Chapter

Discrete Time: First-Order
Difference Equations

In the continuous-time context, the pattern of change of a variable y 1s embodied in the
derivatives v (1), 37(4). ete. The time change involved in these 1s oceurring continuously.
When time is, instead, taken to be a discrefe variable, so that the vaniable £ 15 allowed to take
integer values only, the concept of the derivative obviously will no longer be appropriate.
Then, as we shall sec, the pattern of change of the variable y must be described by so-called
differences, rather than by derivatives or differentials, of y(f). Accordingly, the tcchniques
of differential equations will give way to those of difference equaiions.

When we are dealing with discrete time, the value of variable y will change only when
the variable ¢ changes from one integer value to the next. such as from (=1 to t = 2.
Meanwhile, nothing is supposcd (o happen (o y. In this light, it becomes more convenient
to interpret the values of ¢ as referring to periods—rather than peinis—of time, with f = |
denoting period 1 and # = 2 denoting period 2, and so forth. Then we may simply regard y
as having one unique value in cach (ime period. In view of this interpretation, the discrete-
time version of ¢conomic dynamics is often referred to as period analysis. It should be
emphasized, however, that “period” is being used here not in the calendar sense but in the
analytical sensc. Ilence, a period may involve one extent of calendar time in a particular
ceonomic model, but an altogether different one in another, Even in the same moded, more-
over, each successive period should not necessarily be construcd as meaning equal calen-
dar time. In the analytical sense, a period is merely a length of time that elapses before the
variable v undergoes a change.

17.1 Discrete Time, Differences, and Difference Equations

544

The change from continuous time to discrete time produces no cffect on the fundamental
nature of dynamic analysis, although the formulation of the problem must be altered. Basi-
cally, our dynamic problem is still to find a time path from some given pattern of change of
a variable y over time. But the pattern of change should now be represented by the differ-
ence quolient Av/Af, which is the discretc-time counterpart of the derivative dy/dt.
Recall, however, that  can now take only intcger values; thus, when we are comparing the
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values of y 1n twe consceutive periods, we must have A¢ = 1. For this reason, the difference
quotient Ay /At can be simplified to the expression Ay; this is called the first difference
of y. The symbol A, meaning difference, can accordingly be interpreted as a directive to
take the first diffcrence of (v), As such, it constitutes the discrete-time counterpart of the
operator symbol 4 /dt.

The expression Ay can take various values, of course, depending on which two consce-
utive time perieds are involved in the difference-taking (or “differencing”). To avoid ambi-
guity, let us add a time subscript to ¥ and define the first difference more specifically, as
follows:

Ay = pev1 — (17.1)

where v, means the value of' y in the rth period, and v, is its value in the period immedi-
ately following the th period. With this symbology, we may describe the pattern of change
of v by an equation such as

Ay, =2 (17.2)
ar
A_I"; = _0]._]/'( (17.3)

Equations of this type are called difference equations. Note the striking resemblance
between the last two equations, on the one hand, and the differential equations dy /dt = 2
and dy/dt = —0.1y on the other.

Even though difference equations derive their name from difference expressions such as
Ay, there arc alternate equivalent forms of such equations which are completely free of A
expressions and which are more convenient to use. By virtue of (17.1), we can rewrite
{17.2}y as

Yerr =y =12 (17.2)
or
Verr =+ 2 (17.2'
For (17.3}, the corresponding alternate cquivalent forms are
Yerr =09y, =10 (17.37)
or
v = 0.9y, (17.3)
The double-prime-numbered versions will prove convenient when we are calculating a
y value from a known y value of the preceding period. In later discussions, however, we
shall employ mostly the single-prime-numbered versions, i.e., those of (17.2") and ( 17.3").
It 1s important 1o note that the choice of time subscripts in a difference equation is some-
what arbitrary. For instance, without any change in meaning, (17.2°) can be rewritten as

Y, — ¥ 1 =2, where (f — 1) relers to the period which immediately precedes the sth. Or,
we may express it equivalently as y,.0 — vy = 2.
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Also, it may be pointed out that, although we have consistently used subscripted y sym-
bols, it is also acceptable to use (1), y(r + 1), and y(¢ — 1) in their stead. In order to avoid
using the notation p(¢) for both continuous-time and discrete-time cases, however, we
shall, in the discussion of period analysis, adhere to the subscript device.

Analogous to differential equations, diflerence equations can be either linear or nonlin-
ear, homogeneous or nonhomogeneous, and of the first or second (or higher) orders. Take
(17.2" for instance. It can be classitied as: (1) Jinear, for no y term (of any period) is raised
to the sccond (or higher) power or is multiplied by a y term of another period; (2) nonho-
mogencous, since the right-hand side (where there is no v term) is nonzero; and (3) of the
first order, because there cxists only a firsi difference Ay, involving a one-period tume lag
only. (In contrast, a sccond-order difference cquation, to be discussed in Chap. 18, involves
a two-period lag and thus cniails three y terms: vy4o, v41, as well as y;.)

Actually, (17.2') can also be characterized as having constant cocflicients and a constant
term (= 2). Since the constant-coefficient casc is the only one we shall consider, this char-
acterization will henceforth be implicitly assumed. Throughout the present chapter, the
conslant-term featurc will also be retained, although a method of dealing with the variable-
term case will be discussed in Chap, 18,

Check that the cquation {17.3') is also linear and of the first order; but unlike (17.2), it
1s homogenegous.

17.2 Solving a First-Order Difference Equation

[n solving a differential equation, our objcctive was to find a time path p(¢). As we know,
such a time path is a function of time which is totally free from any derivative (or differen-
tial) expressions and which is perfectly consistent with the given differential equation as
well as with its initial conditions. The time path we seek from a difference equation 1s sim-
ilar in natore. Again, it should be a function of +—a formula defining the values of y in
every time period—which is consistent with the given difference cquation as welt as with
its initial conditions. Besides, it must not contain any difference cxpressions such as Ay,
(or expressions ke v — w).

Solving diffcrential equations s, in the (inal analysis, a matter of ntegration. How do we
solve a difference equation?

Iterative Method

Before developing a general method of attack, let us first explain a relatively pedestrian
method, the iferative method—which, though crude, will prove immensely revealing of the
essential nature of 4 so-called solution.

In this chapter we are concerned only with the first-order case; thus the difference equa-
tion describes the pattern of change of y between fwo consecutive periods only. Once such
a pattern is specificd, such as by (17.2”), and once we are given an initial value y,, 1t is no
problem to find y, (rom the equation. Similarly, once y; is found, y» will be immediately
obtainable, and so forth, by repcated application (iteration) of the pattern of change
specified in the difference equation. The results of iteration will then permit us to infer a
time path.
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Find the solution of the difference equation {17.2), assuming an initial value of v = 15, To
carry out the iterative process, it is more convenient to use the alternative form of the
difference equation (17.2"), namely, y..1 = ¥, + 2, with yp = 15. From this equation, we
can deduce step-by-step that

n=w+2
Ve=n+2=(p+2)+2=yv+2(2)
vi=V+2=[w+22)]+2=w+32)

and, in general, for any period ,
Vo= o+ H2)=15+2t (17.4)

This last equation indicates the y value of any time period {including the initial period
t = 0); it therefore constitutes the solution of (17.2).

The process of iteration 1s crude- it corresponds roughly to solving simple differential
¢quations by straight integration—but it serves to point out ¢clearly the manner in which a
tume path is generated. In general, the value ol v, will depend in a specified way on the
value of y in the immediately preceding period (y,—(); thus a given initial value yy will
successively lead to vy, y, ..., via the prescribed pattern of changg.

Solve the difference equation (17.3); this time, let the initial value be unspecified and
denoted simply by y. Again it is more convenient to work with the alternative version in
(17.3"), namely, i1 = 0.9y:. By iteration, we have

n =09%
yo = 0.9y = 0.9(0.9y0) = (0.9’ w
3 = 0.9y = 0.9(0.9 16 = (0.9)% 1o

These can be summarized inte the solution

v = 0.9y (17.5)

To heighten interest, we can lend some economic content to this example. fn the simple
multiplier analysis, a single investment expenditure in period 0 wifl call forth successive
rounds of spending, which in turn will bring about varying amounts of income increment
in succeeding time periods. Using y to denote income increment, we have yo = the amount
of investment in period 0; but the subsequent income increments will depend on the
marginal propensity to consume (MPC). If MPC = 0.9 and if the income of each period
1s consumed only in the next period, then 90 percent of y, will be consumed in period 1,
resulting in an income increment in period 1 of ¥ = 0.9y. By similar reasoning, we can
find v2 = 0.9y, etc. These, we see, are precisely the results of the iterative process cited
previously. In other words, the multiplier process of income generation can be described by
a difference equation such as (17.3"), and a solution like (17.5) will tell us what the magni-
tude of income increment is to be in any time period ¢.

Solve the homogeneous difference equation

Myt — Ny, =0
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Upon normalizing and transposing, this may be written as

n
Yie1 = (;1) Y

which is the same as (17.3") in Example 2 except for the replacement of 0.9 by n/m. Hence,
by analogy, the solution should be
n t
V= (a) Yo

t
n .
Watch the term (E) . It is through this term that various values of f will iead to their

corresponding values of y. [t therefore corresponds to the expression e in the soluticns to
differential equations. If we write it rmore generally as b' (b for base) and attach the more
general multiplicative constant A (instead of yp), we see that the solution of the general
homogeneous difference equation of Example 3 will be in the form

yt = Ab'

We shall find that this expression Ab® will play the same important role in difference equa-
tions as the expression Ae’! did in differential equations.” However, even though both are
exponential expressions, the former is to the base b, whereas the latter s to the base e. It
stands to reason that, just as the type of the continuous-time path y(f) depends heavily on
the value of r, the discrete-time path y; hinges principally on the value of b.

General Method

By this time, you must have become quite impressed with the various similaritics between
differential and difference equations. As might be conjectured, the general method of solu-
tion presently (o be explained will parallel that for differential equations.

Supposc that we are seeking the solution to the first-order difference equation

Y Fay, = ¢ (17.6}

where g and ¢ are two constants. The general solutien will consist of the sum of two com-
ponents: a particular solution v, which is any solution of the complete nonhomogeneous
equation (17.6), and a complementary funciion y., which is the gencral solution of the
reduced cquation of (17.6):

Vet Hay, =0 (17.7)

The y, component again represents the intertemporal equilibrium level of y, and the v,
componcent, the deviations of the time path from that equilibrium. The sum ol y, and v,
constitutes the gemerad solution, because of the presence of an arbitrary constant. As before,
in order to definitize the solution, an 1nitial condition is needed.

Let us first deal with the complementary function. Our experience with Example 3
suggests that we may try a solution of the form y, = Ab* (with 4" # 0, for otherwise y,
will turn out simply to be a horizontal straight line lying on the 1 axis); in that case, we also

T You may object to this statement by pointing out that the solution {17.4) in Example 1 does not
contain a term in the form of Ab!. This latter fact, however, arises only because in Example 1 we have
b=n;/m=1/1=1, so that the term Ab' reduces to a conslant.
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have y,1y = Ab"*!. If these values of v, and y,,, hold, the homogeneous equation (17.7)
will become

AB' +adb" =0
which, upon canceling the nonzero common factor Ab*, yields
b+a=0 o b=-a

This means that, for the trial solution to work, we must set » = —«; then the complemen-
tary lunciion should be written as

ye(= Ab"y = A(—a)'

Now let us search for the particular solution, which has to do with the complete cqua-
tion (17.6). In this regard, Example 3 is of no help at all, because that example relates only
to a homogeneous equation. However, we note that lor y, we can choose any solution of
(17.6); thus if a trial solution of the simplest form y, = £ (a constant) can work out, no real
difficulty will be encountered. Now, if v, = £, then y will mainlain the same constant value
over time, and we must have v;. | = £ also. Substitution of these values into (17.6) yiclds

¢
Y

Since this particular & value satisfics the cquation, the particular integral can be written as

W=k =——  (a#£-1)

k+tak=c and k

l+a
This being a constant, a stationary equilibrium is indicated in this case,
Ifit happens that @ = —1, as in Example |, however, the particular solution ¢/(1 + a) is

not defined, and some other solution of the nonhomogenecus equation (17.6) must be
sought. [n this event, we employ the now-familiar trick of trying a solution of the form
yr = kt, Thisimplies, of course, that v, = k(r 4+ 1). Substituting these into (17.6), we find
¢
k _— e =
F+ 14t
thus Yul= ki) = ct

t+ D +oekt=c¢  and ¢ [because ¢ = —1]

This form of the particular solution is a nonconstant function of #; 1t therefore represents a
moving equilibrium.

Adding y, and v, together, we may now writc the general solution in one of the two
tollowing forms;

= Al—a) + ] ia [general solution, case of ¢ # —17  (17.8)

¥y =A(=aY +ct =A+cr  [general solution, case of ¢ = —1]  (17.9)

Neither of these 1s completely determinate, in view of the arbitrary constant 4. To ¢liminate
this arbitrary constant, we resort Lo the initial condition that y, = 3y when £ = 0. Letting
{ =01in(17.8), we have

¢
—A+——  and  A=yy-
Yo +l-|—a n M p
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Example 4

Consequently, the definite version of (17.8) is

¥ = (_L’u S )(—::@')r + % [definite solntion, case of # £ —1] (17.8")
H

| +a

Letting 1 = 0 in (17.9), on the other hand, we find vy = A4, so the definite version of
(17.9)is

v, =y + ct [definite solution, case of ¢ = —1] (17.99

I this last result is applied to Example 1, the solution that cmerges 15 exactly the same as
the iterative solution {17.4).

You can check the validity of each of these solutions by the fellowing two steps. First, by
letting r = 0 in (17.8'), see that the latter equation reduces to the identity vy = vy, signify-
ing the satisfaction of the initial condition. Second, by substituting the y, formula (17.87)
and a similar y; . formula—obtained by replacing # with (¢ + 1) in {17.8")—into (17.6), sce
that the latter reduces to the identity ¢ = ¢, signifying that the time path is consistent with
the given difference cquation, The check on the validity of solution {17.9) is analogous.

Solve the first-order difference equation

o —sn=1 (n=1)

Following the procedure used in deriving (17.87, we can find y, by trying a solution
y: = Abt (which implies yi.1 = Ab™). Substituting these values into the homogeneous
version y;_1 — Sy; = 0 and canceling the common factor Ab?, we get b= 5. Thus

Ye= A(S)t

To find y,, try the solution y = &, which implies y.; = k. Substituting these into the
complete difference equation, we find k = —]—P Hence

PN

¥p=—
It follows that the general solution is

}’t:VH‘}’p:A(f’)E—%

Letting t =0 here and utilizing the initial condition ¥ = 5; we gbtain A =2. Thus the
definite solution may finally be written as

vi=2(5)"-1

Since the given difference equation of this example is a special case of (17.6), with
a=-5c¢c=1,and yp = %, and since {17.8") is the solution “formula” for this type of
difference equation, we could have found our solution by inserting the specific parameter
values into (17.8"), with the resuit that

— (Z_L)@)H_L_z@}f_]_
A VR -5 1
which checks perfectly with the earlier answer.

Note that the v,y term in (17.6) has a unit coefficient. Jf a given dilference cquation
has a nonunit coefficient for this term, it must be normafized before using the selution
formula (17.8).
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EXERCISE 17.2

1. Convert the following difference equations into the form of (17.2"):
() Ay =7
(b} Ay: =03y
() Ay =2y —9

2. Solve the foilowing difference equations by iteration:
(@ yy1 =y~ 1 {yo=10)
() v =y {vo=48)

Q y1=ap— 8 (¥ = yo when t = 0}

3, Rewrite the equations in Prob. 2 in the form of (17.6), and solve by applying formula
(17.8"} or (17.9"), whichever is appropriate. Do your answers check with those
abtained by the iterative method?

4, For each of the following difference equations, use the procedure illustrated in the
derivation of (17.8") and (17.9") to find y, y,, and the definite solution:

(@) yr1 43y =4 (yo = 4)
(b) 2.1 — 1 =6 (vo=7)
O y1 =02y +4 (Yo =4)

17.3  The Dynamic Stability of Equilibrium

[n the continuous-time case, the dynamice stability of equilibrium depends on the 4e¢* term
in the complementary function. in period analysis, the corresponding rolc 1s plaved by the
Ah' term in the complementary function. Since its interpretation is somewhat more com-
plicated than 4e*’, let us try to clarify it before proceeding further.

The Significance of b

Whether the equilibrium 1s dynamically stable is a question of whether or not the comple-
mentary function will tend to zero as # — . Basically, we must analyze the path of the
term A4’ as ¢ 1y increased indefinitely. Obviously, the value of' b (the base of this cxponen-
tial termy) 1s of crucial importance wn this regard. Let us fivst consider its significance alone,
by disregarding the coefficient 4 (by assuming 4 = 1},

For analytical purposes, we can divide the range of possible values of b, {(—oc, +5¢),
into seven distinct regions, as set forth in the first two columny of Table 171, arranged
descending order of magnitude of 4. These regions arc also marked off in Fig, 17.1 on 4
vertical b scate, with the points 41, 0, and —1 as the demarcation points, In fact, these lat-
ter three points in themselves constitute the regions I1, TV, and V1. Regions 11T and V, on the
other hand, correspond to the set of all positive fractions and the set of all negative frac-
tions, respectively, The remaining two regions, I and VII, are where the numerical valuc of
b exceeds unity.

In cach region, the exponential expression A generates a different type of time path.
These are exemplified in Table 17.1 and tllustrated in Fig, 17.]. In region [ (where 6 > 1),
b' must increase with ¢ at an increasing pace. The general configuration of the time path
will therefore assume the shape of the top graph in Fig. 17.1. Note that this graph is shown
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TABLE 17.1

A Classification
of the Values
of b

Value of ' in Different Time Periods

Region Value of b Valueof ' t=0 =1 t=2 t=3 i=4...
| b1 (bl > 1} eg., () 1 2 4 8 16
1y b=1 (b =1) (! 1 1 1 1 1
H D<b<t (b <1 eg, (%)I 1 Lo : =
v b=0 (1b] = 0) (B 0 0 0 0 0
v ~1<b<0 (b <1 eg, (—%)r [ T SRS | 17
Vi b=-) (bl =1) 'G5 ) U R N B 1
Vil b= -1 go =1 eg., (-2 1 -2 4 -8 16

as a step function rather than as & smooth curve; this is because we are dealing with period
analysis. In region 1 (b = 1), & will remain at unity for ali values of 7. [ts graph will thus
be a horizontal straight line. Next. in region 111, & represents a positive fraction raised to
integer powers, As the power i3 increased, o' must decrease, though it will always remain
positive. The next case, that of b = 0 in region 1V, is quite similar to the case of & = 1; but
here we have o' = O rather than &” = 1, so its graph will coincide with the horizontal axis.
However, this case is of peripheral interest only, since we have earlicr adopted the assump-
tion: that 45" # 0.

When we move into the negative regions, an interesting new phenomenon oceurs: The
value of B will alternate between positive and negative values from period to period! This
fact is clearly brought out in the last three rows of Table 17.1 and in the last three graphs of
Fig. 17.1, In region V, where 2 is a negative fraction, the alternating time path tends to get
closer and closcr to the horizontal axis (cf. the positive-fraction region, II1). In contrast,
when & = —1 {region VI), a perpetual alternation between —1 and —1 resulis. And finally,
when & < —1 (region V11), the alternating time path will deviate farther and farther from
the horizontal axis.

What is striking is that, whereas the phenomenan of a fuctuating time path cannot pos-
sibly arisc from a single 4¢™ term (the complex-root case of the second-order differential
equation requires a pair of complex roots), tluctuation can be generated by a single &'
(or AH) term. Note, however, that (he character of the fluctuation is somewhat different,
unlike the circular-function pattern, the fluctuation depicted in Fig. 17.1 1s nonsmooth.
For this reason, we shall employ the word oscillation to denote the new, nonsmooth type
of fluctuation, even though many writers do use the terms fluctuation and oscillation
interchangeably.

The essence of the preceding discussion can be conveyed in the following gencral state-
ment: The time path of &' {# £ () will be

Nonosciltatory ’ - ‘ b=
‘ if
Oselllatory <)
Divergent ] : ‘ CIER
. if
Convergent b <« 1

[t is important to note that, whereas the convergence of the expression e depends on the sign
of 7, the convergence of the »” expression hinges. instcad, on the absolite value of b.
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The Role of A

So far we have deliberately left out the multiplicative constant 4. But its effects—of which
there are two—are relatively casy to take into account. First, the magritude of A can serve
to “blow up” (if, say, 4 = 3) or “pare down” (if, say, 4 = {) the values of b'. That is, it can
produce a scale effect withoul changing the basic configuration of the time path, The siga of
A, on the other hand, does materially affect the shape of the path because, if »' is multiplied
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by A4 = —1, then each time path shown in Fig. 17.1 will be replaced by its own mirror
image with reference to the horizontal axis. Thus, a negative A can produce a mirror effect
as well as a scale effect,

Convergence to Equilibrium

The preceding discussion presents the interpretation of the 46” term in the complementary
function, which, as we recall, represents the deviations from some intcrtemporal equilib-
rium level. If a term (say) y, = 5 is added to the Ap' term, the time path must be shifted up
vertically by a constant value of 5, This will in no way affect the convergence or divergence
of the time path, but it will alter the level with reference to which convergence or diver-
gence in gauged. What Fig. 17.1 pictures is the convergence {or lack of it) of the AAf
expression 1o zcro. When the v, is included, it becomes a question of the convergence of
the time path y, = y. + v, to the equilibrium level v,

In this connection, letus add a word of explanation for the special cascof & = | {region 11},
A time path such as

yp=AY +y,=A+y,

gives (he impression that it converges, because the multiplicative term (1)’ = 1 produces
no explosive effect. Observe, however, that y, will now take the value (4 + v,) rather than
the equilibrium valuc v,; in fact, it can never rcach v, (unless 4 = 0). As an illustration of
this type of situation, we can cite the time path in (17.9), in which 2 moving equilibrium
v, = ¢l is involved. This time path is to be considered divergent, not because of the
appearance of ¢ in the particular solution but beeause, with a nenzero A, there will be a con-
stant deviation from the moving equilibrium. Thus, in stipulating the condition for conver-
gence of time path y, to the equilibrium ,,, we must rule out the case of 5 = 1.
In sum, the solution

,}’r - A.blr + )”p

is a convergent path it and only If fh| < 1.

Example 1 What kind of time path is represented by y; = 2 1)t + 97 Since b= —g < 0, the time path
————— s osdillatory. But since [b] = % < 1, the oscillation is damped, and the time path converges
to the equilibrium level of G.
You should exercisc care not to confuse 2(—3) with —2(3)'; they represent entirely dif-
ferent time-path configurations.
Example 2 How do you characterize the time path y; = 3(2)' + 47 Since b =2 = 0, no oscillation will
———————  occur. But since || = 2 = 1, the time path will diverge from the equilibrium level of 4,
EXERCISE 17.3

1. Discuss the nature of the following time paths:

(@) =341 © Ye“5( 5) +3

0 p=2(t) -3(i)+:
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2. What is the nature of the time path obtained from each of the difference equations in
Exercise 17.2-47

3. Find the solutions of the following, and determine whether the time paths are oscilfa-
tory and convergent:

@y — =6  (w=1)
B} yeri + 2y =9 {(o=4)
© pn+in=5 {(o=2)
Wyn-—p=3 (=3

17.4 The Cobweb Model

To illustrate the use of first-order difference equations in cconomic analysis, we shall cite
two variants of the market model for a single commodity, The first variant, known as the
cobweb model, differs from our earlier markel models in that it treats O, as a function not
of the current price but of the price of the preceding (ime period.

The Model

Consider a situation in which the producer’s output decision must be made one period in
advance of the actual sale—such as in agricuttural production, where planting must pre-
cede by an appreciable length of time the harvesting and sale of the output. Let us assuime
that the output decision in period 7 1s based on the then-prevailing price F;. Since this
output will not be available for the sale until period (¢ + 1), however, P, will determine
not Oy, but O, ,_;. Thus we now have a “lagged” supply function.'

Qs spr = 5(7)
or, cquivalently, by shifting back the time subscripts by one peried,
er =5 1)

When such a supply function interacts with a4 demand function of the form
Qo = D{F)

interesting dynamic price patterns will resull.

Taking the linear versions of these (lagged) supply and (unlagged) demand functions,
and assuming that in each time period the market price is always set at a level which clears
the market, we have a market model with the following three equations:

Qd{ = Q.s‘f
Ou=a— 8F (o, § = Q) (17.10)
Ouw=—y+8Ph (y.6=0)

 We are making the implicit assumption here that the entire output of a period will be placed on the
market, with no part of it held in storage. Such an assurnption is appropriate when the commaodity in
question is perishable or when no inventory is ever kept. A model with inventory will be considered
in Sec. 17.5.
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By substituting the last two equations into the first, however, the model can be reduced to a
single first-order difference equation as follows:

B +éP i =u+y

In order to solve this equation, it is desirable first to normalize it and shift the tme sub-
scripts ahead by one period [alter £ 1o {f + 1}, ete.]. The result,

) o+y
PI.1+EP,:---'3— (17.11)
will then be a replica of (17.6), willi the substitutions
& o+
y=P a=- and  ¢= 4
g o

Inasmuch as & and # are both positive, it follows that ¢ # —1. Consequently, we can apply
formula (17.8), to get the time path

w+y ﬁ)f oty
F={F- — | + 17.12
(” ﬁ+5)( . (1712

where Py represents the initial price.

The Cobwebs

Three points may be observed in regard to this time path. [n the first place, the expression
{a + ) /(B + &), which constitutes the particular integral of the difference equation, can
be taken as the intertemporal equilibrium price of the model:’

o+ Yy
B+d

P

Because this is a constant, it is a stationary equilibrium, Substituting P into our solution,
we can express the time path P, alternatively in the form

P.={(Py—P) (—%) +P (17.12)

This lcads us to the second point, namely, the significance of the expression (#y — P),
Since this corresponds to the constant A in the 4h' term, its sign will bear on the question
of whether the time path will commence above or below the cquilibrium {mirror effect),
whereas its magnitude will decide how far above or below (scale ellect). Lastly, there is the
expression (—3/8), which corresponds to the » component of Ab‘. From our model spec-
ification that A, 8 > 0, we can deduce an oscillatory time path. It is this fact which gives
rise 1o the cobweb phenomcenon, as we shall presently sce. There can, of course, arise three

" As far as the market-clearing sense of equilibrium is concerned, the price reached in each period is
an equilibrium price, because we have assumed that Qg — Q, for every t,
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possible varieties of oscillation patterns in the model. According to Table 17.1 or Fig. 17.1,
the oscillation will be

Explosive
Uniform it 4 z—i B
Damped

where the term uniform escillation refers to the type of path in region VI,

In order to visualize the cobwebs, let us depict the model (17.10) in Fig, 17.2. The sec-
ond equation of (17.10) plots as a downward-sloping lincar demand curve, with its slope
numerically equal to 8. Similarly, a linear supply curve with a slope equal to 4 can be drawn
from the third equation, if we let the ( axis represent in this instance a lagged quantity sup-
plied. The case of & > § {8 steeper than D) and the case of § < B (S flatter than 1)) are
illustrated in Fig. 17.2¢ and b, respectively. In either case, however, the intersection of £
and S will yield the intertemporal equilibrium price P.

When & = 8, as in Fig. 17.24, the interaction of demand and supply will produce an
explosive oscillation as follows. Given an initial price 7 (here assumed above P), we can
follow the arrowhead and read off on the S curve that the quantity supplied in the next
peried (period 1) will be (1. In order to clear the market, the quantity demanded in period
1 must also be (), which is possible if and only 1f price 1s set at the level of Py (sce down-
ward arrow). Now, via the § curve, the price P will lead to (4 as the quantity supplied in
period 2, and to clear the market in the latter period, price must be sct at the Ievel of P
according to the demand curve. Repeating this reasoning, we can trace out the prices and
quantities in subsequent periods by simply following the arrowheads in the diagram,
thercby spinning a4 “cobweb™ around the demand and supply curves. By comparing the
price levels, Py, P, P, ..., we observe in this case not only an oscillatory pattern of
change but also a tendency for price to widen its deviation from P as time goes by.
With the cobweb being spun from ingide out, the time path is divergent and the escillation
explosive.
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By way of contrast, in the case of Fig. 17.2h. where § < 8. the spinning process will
create a cobweb which is centripetal. From Py, if we follow the arrowhcads, we shall be
led ever closer to the interscction of the demand and supply curves, where P is. While still
oscillatory, this price path is convergent.

In Fig. 17.2 we have not shown a third possibility, namely, that of 8 = §. The procedure
of graphical analysis involved, however, is perfectly analogous to the other two cases. F s
therefore left to you as an exercise.

The preceding discussion has dealt only with the time path of P (thal is, F, ). after P, 1s
found, however, it takes but a short step 1o get to the time path of Q. The second cquation
of (17.10) relates Oy, to £y, soif (17.12) or {17.12"} 1s substituted mto the demand cqua-
tion, the time path of O, can b obtained immediaiely, Morcover, stnce {J;, must be equal
to 0 in cach time period {clearance of market}, we can simply refer to the tme path as ¢,
rather than Q. On the basts of Fig. 17.2. the rationalc of this substitution is casily seen.
Each point on the D curve relates a P; to a {J; pertaining to the same time period; therefore,
the demand function can serve to map the time path of price inte the time path of quantity.

You should note that the graphical technique of Fig. 17.2 is applicable even when the D
and 5 curves are nonlinear.

EXERCISE 174

1. On the basis of (17.10}, find the time path of Q, and analyze the condition for its
convergence,

2. Draw a diagram similar to those of Fig. 17.2 to show that, for the case of § = g, the
price will oscillate uniformly with neither damping nor exptosion,

3. Given demand and supply for the cobweb model as follows, find the intertemporal
equilibrium price, and determine whether the equilibrium is stable:

(CJ') th:38_3pi Qi = -3 +4FP
(B) Qu=22-3P,  Qu=-2+ P
() Qu=19-6P Qe =6PL1 -3
4. In madel (17.10), let the Qu = Qy condition and the demand function remain as they
are, but change the supply function to
Qu=—v +5Pa*
where P; denotes the expected price for period t. Furthermore, suppose that seliers
have the “adaptive” type of price expectation:’
Pr=Ply+nPa=Py)  QO<n=l)
where n (the Greek letter eta} is an expectation-adjustment coefficient.

(a) Give an economic interpretation to the preceding equation. tn what respects is it
similar to, and different from, the adaptive expectations equation (16.34)?

(b) What happens if 1 takes its maximum value? Can we consider the cobweb model
as a special case of the present model?

" See Marc Nerlove, “Adaptive Expectations and Cobweb Phenomena,” Quarterly journal of
Economics, May 1958, pp. 227-240.
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(c) Show that the new model can be represented by the first-order difference equation

8 e + )
P_'_ - -f— —n—)P =
{1 ( " 8 t 8

{(Hint: Solve the supply function for P, and then use the information that
er = th = *ﬁP[.)

{d) Find the time path of price. Is this path necessarily oscillatory? Can it be oscillatory?
Under what circumstances?

(¢) Show that the time path P, if oscillatory, will converge only if 1 - 2/ < ~8/8. As
compared with the cobweb solution (17.12) or (17.12"), does the new model have
a wider or narrower range for the stability-inducing values of —4/87?

3. The cobweb maodel, like the previously encountered dynamic market models, is essen-

tially based on the static market made] presented in Sec. 3.2, What economic assump-
tion is the dynamizing agent in the present case? Explain,

17.5 A Market Model with Inventory

In the precedmg model, price is assumed to be set in such a way as to ctear the current out-
put of every time period. The implication of that assumption is either that the commodity
is a perishable which cannot be stocked or that, though it is stockable, no inventory is ever
kept. Now we shall construct @ model in which sellers do keep an inventory of the
commodity.

The Model

Let us assume the [ellowing:

L

Both the quantity demanded, Q. and the quanlity currently produced, (. are
untagged linear functions of price £,.

The adjustment of price is effected not through market clearance in cvery period, but
through a process of price-setting by the sellers: At the beginning of cach period, the
sellers set a price for that period after taking into consideration the inventory situation.
If, as a result of the preceding-period price, invenlory accumulated, the current-periad
price is set at a lower level than before, in order 1o “move™ the merchandise; but if
inventory decumulated instead, the curreat price is set higher than before.

The price adjustment made from period to period is inversely proportional o the
observed change i the inventory (stock).

With these assumptions, we can write the following equations:
Yar =0 — 81 (o, B = 0)
Qu=—y+d (y.8 = 0) (17.13)

Poy=PF—-o(Qy—0u) (020

where o denotes the stock-induced-price-adjusiment coeflicient. Note that (17.13) 1s reully
nothing but the discrete-tume counterpart of the market model of Sec. 15.2, although we
have now couched the price-adjustment process in terms of faventory ((),, — Qy,) rather
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TABLE 17.2
Types of Time
Path

than excess demand (Q4 — O). Nevertheless, the analytical results will turn out to be
much different; for one thing, with discrete time, we may encounter the phenomenon ot

oscillations, Let us derive and analyze the time path £,.

The Time Path

By substituting the first two equations into the third, the model can be condensed into &

single difference equation:
P —[l=o(p+ 3P =0la~y)
and its solution is given by (17.8):

_ _a'-l-}f B L9ty
Pr—(Pu ﬁ+5)[l O'(ﬁ‘l‘a”-}-ﬁ__s

=(P- Pl -a(B+8] +F

(17.14)

(17.15)

Obviously, therefore, the dynamic stability of the model will hinge on the expression

1 — a(B + 8); for convenience, let us refer to this expression as .

With reference to Table 17.1, we see that, in analyzing the exponential expression &',
seven distinct regions of » values may be defined. However, since our medel specifications
(g, 8,8 > 0) have effectually ruled out the first two regions, there remain only five possi-
ble cases, as listed in Table 17.2. For each of these regions, the & specification of the second
column can be translated into an equivalent ¢ specification, as shown in the third column.
For instance, for region 1], the & specification is O < b < 1; therefore, we can writc

Dal—a(f+d) =1

~1l < —o{f+8) <0  [subrracting | from all three paris]

1
and >0 > dividing through by —(f + §)
Y [ g through by —(f + d)]
Value of :
Region - b=T-o(f+4) - Value of ¢ Nature of Time Path P,
il Q<b=<t 0<o< Ejﬁ Nenoscillatory and convergent
1

v b=0 7= ET Remaining in equilibrium’

v 1<bx ! < < 2 With damped oscillation

e Frs " Bt pe |
Vi b=~1 o= ? With uniform oscillation
f+3

vil b< 1 oz i ; “With explosive oscillation

1 The fact that peice will be:emaining in equilieum in s case can alsn be seen direedy Fom (17.14) With o = 1/ + &), the

coefticient of P; becomes zeto, and (1744 reduces to Py = o{o+ ) = + (B + B = E



Example 1

FIGURE 17.3

Cha pter 17 Diserete Time: First-Ovder Difference Fguarions 561

This last gives us the desired equivalent o specification for region II1. The translation for
the other regions may be carried out analogously. Since the type of time path pertaining to
each region is already known from Fig. 17.1, the ¢ specification cnables us to tell from
given values of o, p, and & the general nature of the time path 7, as outlined in the last col-
umnn of Table 17.2,

If the sellers in our mode! always increase (decrease) the price by 10 percent of the amount
of the decrease (increase) in inventory, and if the demand curve has a slope of -1 and the
supply curve a slope of 15 (both slopes with respect to the price axis), what type of time
path Py will we find?

Here, we haveo— =01,8=1,and 8 =15 Since 1/(f +8) = ,6 and 2/(# +8) = | 5. the
value of & {= ) lies between the former two values; it is thus a case of region V. The time
path P, will be charactenzed by damped oscillation,

Graphical Summary of the Results

The substance of Table 17.2, which contains as many as five dilfferent possible cases of o
specification, can be made much casier to grasp if the results are presented graphically.
Inasmuch as the o speeification involves essentially a comparison of the relaive magm-
tudes of the parameters o and {8 + &), et us plot & against (8 + &), as in Fig. 17.3. Note
that we need only concern ourselves with the positive quadrant because, by model specifi-
cation,  and {# + &) are both positive. From Tablc 17.2, it is clear that regions 1V and VI
are specified by the equations 6 = 1/(f + 8) and o = 2/(8 + 8), respectively. Since each
of these plots as a rectangular hyperbola, the two regions are graphically represented by the
two hyperbolic curves in Fig. 17.3. Onee we have the two hyperbolas, moreover, the other
three regions immediately fall into place. Region [T1, for instance, is merely the set of points
lying below the lower hyperbola, where we have o less than 1/(5 + 8). Similarly, region V
1s represented by the sel ol points falling between the two hyperbolas, whereas all the points
located above the higher hyperbola pertain to region VI

=

Region VI

3 [Region V|
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fo=1, #=1 and 8 =3, will our model (17.13) yield a convergent time path P;? The

Example 2 =1 , = A - e patl
——————  given parametric values correspond to peint Ain Fig. 17.3. Since it falls within region V, the
time path is convergent, though oscillatory.

You will note that, in the two models just presented, our analytical results are in cach
instance stated as a set of alternative possible cases —three types of oscillatory path for
the cobwebs, and five types of time path in the inventory model. This richness of analytical
results stems, of course, from the parametric formulation of the models. The fact that our
result cannot be stated m a single uncquivocal answer is, of course, a merit rather than a
weakness.

EXERCISE 17.5

1. In solving (17.14), why should formula (17.8) be used instead of (17.9?

2. On the basis of Table 17.2, check the validity of the transiatien from the b specification
to the o specification for regions IV through Vii.

3. If model (17.13) has the following numerical form:
Qg =21 - 2P
Qu=-3+6~
Pi1 = Pr—0.3(Qq ~ Q)
find the time path P, and determine whether it is convergent.

4. Suppose that, in model (17.13), the supply in each period is a fixed quantity, say,
Qs = k, instead of a function of price. Analyze the behavior of price over time. What
restriction should be imposed on k to make the solution economicaily meaningful?

17.6 Nonlinear Difference Equations—The
Qualitative-Graphic Approach

Thus far we have only utilized linear diffcrence equations in cur models; but the facts of
economic life may not always acquiesce to the convenience of linearity. Fortunately, when
nonlinearity occurs in the case of first-order difference-equarion models, there exists an
easy method of analysis that is applicable under fairly general conditions. This method,
graphic in nature, closely resembles that of the qualitative analysis of first-order difteren-
tial equations presented m Sec. 15.6.

Phase Diagram
Nonlinear difference equations in which only the variables v, and y; appear, such as
Y=y =5 oy t+siny—lny=3
can be categorically represented by the equation
-1 = fiy) (17.16)

where f'can be a function of any degree of complexity, as long as it 18 a function of y; alone
without ¢ as another argument. When the two variables y,.,1 and y; are plotted against each



