (1707 – 1783) was the first to 

investigate the buckling behavior of slender columns within the elastic limit of the 

column’s material.  

• Euler’s equation shows the relationship between the load that causes buckling of 

a (pinned end) column and the material and stiffness properties of the column.  
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The critical buckling load can be determined by the following equation. 

  Pcritical = π2EImin/L2 

where 

Pcritical = critical axial load that causes buckling in the column (pounds or kips) 

E = modulus of elasticity of the column material (psi or ksi) 

Imin = smallest moment of inertia of the column cross-section (in2) 

 (Most sections have Ix and Iy; angles have Ix, Iy and Iz.) 

L = column length between pinned ends (inches) 

• As the column length increases, the critical load rapidly decreases (since it is 

proportional to L2), approaching zero as a limit.  

• The critical load at buckling is referred to as Euler’s critical buckling load.  

 

Euler’s equation is valid only for long, slender columns that fail due to buckling. 

• Euler’s equation contains no safety factors. 

• Euler’s equation results in compressive stresses developed in columns that are 

well below the elastic limit of the material.  

 

Slenderness Ratios 

The radius of gyration is a geometric property of a cross section that was first 

introduced in Chapter 6.  

  I = Ar2 and  r = (I/A) 1/2 

where 

r = radius of gyration of the column cross section (in) 

I = least (minimum) moment of inertia (in4) 

A = cross-sectional area of the column (in2) 

 

The radius of gyration is geometric property that is used in the analysis and design 

of columns.  

 

Using the radius of gyration, the critical stress developed in a long column at 

buckling can be expressed by the following equation. 

 fcritical = Pcritical/A = π2EImin/AL2 = π2E(Ar2)/AL2 = π2E/(L/r)2 
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The term “L/r” is known as the slenderness ratio. 

• A higher slenderness ratio means a lower critical stress that will cause buckling. 

• Conversely, a lower slenderness ratio results in a higher critical stress (but still 

within the elastic range of the material).  

 

Column sections with large r-values are more resistant to buckling.  

• Compare the difference in rmin values and slenderness ratios for the three 

column cross sections shown below.  

- All three cross sections have relatively equal cross-sectional areas but very 

different radii of gyration about the critical buckling axis.  

- All three columns are assumed to be 15 feet in length and pin-connected at 

both ends. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Comparison of steel cross sections with equivalent areas 

 

 

The most efficient column sections for axial loads are those with almost equal rx 

and ry values.  

• Circular pipe sections and square tubes are the most effective shapes since the 

radii of gyration about both axes are the same (rx = ry). 

• Circular pipe sections and square tubes are often used as columns for light to 

moderate loads.  
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Wide-flange shapes may be preferred despite the structural advantages of closed 

cross-sectional shapes (like tubes and pipes).  

• The practical considerations of wide-flange shapes include the following. 

- Wide-flange sections support heavy loads. 

- Wide-flange sections accommodate beam connections.  

 

Special wide-flange sections are specifically manufactured to provide relatively 

symmetrical columns (rx/ry ratios approaching 1.0) with large load-carrying 

capability.  

• Most of these column sections (generally W8, W10, W12, and W14) have depth 

and flange widths approximately equal (i.e. a “boxy” configuration). 

 

9.2 End Support Conditions and Lateral Bracing 

Previously, each column was assumed to have pinned ends in which the member ends 

were free to rotate (but not translate) in any direction at their ends.  

• When the column buckles, it will do so in one smooth curve.  

• The length of this curve is referred to as the effective length.  

 

In practice, a column may not be pinned at the ends.  

• The column length free to buckle is greatly influenced by its end support 

conditions.  

• The load-carrying capacity of a column is affected by the end support 

conditions. 

- Restraining the ends of a column with a fixed support increases the load-

carrying capacity of a column.  

- Allowing translation as well as rotation (i.e. free end) at one end of a column 

generally reduces its load-carrying capacity. 

 

Column design formulas generally assume a condition in which both ends are pinned.  

• When other conditions exist, the load-carrying capacity is increased or 

decreased and the allowable compressive stress is increased or decreased.  

• A factor K is used as a multiplier for converting the actual column length to an 

effective buckling length based on end conditions.  

 

The American Institute of Steel Construction (AISC) provides recommended 

effective length factors when ideal conditions are approximated. 

• The six cases are presented as follows. 
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Case A: Both ends are pinned. 

The structure is adequately braced against lateral forces (e.g. wind and earthquake 

forces). 

Theoretical K-value:  K = 1.0 

Effective length:   Le = L  

Pcritical = π2EImin/L2 

 

Examples: Timber column nailed top and bottom; 

steel column with simple clip angle connection 

top and bottom. 

 

 

 

Case B: Both ends are fixed.  

The structure is adequately braced against lateral forces (e.g. wind and earthquake 

forces). 

Theoretical K-value: K= 0.5 

Effective length:  Le = 0.5 L  

Pcritical = π2EImin/(0.5L)2 = 4π2EImin/L2  
    

Examples: Concrete column rigidly 

(monolithically cast) connected to large beams 

top and bottom; steel column rigidly connected 

(welded) to large steel beams top and bottom. 

 

 

Case C: One end is pinned and one end is fixed.  

The structure is adequately braced against lateral forces (e.g. wind and earthquake 

forces). 

Theoretical K-value: K = 0.7 

Effective length:  Le = 0.707 L  

Pcritical = π2EImin/(0.707L)2 = 2π2EImin/L2  
    

Examples: Concrete column rigidly connected to 

concrete slab at the base and attached to light-

gauge roofing at the top. 

 



 

9.8  

Case D: One end is free and one end is fixed.  

Lateral translation is possible. 

• An eccentric column load is developed. 

Theoretical K-value: K = 2.0 

 Effective length:  Le = 2.0 L 

 Pcritical = π2EImin/(2L)2 = π2EImin/4L2  

 

Examples: Water tank mounted on a simple pipe 

column; flagpole. 

 

 

 

Case E: Both ends are fixed with some lateral translation.  

Theoretical K-value: K = 1.0 

 Effective length:  Le = 1.0 L  

 Pcritical = π2EImin/L2 
    

Examples: Flexible column attached to a rigid 

beam and supported by a fixed base. 

 

 

 

 

 

Case F: The base is pinned and the top is fixed with some lateral translation. 

Theoretical K-value: K = 2.0 

 Effective length:  Le = 2.0 L  

 Pcritical = π2EImin/(2L)2 = π2EImin/4L2  
    

Examples: Steel column with a rigid connection 

to a beam above and a simple pin connection at 

the base.  
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Intermediate Bracing 

End connections affect the buckling capacity of a column.  

• Fixed connections are an obvious solution to minimizing column sizes; however, 

the cost associated with achieving rigid connections is high and such 

connections are difficult to make.  

• Timber columns are generally assumed as pinned-connected because the 

material strength generally precludes the construction of true rigid joints. 

 

Lateral bracing about the weak axis can increase the strength and stability of a 

column by reducing the effective length of the column.  

• Examples of such lateral bracing include the following. 

- Infill wall panels. 

- Window and door headers. 

- Supports for curtain walls. 

 

Bracing provided in one plane does not provide resistance to buckling in the 

perpendicular plane.  

• Columns must be checked in both directions to determine the critical 
slenderness ratio to be used in the analysis or design. 
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Example Problems - Short and Long Columns – Modes of Failure 

 

Problem 9.2 (p. 455) 

 

Given: Two 3-1/2” standard steel pipe 

sections are strapped together to form a 

pin-connected column.  

  L = 24’ 

  E = 29, 000 ksi 

 

Find: The critical axial load when buckling occurs.  

 

 

Solution 

 

Moment of inertia for 3-1/2” standard pipe 

(ref. Table A5 of the textbook)  

 I = 4.79 in4  

 

Applicable equation: Pcritical = π2EImin/L2 

 Ix = Imin = 2 (4.79) = 9.58 in4 

 L = 24’ 

 

 Pcritical = π2EImin/L2  

   = π2 (29,000)(9.58)/(24 x 12”/’)2  

 Pcritical = 33.1 kips 
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Problem 9.4 (p. 455) 

 

Given: An 8” diameter timber pole fixed in a 

large concrete footing at grade and 

pinned at the top. 

 E = 1.0 x 106 psi 

 

Find: Maximum height of the pole to support 

a 25 kip load. 

 

 

Solution 

 

Applicable equation: Pcritical = 2π2EImin/L2  

• Case C: One end pinned and one end fixed.  

  K = 0.7 

  Le = 0.707 L 

 

Pcritical = π2EImin/(0.707 L)2 = 2π2EImin/L2  

 I = πd4/64 = π (8)4/64 = 201.1 in4 

 Pcritical = 25 kips (25,000 lb)  

 

25,000 = 2π2 (1.0 x 106)(201.1 in4)/L2  

 L2 = 2π2 (1,000,000)(201.1)/25,000 = 158,780 in2 

 

L = 398.5” (33.2’) 
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9.3 Axially Loaded Steel Columns 

The discussion so far has been limited to short columns that crush and long slender 

columns that buckle.  

• Somewhere in between these two extremes lies a zone where a “short” column 

transitions into a “long” column.  

 

Short columns: Steel (A36) columns with slenderness ratios ℓ/r ≤ 40 are defined as 

“short columns”.  

• The mode of failure is crushing. 

 

Long columns: Steel columns with a slenderness ratio of 120 ≤ Kℓ/r ≤ 200 are 

defined as “long columns.” 

• The mode of failure is buckling. 

• For structural steel columns: Kℓ/r ≤ 200 

 

Intermediate columns: Steel columns with a slenderness ratio of 40 ≤ Kℓ/r ≤ 120 

are defined as “intermediate columns.” 

• The mode of failure is a combination of crushing (yielding) and buckling. 

 

Column classification is based on slenderness.  

• Figure 9.14 (Column classification based on slenderness, p. 456 of the textbook) 

compares Euler’s equation with the American Institute of Steel Construction 

(AISC) equations. 

- The initially flat portion of the curve (in the short-column range, that is, 

Kℓ/r < 40) indicates material yielding with no buckling taking place.  

- On the far right end of the curve (Kℓ/r > 120), the compressive stresses are 

relatively low and buckling is the mode of failure.  

- In the intermediate-column range (40 < Kℓ/r < 120), failure has aspects of 

both yielding and buckling. 

 

The load-carrying ability of intermediate-length columns is influenced by both 

the strength and elastic properties of the column material.  

• Empirical design formulas, based on extensive testing and research, have 

been developed to cover the design of columns within the limits of each 

column category. 

 

Sine 1961, the American Institute of Steel Construction (AISC) has adopted a set 

of column design formulas that incorporate the use of a variable factor of safety, 

depending on slenderness, for determining allowable compressive stress.  
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• The AISC formulas recognize only two slenderness categories: 

short/intermediate and long (ref. Figure 9.15, p. 457 of the textbook). 

- Long steel (A36) columns are defined as those having a Kℓ/r exceeding a 

value called Cc = 126.1. 

- Long steel columns for high strength steel (Fy = 50 ksi) are defined as those 

having a Kℓ/r exceeding a value called Cc = 107.0. 

 

The Cc value represents the theoretical demarcation line between inelastic (i.e. 

short/intermediate columns) and elastic (i.e. long columns) behavior. 

• Cc = (2π2E/Fy)
1/2  

 

Allowable compressive stress (AISC) 

• Short/intermediate columns: The AISC allowable compressive stress (Fa) for 

short/intermediate columns (Kℓ/r < Cc) is computed using AISC Eq. E2-1 (ref.   

p. 458 of the textbook). 

• Long columns: When axially loaded compression members have a slenderness 

ratio Kℓ/r > Cc, the allowable compressive stress is computed using AISC         

Eq. E2-2 (ref. p. 458 of the textbook). 

where (for both equations) 

Kℓ/r = the largest effective slenderness ratio of any unbraced length of 

column 

Fa = allowable compressive stress (psi or ksi) 

 

The two preceding equations represent actual design equations that can be used to 

analyze or design steel columns.  

• These equations appear rather intimidating, especially equation E2-1.  

• The AISC Manual of Steel Construction has developed a table for Kℓ/r from 1 

to 200 with the representative allowable stress Fa.  

• No computations using E2-1 and E2-2 are necessary since the equations have 

been used in generating these tables (Tables 9.1 and 9.2, pp. 461 – 462 of the 

textbook). 

 

Pinned end supports are often assumed for design purposes and provide a 

conservative result. 

• Pinned ends are assumed even if the ends of steel columns are typically 

restrained to some degree at the bottom by being welded to a base plate, which 

in turn is anchor-bolted to a concrete footing.  
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• Steel pipe columns generally have plates welded at each end, and then bolted to 

other parts of the structure.  

- Such restraints vary greatly and are difficult to evaluate.  

• Designers rarely take advantage of the restraint to increase the allowable 

stress, which therefore adds to the factor of safety of the design. 

 

On the other hand, tests have indicated that, in the case of fixed-end conditions, 

the “theoretical” K = 0.5 values are somewhat non-conservative when designing 

steel columns.  

• Since true joint fixity is rarely possible, the AISC recommends the use of 

recommended K-values (listed in Figure 9.16, p. 459 of the textbook). 

 

Following are examples of recommended design values for K when ideal conditions 

are approximated (ref. Figure 9.16, p. 459 of the textbook). 

  Condition     Theoretical K value  Recommended K value 

 Pinned-pinned     1.0       1.0 

Fixed-fixed      0.5       0.65 

Fixed-pinned     0.7       0.8 

 

Analysis of Steel Columns 

Column analysis means finding the allowable compressive stress Fa on a given column 

or its allowable load capacity P.  

• A simple analysis procedure is outlined below. 

Given: Column length, support conditions, grade of steel (Fy), applied load, 

and column size. 

Required:  Check the load capacity of the column.  

(In other words, is Pactual < Pallowable ?) 

Procedure: 

a. Calculate the slenderness ratio Kℓ/rmin; the largest Kℓ/r governs. 

b. Enter the appropriate AISC Table  

(Table 9.1 for Fy = 36 ksi or Table 9.2 for Fy = 50 ksi) 

c. Pick out the respective Fa 

d. Compute Pallowable : Pallowable = Fa x A 

where 

  A = cross sectional area of the column (in2) 

  Fa = allowable compressive stress (ksi) 
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e. Check the column adequacy. 

 If  Pactual < Pallowable  then the column is OK. 

 If  Pactual > Pallowable   then the column is overstressed. 
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Example Problems - Axially Loaded Steel Columns 

 

Problem 9.8 (p. 466) 

 

Given: Two C12 x 20.7 channel sections 

welded together to form a closed box 

section. 

  Fy = 36 ksi 

  L = 20’  

  Top and bottom are pinned. 

 

Find: Allowable axial load Pa. 

 

 

 

Solution 

 

Find the following geometric properties for the channel 

section (C12 x 20.7) from Table A4 (p. 573 of the textbook). 

 A = 6.09 in2, bf = 2.942”, Ix = 129 in4, rx = 4.61” 

 Iy = 3.88 in4, ry = 0.799”, x  = 0.698” 

 

Calculate the moment of inertia and radius of gyration for each axis. 

 A = 2 (6.09) = 12.18 in2 

 Ix = 2 (129) = 258 in4 

 rx = (Ix/A)1/2 = (258/12.18)1/2 = 4.61” (same as rx for a single channel) 

 Iy = 2 [3.88 + (6.09)(2.942 – 0.698)2] = 2 (34.55) = 69.10 in4 

 ry = (Iy/A)1/2 = (69.10/12.18)1/2 = 2.38” 

 

Calculate the slenderness ratios (K = 1.0). 

 KL/rx = (1.0) 20 (12”/’)/4.61 = 52.1 

 KL/ry = (1.0) 20 (12”/’)/2.38 = 100.8  Governs 
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Find Fa (i.e. the allowable compressive stress). 

 • Use a slenderness ratio KL/ry = 100.8 (ref, Table 9.1, p. 461 of the textbook). 

 Fa = 12.88 ksi (by interpolation) 

  

Calculate the allowable axial load.  

 Pallow = Fa (A) = 12.88 (12.18) = 156.9 k 

 Pallow = 156.9 k 

 

Compare Pallow with Pcritical calculated 

using the Euler equation. 

• Recall that Pcritical has no factor of safety. 

 Pcritical = π2EImin/L2  

  Iy = Imin = 69.10 in4 

  E = 29,000 ksi 

 Pcritical = π2 (29,000)(69.10)/(20 x 12”/’)2 = 343.2 kips 

 Pcritical = 343.2 kips  
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Problem 9.10 (p. 466) 

 

Given: 5” dia standard steel pipe column (A36 

steel) with an applied load of 60 kips. Top is 

pinned and the base is fixed. 

 

Find: Maximum allowable height of column. 

 

Solution 

 

From Table A5 (p. 607 of the textbook) find the 

following geometric properties for the 5” dia. 

standard steel pipe section. 

 A = 4.30 in2, r = 1.88” 

 

Calculate the compressive stress in the column. 

Fa = Pa/A = 60/4.30 = 13.95 ksi 

 

Determine the slenderness ratio (ref. 

Table 9.1, p. 486 of the textbook). 

 KL/r = 92.15 for Fa = 13.95 ksi  

  (by interpolating) 

 

Select the recommended design value K. 

• K = 0.80  Case (b): Pinned-fixed 

(ref. Figure 9.16, p. 459 of the 

textbook). 

 KL/r = 0.8 (L)/1.88 = 92.15 

 L = 92.15 (1.88)/0.8 = 216.6” (18.0’) 

 Thus, maximum height is L = 18.0’ 
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Design of Steel Columns 

The design of axially loaded steel columns involves the selection of an appropriate 

column size. 

• Accomplished by using specialized column tables such as those contained in the 

American Institute of Steel Construction’s Manual of Steel Construction – 
Allowable Stress Design, Ninth Edition.  

• Structural design varies from analysis in that there are several possible 

answers to a problem (e.g. different sizes, different shapes).  

 

The selection of a column size is dependent on the following. 

1. Strength and safety requirements. 

2. Architectural issues (e.g. shape, appearance) and construction issues (e.g. beam 

connections) may influence the final selection. 

 

Since the AISC Column Design Tables are not available (that would require the 

purchase of the AISC manual), steel column design will involve an iterative trial-

and-error process.  

 

A few guidelines for selecting a column cross section follow. 

• Efficient column cross sections for axial loads often use circular or “boxier” 

wide-flange members.  

• Along with spatial and construction concerns, relative maximum or minimum 

sizes may be specified by the architect, thus limiting the choices. 

• Smaller scale steel structures may use 8” and 10” nominal size wide-flange 

columns, while larger buildings with heavier loads will often use 12” and 14” 

nominal sizes.  

- These sections are the “boxier” or square sizes, with the depth and flange 

width of the cross section being approximately equal. 

 

The trial-and-error procedure may be outlined as follows. 

 

Given:  Column length, support conditions, grade of steel (Fy), applied load 

(Pactual). 

 

Required:  Column size to safely support the load. 
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Procedure: 

a.  Guess at a size.  

• For a smaller scale building, maybe try a square W8 or W10 in the middle of 

the weight grouping.  

• A similar trial using larger sections is appropriate for heavier loads. 

b. Once the trial size has been selected, cross-sectional properties are known.  

• Compute the critical slenderness ratio, taking into account the end 

conditions and intermediate bracing. 

c. Using the larger Kℓ/r value, enter Table 9.1 (for Fy = 36 ksi, p. 461 of the 

textbook) or Table 9.2 (for Fy = 50 ksi, p. 462 of the textbook) and obtain the 

respective Fa (i.e. the allowable compressive stress). 

d. Calculate the Pallowable = Fa x A of the trial section. 

e. Compare Pactual to Pallowable. 

• If Pactual > Pallowable, then the column is overstressed and a larger section 

should be selected next.  

• If the trial section is too strong (i.e. Pactual much less than Pallowable), try again 

with a smaller column size.  

One way to check the relative efficiency of the cross section is to examine its 

percent of stress level. 

  Percent of stress = Pactual/Pallowable X 100% 

  A percent of stress in the 90 - 100 percent level is very efficient. 

f. Repeat this process until an adequate but efficient section is obtained. 

 

Note: Steps (b) through (e) are essentially the procedure used previously in the 
analysis of steel columns. 
 

Alternative trial and error procedures: 

1. Assume a design stress (Fa). 

• Divide the column load by the compression stress for an estimated column 

area (i.e.  A = P/Fa). 

• Select a trial column section with approximately that area. 

• Then, continue the procedure following steps b through f, as outlined above. 
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2. Assume a slenderness ratio KL/r. 

• Determine the corresponding allowable compressive stress Fa from Table 9.1 

(for Fy = 36 ksi, p. 461 of the textbook) or Table 9.2 (for Fy = 50 ksi, p. 462 

of the textbook). 

• Divide the column load by the compressive stress for an estimated column 

area (i.e. A = P/Fa). 

• Select a trial column section with approximately that area. 

• Then, continue the procedure following steps b through f, as outlined above. 

 

The following suggestions allow an inexperienced designer to make good initial 

assumptions for the slenderness ratio KL/r. 

• The slenderness ratio KL/r for an average column of 10 to 15-feet length will 

generally fall between 40 and 60. 

• If the column is longer than 15 feet, assume the slenderness ratio to be a 

little higher than 40 to 60. 

• If the column carries a very heavy load (e.g. 750 – 1000 kips), a larger 

column will be required and the designer may estimate a smaller value for 

the slenderness ratio. 

• For lightly loaded bracing members, the designer may estimate high 

slenderness ratios of 100 or more. 
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Example Problem - Design of Steel Columns 

 

Problem 9.15 (p. 473) 

 

Given: Six-story building. 

 Tributary floor area = 20’ x 25’  

        = 500 SF 

 Roof load:  80 psf (dead load) 

     40 psf (snow load) 

 Floor load:  125 psf (live load) 

     100 psf (dead load) 

 Lfirst floor = 20’ 

 Lthird floor = 16’ 

 Fy = 36 ksi 

 

Find: Design a typical interior third-floor column and first-floor column using the 

most economical W12* section at each level. 

(*Note: There are several possible solutions using W10 and W14; specifying a W12 limits the number 

of solutions.) 

 

Solution 

 

Third floor column 

Determine load on third-floor column. 

 Pactual = Proof + Pfloors (4
th, 5th, and 6th floor loadings) 

 Pactual = 500 SF (80 psf + 40 psf) + 3 [500 SF (125 psf + 100 psf)] 

   = 60,000 + 3 (112,500) = 397,500 pounds 

 Pactual = 397.5 k (third floor column) 

 

First try 

a. Select W12 section for third floor column. 

 Try W12 x 40 (A = 11.8 in2, d = 11.94”, rx = 5.13”, ry = 1.93”) 

 

b. Compute the critical slenderness ratio (K = 1.0). 

 KL/rmin = 1.0 (16)(12”/’)/1.93 = 99.5 
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c. Using Table 9.1 (p. 461 of the textbook), find Fa (i.e. the allowable compressive 

stress) using KL/rmin = 99.5. 

 Fa = 13.04 ksi (by interpolating) 

 

d. Calculate the allowable axial load. 

 Pallowable = Fa (A) = 13.04 (11.8) = 153.87 k  

 

e. Compare Pactual to Pallowable. 

 Pallowable = 153.87 k < 397.5 k  NG 

 

Second try 

a. Select W12 section for third floor column. 

 Try W12 x 96 (A = 28.2 in2, d = 12.71”, rx = 5.44”, ry = 3.09”) 

 

b. Compute the critical slenderness ratio (K = 1.0). 

 KL/rmin = 1.0 (16)(12”/’)/3.09 = 62.1 

 

c. Using Table 9.1 (p. 461 of the textbook), find Fa (i.e. the allowable compressive 

stress) using KL/rmin = 62.1. 

 Fa = 17.23 ksi (by interpolating)  

 

d. Calculate the allowable axial load. 

 Pallowable = Fa (A) = 17.23 (28.2) = 485.9 k  

 

e. Compare Pactual to Pallowable. 

 Pallowable = 485.9 k > 397.5 k OK (but over-designed) 

 

Third try 

a. Select W12 section for third floor column. 

 Try W12 x 72 (A = 21.1 in2, d = 12.25”, rx = 5.31”, ry = 3.04”) 

 

b. Compute the critical slenderness ratio (K = 1.0). 

 KL/rmin = 1.0 (16)(12”/’)/3.04 = 63.2 
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c. Using Table 9.1 (p. 461 of the textbook), find Fa (i.e. the allowable compressive 

stress) using KL/rmin = 63.2. 

 Fa = 17.12 ksi (by interpolating)  

 

d. Calculate the allowable axial load. 

 Pallowable = Fa (A) = 17.12 (21.1) = 361.2 k  

 

e. Compare Pactual to Pallowable. 

 Pallowable = 361.2 k < 397.5 k  NG 

 

Fourth try 

a. Select W12 section for third floor column. 

 Try W12 x 79 (A = 23.2 in2, d = 12.38”, rx = 5.34”, ry = 3.05”) 

 

b. Compute the critical slenderness ratio (K = 1.0). 

 KL/rmin = 1.0 (16)(12”/’)/3.05 = 62.95 

 

c. Using Table 9.1 (p. 461 of the textbook), find Fa (i.e. the allowable compressive 

stress) using KL/rmin = 62.95. 

 Fa = 17.14 ksi (by interpolating)  

 

d. Calculate the allowable axial load. 

 Pallowable = Fa (A) = 17.14 (23.2) = 397.6 k  

 

e. Compare Pactual to Pallowable. 

 Pallowable = 397.6 k > 397.5 k  OK 

 

f. Check efficiency. 

 Efficiency = Pactual/Pallowable X 100% = 397.5/397.6 X 100% = 99.97% 

 

Select: W12 x 79 
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First floor column 

Determine load on first-floor column. 

 Pactual = Proof + Pfloors (2
nd, 3rd, 4th, 5th, and 6th floor loadings) 

 Pactual = 500 SF (80 psf + 40 psf) + 5 [500 SF (125 psf + 100 psf)] 

   = 60,000 + 5(112,500) = 622,500 pounds 

 Pactual = 622.5 k (first floor column) 

Recall from previous work: W12 x 96 Pa = 485.9 for 16’ column. So a heavier 
column will be needed for a longer column – 20’ – carrying a greater Pactual. 

 

First try 

a. Select W12 section for first floor column. 

 Try W12 x 120 (A = 35.3 in2, d = 13.12”, rx = 5.51”, ry = 3.13”) 

 

b. Compute the critical slenderness ratio (K = 1.0). 

 KL/rmin = 1.0 (20)(12”/’)/3.13 = 76.7 

 

c. Using Table 9.1 (p. 461 of the textbook), find Fa (i.e. the allowable compressive 

stress) using KL/rmin = 76.7. 

 Fa = 15.72 ksi (by interpolating)  

 

d. Calculate the allowable axial load. 

 Pallowable = Fa (A) = 15.72 (35.3) = 554.9 k  

 

e. Compare Pactual to Pallowable. 

 Pallowable = 554.9 k < 622.5 k  NG 

 

Second try 

a. Select W12 section for first floor column. 

 Try W12 x 152 (A = 44.7 in2, rx = 5.66”, ry = 3.19”) 

 

b. Compute the critical slenderness ratio (K = 1.0). 

 KL/rmin = 1.0 (20)(12”/’)/3.19 = 75.2 
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c. Using Table 9.1 (p. 461 of the textbook), find Fa (i.e. the allowable compressive 

stress) using KL/rmin = 75.2. 

 Fa = 15.88 ksi (by interpolating)  

 

d. Calculate the allowable axial load. 

 Pallowable = Fa (A) = 15.88 (44.7) = 709.8 k  

 

e. Compare Pactual to Pallowable. 

 Pallowable = 709.8 k > 622.5 k OK (but over-designed) 

 

Third try 

a. Select W12 section for first floor column. 

Try W12 x 136 (A = 39.9 in2, d = 13.41”, rx = 5.58”, ry = 3.16”) – only section 

remaining between the W12 x 120 and W12 x 152. 

 

b. Compute the critical slenderness ratio (K = 1.0). 

 KL/rmin = 1.0 (20)(12”/’)/3.16 = 75.9 

 

c. Using Table 9.1 (p. 461 of the textbook), find Fa (i.e. the allowable compressive 

stress) using KL/rmin = 75.9. 

 Fa = 15.80 ksi (by interpolating)  

 

d. Calculate the allowable axial load. 

 Pallowable = Fa (A) = 15.80 (39.9) = 630.4 k  

 

e. Compare Pactual to Pallowable. 

 Pallowable = 630.4 k > 622.5 k  OK 

 

f. Check efficiency. 

 Efficiency = Pactual/Pallowable X 100% = 622.5/630.4 X 100% = 98.75% 

 

Select: W12 x 136 
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9.4 Axially Loaded Wood Columns 

Wood columns support beams and girders that, in turn, support tributary areas of 

roof and floor loads.  

 

Other structural members that are in compression are designed using the same 

methods that are utilized for the design of building columns.  

• Bridge piers 

• Compression chords of a truss 

• Studs in a load-bearing wall 

 

Modes of failure 

• Long columns tend to buckle under critical load.  

• Short columns fail by the crushing of the wood fibers.  

 

Slenderness ratio 

• For wood columns, the ratio of the column 

length to its width is just as important as the 

slenderness ratio is for steel columns.  

• In wood columns, the slenderness ratio is 

defined as the laterally unsupported length in 

inches divided by the least (minimum) dimension 

of the column. 

   Slenderness ratio = L/dmin = L/d1 

 where  d1  <  d2 

• Wood columns are restricted to a maximum slenderness ratio of ℓe/d ≤ 50. 

- This slenderness ratio is analogous to the limiting slenderness ratio of 

KL/rmin ≤ 200 used for steel columns. 

 

Effective length 

• The effective length of steel columns was determined by applying a K factor to 

the unsupported length of the column to adjust for the end support.  

• Similar effective length factors, called Ke in wood columns, are used to adjust 

for the various end conditions.  

• Recommended Ke values (ref. Figure 9.20, p. 474 of the textbook) are identical 

to those of steel columns. 
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Typical Ke values 

Most wood construction is detailed such that translation (sidesway) is restrained 

but the ends of the column are free to rotate (i.e. pin connection).  

• The Ke value is generally taken as 1.0, and the effective length is equal to the 

actual unsupported length.  

• Even if some fixity exists in the top or bottom connection, it is difficult to 

evaluate the degree of fixity to assume in design.  

• Ke = 1.0 is an acceptable assumption that is usually a bit conservative in some 

connection conditions. 

 

Wood columns 

• Wood columns can be solid members or rectangular, round, or other shapes, or 

spaced columns built up from two or more individual solid members separated by 

blocking. 

• The majority of all wood columns in buildings are solid rectangular sections. The 

analysis and design methods examined in this section will be limited to these 

types. 

 

The National Design Specification for Wood Construction (NDS-91) approved a new 

standard in 1992. 

• The new standard incorporated a new method and new equations for the design 

of wood elements and connections.  

• Previous categorizing of wood columns into the short-, intermediate-, or long-

column range resulted in three different equations for each respective 

slenderness range.  

• The NDS-91 now utilizes a single equation, providing a continuous curve over the 

entire range of slenderness ratios. 

 

The compressive stress for an axially loaded wood column of known size is 

expressed as follows. 

fc = P/A  ≤  Fc’   

where 

 fc = actual compressive stress parallel to grain 

 P = axial compressive force in the member 

A = cross-sectional area of the column 

Fc’ = allowable compressive stress parallel to grain 
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The allowable load for an axially loaded wood column is expressed as follows. 

 Pallow = Fc’ A and Pactual  ≤  Pallow 

 

To obtain the allowable compressive stress Fc’, many adjustments to the tabulated 

base (reference) compressive stress (Fc) are necessary. 

 

The NDS-91 defines the Fc’ as follows. 

  Fc’ = Fc (CD) (CM) (Ct) (CF) (Cp) 

where 

Fc’ = allowable compressive stress parallel to grain 

Fc = reference compressive stress parallel to grain (found in building code 

tables, NDS tables, and wood design handbooks, such as Table 5.2, p. 278 

of the textbook) 

CD = load duration factor (ref. Figure 9.23, p. 477 of the textbook) 

CM = wet service factor (accounts for moisture content in the wood) 

= 1.0 for dry service conditions as in most covered structures, dry 

service condition defined as follows: 

   Moisture content ≤ 19% for sawn lumber 

   Moisture content ≤ 16% for glu-lams 

Ct = temperature factor (usually taken as 1.0 for normal temperature 

conditions) 

CF = size factor (an adjustment based on member sizes used) 

Cp = column stability factor (accounts for buckling and is directly affected 

by the slenderness ratio) 

 

The objective of this course is to analyze and design structural elements in a 

preliminary way (rather than the full complement of equations and checks 

performed by a structural engineer).  

• Accordingly, the preceding allowable compressive stress equation is simplified 

as follows. 

  Fc’ = Fc* Cp 

where 

Fc* = Fc (CD) (CM) (Ct) (CF) ≈ FcCD  (for preliminary column design) 

Cp = column stability factor (ref. Table 9.3) 
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Fc = tabulated compressive stress parallel to grain (found in building code 

tables, NDS tables, and wood design handbooks, such as Table 5.2, p. 278 

of the textbook) 

CD = load duration factor 

CM, Ct, and CF are all assumed to be equal to 1.0, which is generally the case 

for a majority of wood columns. 

 

Load duration factor CD (ref. Figure 9.23, p. 477 of the textbook) 

• Wood has a unique structural property in which it can support higher stresses if 

the applied loads are for a short period of time.  

• All tabulated stress values contained in building codes, NDS, or wood design 

manuals apply to “normal” load duration and dry service conditions.  

• The CD value adjusts tabulated stresses to allowable values based on the 

duration (time) of loading.  

a) “Normal” duration is taken as 10 years and CD = 1.0. 

b) For permanent dead load, CD = 0.9.  

c) Short-duration loading from wind, earthquake, snow, or impact allows CD 

values higher than 1.0 but less than 2.0. 

 

The column stability factor Cp multiplied by Fc essentially defines the column curve 

(equation).  

• This equation, originally developed by Ylinen, explains the behavior of wood 

columns as the interaction of the two modes of failure: buckling and crushing. 

• An equation for computing Cp is provided on page 477 of the textbook.  

- Terms in the equation for Cp include the following. 

FcE = Euler critical buckling stress for columns 

  FcE = KcE E’   ≈  KcE E  

    (ℓe/d)2  (ℓe/d)2 

 Fc* ≈ Fc CD 

c = buckling and crushing interaction factor for columns 

   = 0.8 for sawn lumber columns 

   = 0.9 for glu-lam columns 

- Terms used in calculating FcE include the following. 

 KcE = 0.30 for sawn lumber 

  = 0.418 for glu-lams 
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E’ = adjusted modulus of elasticity associated with the axis of buckling 

 E’ = E (CM) (Ct) (Ci)   for sawn lumber 

 E’ = E (CM) (Ct)   for glu-lam columns 

E = reference modulus of elasticity associated with the axis of buckling 

 

Table 9.3 (p. 478 of the textbook) is provided to simplify the computations for 

preliminary column analysis/design.  

• This table (similar to Tables 9.1 and 9.2 for steel) was developed by inputting 

slenderness ratios between 1 and 50 to determine FcE values for sawn and glu-

lam members.  

• By dividing FcE values by Fc* and generating ratios of a (FcE/Fc*), corresponding 

Cp values can be taken from the table. 

• Table 9.3 eliminates the necessity of laborious computations for Cp using the 

equation developed by Ylinen. 

 

Analysis of Wood Columns 

A simple procedure can be adopted for checking the adequacy or capacity of 

wooden columns.  

• This methodology is for approximate analysis and assumes the simplifications 

discussed previously. 

 

Given:  Column size, column length, grade 

and species of lumber, and end 

conditions. 

 

Required:  The allowable capacity of a column 

or the adequacy of a given column. 

 

Procedure:  

a. Calculate the (ℓe/dmin). 

 

b. Compute FcE (i.e. Euler’s critical buckling stress). 

 FcE =  KcE E   

     (ℓe/d)2 

 KcE = 0.3 for sawn lumber 

 KcE = 0.418 for glu-lams 

 E = reference modulus of elasticity (ref. Table 5.2, p. 278 of the textbook) 
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c. Compute Fc* ≈ Fc CD  

Fc = reference compressive stress parallel to grain (found in building code 

tables, NDS tables, and wood design handbooks, such as Table 5.2, p. 278 of 

the textbook) 

 CD = load duration factor (ref. p. 477 of the textbook) 

 

d. Calculate the ratio: FcE/Fc* 

 

e. Enter Table 9.3 (p. 478); obtain respective Cp. 

 

f. Calculate the allowable compressive stress Fc’. 

 Fc’ = Fc* Cp 

 

g. Calculate the allowable load and compare the allowable load with the actual load. 

  Pallowable = Fc’ x A ≤ Pactual 

 where 

  A = cross-sectional area of column 
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Example Problem - Analysis of Wood Columns 

 

Problem 9.16 (p. 485) 

 

Given: 6x6 S4S Southern Pine Dense No. 1 column.  

 Assume 7-day duration roof live load. 

 Pin connections top and bottom. 

 L = 14’ – 0” 

 Fc = 975 psi (Table 5.2, p. 278 of the textbook) 

 E = 1.6 x 106 psi (Table 5.2, p. 278 of the textbook) 

 

Find: Capacity of column. 

 

Solution 

 

Section properties for the 6 x 6 S4S column. 

 Actual dimensions: 5.5” x 5.5” 

 A = 30.25 in2 (Table A1-b, p. 567 of the textbook) 

 

a. Calculate the slenderness ratio ℓe/dmin.   

 ℓe/dmin = 14(12”/’)/5.5 = 30.55 

 

b. Compute FcE (i.e. Euler’s critical buckling stress) . 

 FcE = KcE E/(ℓe/d)2 = 0.30(1.6 x 106)/(30.55)2 = 514.3 

 where KcE = 0.30 for visually graded lumber (p. 502) 

 

c. Compute Fc* ≈ Fc CD   (CM, Ct, CF = 1.0) 

 Fc* = 975 (1.25) = 1,218.75 

 where CD = 1.25 for 7-day roof live load (Figure 9.23, p. 477) 

 

d. Calculate the ratio FcE/Fc*   

 FcE/ Fc* = 514.3/1,218.75 = 0.422 

 

e. Enter Table 9.3 (p. 478) and obtain Cp. 

 Cp = 0.377 (for sawn lumber, by interpolating) 

 



 

9.34  

f. Calculate the allowable compressive stress Fc’. 

 Fc’ = Fc* Cp = 1,218.75 (0.377)  

 Fc’ = 459.5 psi 

 

g. Calculate the allowable load (i.e. the capacity of the column). 

 Pallowable = Fc’ x A = 459.5 (30.25) = 13,900 lb 

 Pallowable = 13.9 k 
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Problem 9.18 (p. 485) 

 

Given: 6-3/4” x 10-1/2” glu-lam column  

 Lateral bracing about the weak  axis at mid height.  

 Pin connections top and bottom. 

 A = 70.88 in2 

 Fc = 1,650 psi (Table 5.2, p. 278 of the textbook) 

 E = 1.8 x 106 psi (Table 5.2, p. 278 of the textbook) 

Find: Load capacity of the column. 

 

Solution 

 

a. Calculate the slenderness ratios ℓe/d for each axis of 

bending and determine the critical value. 

 (ℓe/d)x = 22(12”/’)/10.5 = 25.14   Governs 

 (ℓe/d)y = 11(12”/’)/6.75 = 19.56 

 

b. Compute FcE (i.e. Euler’s critical buckling stress) . 

 FcE = KcE E/(ℓe/d)2 = 0.418(1.8 x 106)/(25.14)2 = 1,190.5 

 where KcE = 0.418 for glu-lams (p. 477) 

 

c. Compute Fc* ≈ Fc CD   (CM, Ct, CF = 1.0) 

 Fc* = 1,650 (1.00) = 1,650 

 where CD = 1.00 for 10-year design (Figure 9.23, p. 477) 

 

d. Calculate the ratio FcE/Fc* 

 FcE/ Fc* = 1,190.5/1,650 = 0.722 

 

e. Enter Table 9.3 (p. 478) and obtain Cp. 

 Cp = 0.620 (for glu-lam, by interpolating)  

 

f. Calculate the allowable compressive stress Fc’. 

 Fc’ = Fc* Cp = 1,650 (0.620)  

 Fc’ = 1,023.0 psi 
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g. Calculate the allowable load (i.e. the capacity of the column). 

 Pallowable = Fc’ x A = 1,023.0 (70.88) = 72,510 lb 

 Pallowable = 72.5 k 
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Design of Wood Columns 

Column design in wood is a trial-and-error process.  

• Start by making an estimate on size (try out your intuition) and check out the 

adequacy or inadequacy by following the analysis procedure given in the previous 

section.  

• Axially loaded wood columns without mid height bracing are generally square in 

cross section, or in some cases just slightly rectangular.  

• Fortunately, there are fewer possible wood sections to choose from compared 

with the wide array of sizes available in steel. 

 

One design procedure using the trial-and-error method could be: 

 

Given:  Column length, column load, grade and species of lumber to be used, and 

end conditions. 

 

Required: An economical column size. 

 

Procedure:  

a. Guess at a trial size. 

• Try and select a square or almost square cross section unless the column’s weak 

axis is braced. 

b. Follow the same steps used in the analysis procedure in the previous section. 

c. If Pallowable ≥ Pactual, then OK. 

d. If Pallowable ≤ Pactual, pick a larger size and cycle through the analysis procedure 

again. 
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9.5 Columns Subjected to Combined Loading or Eccentricity 

Previous sections have assumed that the compression members are subjected to 

concentric loading (loads acting through the centroid of the column section).  

• In practice, however, concentric loading is rarely the case. 

 

Many columns are subjected to bending in combination with axial compression loads.  

• A load may not act through the centroid of a column cross section due to 

- Non-uniform bearing.  

- Misalignment of the framing.  

- The crookedness of a member.  

• Compression members carrying bending moment due to eccentricity or side 

loading in addition to compression are referred to as beam columns. 

 

Axially loaded columns have a relatively 

uniform distribution of stress over the 

cross-sectional area.  

 

 

 

 

 

 

Bending stress, which involves tension and compression stresses, must be added 

algebraically to the compressive stress due to the axial load.  

• Small eccentricities (e.g. flexible beam 

connected to a rigid column) alter the stress 

distribution. 

- The cross section remains in compression, 

although non-uniform as shown at the right. 
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• If large eccentricities (e.g. rigid beam 

connected to a less rigid column) exist, tensile 

stresses may develop over part of the cross 

section, as shown in the figure at the right. 

 

Tensile stress  

• The tension stresses that developed in 

masonry construction of the past were 

formerly of great concern. 

• Tension stresses are of little significance 

for the building systems and materials 

used today in contemporary buildings.  

• Timber, steel, pre-stressed concrete, 

and reinforced concrete all possess good 

tension capability. 

 

Beam columns are evaluated using an interaction equation that incorporates the 

bending stress with the compressive stress.  

• The general interaction equation is expressed mathematically as follows. 

 fa/Fa + fb/Fb ≤ 1.0 

where 

fa = P/A (the actual compressive – axial - stress) 

Fa = allowable compressive stress (based on Kℓ/r for steel or ℓe/d for 

timber) 

fb = Mc/I = M/S (actual bending stress) 

M = P x e for eccentrically loaded members 

M = bending moment due to side load or rigid frame action 

e = eccentricity 

Fb = allowable bending stress 

 

If a member is subjected to axial compression and bending about both the x- and 

y-axes, the interaction formula is adapted to incorporate the biaxial bending. 

• Therefore, the most generalized form of the equation is expressed 

mathematically as follows. 

 fa/Fa + fbx/Fbx + fby/Fby ≤ 1.0 (for biaxial bending) 
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where 

fbx = M/Sx = actual bending stress about the x-axis 

fby = M/Sy = actual bending stress about the y-axis 

 

An interaction curve, shown as Figure 9.33 (p. 490 of the textbook), illustrates the 

theoretical combining of the axial compressive and bending stresses. 

 

P–Δ effect  

Bending moments in columns may result from the following. 

• Lateral forces 

• Applied moments 

• Eccentricity of the end loads 

 

These bending moments can cause a member 

to deflect laterally, resulting in additional 

bending moment due to the P – Δ effect.  

• The lateral displacement generates an 

eccentricity for the load P. 

• The eccentricity results in the creation 

of additional moment at the mid-height 

of the column equal to P x Δ (known as a 

second-order bending moment). 

• Slender columns are particularly sensitive 

to this P–Δ effect and must be accounted 

for in the interaction equation. 

 

The AISC (steel) and NDS (timber) manuals have introduced a magnification factor 

to incorporate the P–Δ effect.  

• A generalized interaction equation for both steel and wood is expressed 

mathematically as follows. 

 fa/Fa + [fb x (Magnification Factor)]/Fb ≤ 1.0 

• The actual analysis/design equations for steel and wood are noted in the 

textbook (pp. 490 - 491).  

 

Analyzing and designing beam columns using the AISC and NDS equations are more 

appropriately done in follow-up courses dealing specifically with steel and wood 

design. 


