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CHAPTER 6

Laplace Transforms

The Laplace transform method is a powerful method for solving linear ODEs and
corresponding initial value problems, as well as systems of ODEs arising in engineering.
The process of solution consists of three steps (see Fig. 112).

Step 1. The given ODE is transformed into an algebraic equation (“‘subsidiary
equation”).
Step 2. The subsidiary equation is solved by purely algebraic manipulations.

Step 3. The solution in Step 2 is transformed back, resulting in the solution of the given
problem,

VP AP Solving Solution
Initial Value =1 Algebraic > AP of the
Problem @ Problem @ by Algebra ivp

Fig. 112. Solving an IVP by Laplace transforms

Thus solving an ODE is reduced to an algebraic problem (plus those transformations).
This switching from calculus to algebra is called operational calculus. The Laplace
transform method is the most important operational method to the engineer. This method
has two main advantages over the usual methods of Chaps. 1-4:

A. Problems are solved more directly, initial value problems without first determining
a general solution, and nonhomogeneous ODEs without first solving the corresponding
homogeneous ODE,

B. More importantly, the use of the unit step function (Heaviside function in
Sec. 6.3) and Dirac’s delta (in Sec. 6.4) make the method particularly powerful for
problems with inputs (driving forces) that have discontinuities or represent short impulses
or complicated periodic functions.

In this chapter we consider the Laplace transform and its application to engineering
problems involving ODEs. PDEs will be solved by the Laplace transform in Sec. 12.11.

General formulas are listed in Sec, 6.8, transforms and inverses in Sec. 6.9, The
usual CASs can handle most Laplace transforms.

Prerequisite: Chap. 2
Sections that may be omitted in a shorter course: 6.5, 6.7
References and Answers to Problems: App. 1 Part A, App. 2.
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6.1 Laplace Transform. Inverse Transform.
Linearity. s-Shifting

EXAMPLE 1

If f(r) is a function defined for all ¢ = 0, its Laplace transform® is the integral of £(f)
times e™* from r = 0 to o, It is a function of s, say, F(s), and is denoted by £(f); thus

o

8% Fs) = 2(f) = | ey ot

0

Here we must assume that f(f) is such that the integral exists (that is, has some finite
value). This assumption is usually satisfied in applications—we shall discuss this near the
end of the section.

Not only is the result F(s) called the Laplace transform, but the operation jusi described,
which yields F(s) from a given f(2), is also called the Laplace transform, It is an “integral
transform”

H@=Lmawwm

with “kernel” k(s, 1) = ¢,
Furthermore, the given function f(¢) in (1) is called the inverse transform of F(s) and
is denoted by £~X(F); that is, we shall write

(1%*) fo = L74@F).
Note that (1) and (1*) together imply L£~L(f)) = f and L(LY(F)) = F.

Notation

Original functions depend on ¢ and their transforms on s—keep this in mind! Original
functions are denoted by lowercase letters and their transforms by the same leffers in
capital, so that F(s) denotes the transform of f(¢), and ¥(s) denotes the transform of y(z),
and so on,

Laplace Transform

Let f(t) = | when ¢ 2 0, Find F(s).
Solution. From (1) we obtain by integration

o0 e

.&.P(f)=2(1)=f e““dr=—le““ L (s > 0).
(1} 5 o ¢

1PIERRE SIMON MARQUIS DE LAPLACE (1749-1827), great French mathematician, was a professor in
Paris. He developed the foundation of potential theory and made important contributions to celestial mechanics,
astronomy in generai, special functions, and probability theory. Napoléon Bonaparte was his student for a year.
For Laplace’s interesting political involvements, see Ref. [GR2], listed in App. 1.

The powerful practical Laplace transform techniques were developed over a century later by the English
electrical enginecer OLIVER HEAVISIDE (1850-1925) and were often called “Heaviside calculus,”

We shall drop variables when this simplifies formulas without causing confusion, For instance, in (1) we
wrote L(f) instead of L(f)(s) and in (1%*) £7Y(F) instead of L=y,
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EXAMPLE 2

THEOREM 1

PROOF

EXAMPLE 3

CHAP. 6 Laplace Transforms

Our potation is convenient. but we should say a word about it. The interval of integration in (1) is infinite,
Such an integral is called an improper integral and, by definition, is evaluated according to the rule

b

T
f e df = lim f e St (1) o,
0 T=eo Jg

Hence our convenient notation means

* 1 T 1 1 1
f e dr=lim |——e&®| =lim |—— T+ —°| = — (s > 0.
0 T s 0 T—ro 5 ¥ ¥
We shall use this notation throughout this chapter, |

Laplace Transform £{e™) of the Exponential Function e*
Let f(1) = ¢* when r = 0, where a is a constant. Find £(f).

Solution. Again by (1),

o oo

L eat) —_ f e st eat dr = g~k
0 a—s 0

1

hence, whens — a > 0,

Sle™) = ||

s—a

Must we go on in this fashion and obtain the transform of one function after another
directly from the definition? The answer is no. And the reason is that new transforms can
be found from known ones by the use of the many general properties of the Laplace
transform. Above all, the Laplace transform is a “linear operation,” just as differentiation
and integration. By this we mean the following.

Linearity of the Laplace Transform

The Laplace transforin is a linear operation; that is, for any functions f(t) and g(f) whose
transforms exist and any constants a and b the transform of af(t) + bg(f) exists, and

Llaf(t) + bg(H)} = a{f®)} + bE{g®)}.

By the definition in (1),

o

| etaft) + bg(o at
0

L{af@) + bgn)}

I

a f () dt + b f e~Sto(r) dt = aL{f(D} + bL{g(r)]. W
0 0

Application of Theorem 1: Hyperbolic Functions
Find the transforms of cosh af and sinh at.

Solution. Since coshar = 3¢ + ¢™%) and sinh at = (e® — %), we obtain from Example 2 and
Theorem |

1
P(cosh ar) = E(gg(ea‘) + L ) = %( " _1 - -il- a:) B
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EXAMPLE 4 Cosine and Sine

Derive the formulas

$cos wf) = 2

w
EGinw) = 5.
.5'2 + w

52+ o’

Solution by Calculus. We write L, = $(cos wt) and Ly = 2(sin wr). Integrating by parts and noting that the
integral-free parts give no contribution from the upper limit w, we obtain

oe — o
—st e ® e St s 1 w
L.=| e coswtdt=——coswi| — — e sipwrdt = — — —Lg,
o 5 o ¥ 4 s s
o _ %0
—st .: e i . * w —gt w
Ly = e sinwrdr= sinwf] + — e Ccoswtdt = —L,.
Q -5 0 & <4p K3

By substituting L into the formula for L, on the right and then by substituting L, into the formula for Lg on
the right, we obtain

L-~-2(2, wfir %)= L -

¢ g s \s¢) © 2] 5 ¢ 2+ o’
w1 ()] _ W _ w
= \T7 " T L) LAl + 3 )="=> Le="37

Solution by Transforms Using Derivatives. See next section.

Solution by Complex Methods. In Exampie 2, if we set a = iw with { =V —1, we obtain

| s+ iw s+ iw 5 . w
a = - 4 = = -!.—.'
s—iw (s —io)s+iw) 240 524 o 2+ o

;:E(e'fwt) =

Now by Theorem 1 and ¢*f = cos wt + f sin w? [see {11) in Sec. 2.2 with wr instead of {] we have
y

() = P(cos wf + i sin wi) = Llcos wf) + iL(sin wi),

If we equate the real and imaginary parts of this and the previpus equation, the result follows. (This formal
calcalation can.be justified in the theory of complex integration.) |

Basic transforms are listed in Table 6.1. We shall see that from these almost all the others
can be obtained by the use of the general properties of the Laplace transform. Formulas
1-3 are special cases of formula 4, which is proved by induction. Indeed, it is true for
n = 0 because of Example 1 and 0! = 1. We make the induction hypothesis that it holds
for any integer n = 0 and then get it for n + 1 directly from (1). Indeed, integration by
parts first gives

o2 oo

n+1
+ f e St ™ dr,
0 ) 0

=]

SB(tﬂ‘+1) — f g~ stmtl dt = — le—-stfrwl
0 A)

Now the integral-free part is zero and the last part is (n + 1)/s times £(+™). From this
and the induction hypothesis,

n+1 n+1 nl (n+ D!
S.B(tﬂ’) = Tl n+2 '

A) A) A) $

$(In+ 1) —

This proves formula 4.
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THEOREM 2

CHAP. 6 laplace Transforms

Table 6.1 Some Functions f{t) and Their Laplace Transforms £(f)

hie) £(f) f(@) ZL(f)
1 1 I/s 7 cos w! . A—
52 + w?
2 . w
2 t /s 8 sin wt 2 o
5
3 i 21/5° 9 cosh at g
" n! . a
4 (n=0,1, -1 sy 10 sinh at 2 2
I T'(a + 1) R s—a
5 (a positive) TS 11 e** cos wt G-+ &
6 e” 1 12 e® sin wt o
s—a (s — a)? + o

I'(a + 1) in formula 5 is the so-called gamma function [(15) in Sec. 5.5 or (24) in
App. A3.1]. We get formula 5 from (1), setting st = x:

0 0 \) S 5

lea]

j{; e “x%dx

where s > 0. The last integral is precisely that defining I'(a + 1), so we have
T'(a + 1)/s%*}, as claimed. (CAUTION! I'(a + 1) has x® in the integral, not x**1.)
Note the formula 4 also follows from 5 because I'(n + 1) = n! for integer n = 0.
Formulas 6-10 were proved in Examples 2-4. Formulas 11 and 12 will follow from 7
and 8 by “shifting,” to which we turn nexi.

s-Shifting: Replacing s by s — a in the Transform

The Laplace transform has the very useful property that if we know the transform of f(7),
we can immediately get that of e**f(¥), as follows.

First Shifting Theorem, s-Shifting

If £(t) has the transform F(s) (where s > k for some k), then e*“f(t) has the transform
F(s — a) (where s — a > k). In formulas,

L{ef(1)} = F(s — a)
or, if we take the inverse on both sides,

e“f(t) = LHF(s — a)).
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PROOF

EXAMPLE 5

We obtain F(s — a) by replacing s with s — @ in the infegral in (1), so that

o 0

Fis=a)= | e fydr = | eef(o] dt = LleFO)).

If F(s) exists (i.e., is finite) for s greater than some %, then our first integral exists for
s — a > k. Now take the inverse on both sides of this formula to obtain the second formula
in the theorem. (CAUTION! —a in F(s — q) but +a in €*f().) |
s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 11 and 12 in Table 6.1,

i L{e® sin wr) = °
s —a)P + o " s—aP+ o’

Pl cos wt} =

For instance, use these formulas 1o find the inverse of the wansform

3s — 137
52 + 25 + 401

£ =

Solution. Applying the inverse transform, using its linearity (Prob. 28). and completing the square, we obtain

f—sg—l{m“’-"‘o}—g;ﬁ-l{ s+ 1 }-—752-1{ 20 }
(s + 1) + 400 (s + 1) + 202 (s+ D% +20% "

We now see that the inverse of the right side is the damped vibration (Fig. 113)

£ = 753 cos 201 — 7 sin 207). |

i {\.[\/.\f\ll\nf\m,

o] | los l\j \jisJ 20 \V2k Yo~ ¢

A
! |
-

Fig. 113, Vibrations in Example 5

Existence and Uniqueness of Laplace Transforms

This is not a big pracfical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A function f(f) has a Laplace transform if it does not grow too fast, say, if for all
t = 0 and some constants M and k it satisfies the “growth restriction”

2 If()] = me™.
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(The growth restriction (2) is sometimes called “growth of exponential order,” which may
be misleading since it hides that the exponent must be kt, not kt? or similar.)

f(®) need not be continuous, but it should not be too bad. The technical term (generally
used in mathematics) is piecewise continuity. f(1) is piecewise continuous on a finite interval
a =t = b where f is defined, if this interval can be divided into finitely many subintervals
in each of which f is continuous and has finite limits as # approaches either endpoint of such
a subinterval from the interior. This then gives finite jumps as in Fig. 114 as the only possible
discontinuities, but this suffices in most applications, and so does the following theorem.

A\
No b

)
| a 4

Fig. 114. Example of a piecewise continuous function f(t).
(The dots mark the functlon values at the jumps.)

THEQREM 3 Existence Theorem for Laplace Transforms

If f(D) is defined and piecewise continuous on every finite interval on the semi-axis
t = 0 and satisfies (2) for all t Z 0 and some constants M and k, then the Laplace
transform ZL(f) exists for all s > k.

PROOF Since f(t) is piecewise continuous, e~ f(t) is integrable over any finite interval on the
t-axis. From (2), assuming that s > & (to be needed for the existence of the last of the
following integrals), we obtain the proof of the existence of £(f) from

12| = u

[ erwya| = [ (fletdrs | Meetar =
0 0 0

s—k’

Note that (2) can be readily checked. For instance, cosh + < &, t* < nle* (because t™/n!
is a single term of the Maclaurin series), and so on. A function that does not satisfy (2)
for any M and k is et (take logarithms to see it). We mention that the conditions in
Theorem 3 are sufficient rather than necessary (see Prob. 22).

Uniqueness. If the Laplace fransform of a given function exists, it is uniquely
determined. Conversely, it can be shown that if two functions (both defined on the positive
real axis) have the same transform, these functions cannot differ over an interval of positive
length, although they may differ at isolated points (see Ref. [A14] in App. 1). Hence we
may say that the inverse of a given transform is essentially unique. In particular, if two
continuous functions have the same transform, they are completely identical.

ROBLEEM—SET 6. F— —

1-20 LAPLACE TRANSFORMS 3. cos 24t 4. sin2 4¢
Find the Laplace transforms of the following functions. 5. e coshi ¢ 6. ¢t sinh 5t
Show the details of your work. (@, b, k, @, 8 are constants.) 7. cos (w! + 6) 8. sin (3t — 3)

1. 72 — 2¢ 2. (12 — 3)2 9, g3¢—2b 10. —8 sin 0.2¢
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28. (Inverse transform) Prove that £ is linear. Hint.
Use the fact that £ is linear.

29-40| [INVERSE LAPLACE TRANSFORMS
Given F(s) = £(f), find f(#). Show the details. (L, n, k, a,

11, sin ¢ cos 7 12, (+ + 1)®
13. 14.
k—— k- —
l | |
. ,' ! !
b e b
1s. | 16.

17. 18.

c-l —— —

—
— =
ol

-1+ —_—

21. Using £(f) in Prob. 13, find £(f,), where f1(f) = 0 if
1=2and fy(f) = 1 if t > 2.

22. (Existence) Show that L(1/VH = Vais. [Use
(30) I'@) = Varin App. 3.1.] Conclude from this that
the conditions in Theorem 3 are suffictent but not
necessary for the existence of a Laplace transform.

23. (Change of scale) If 2(f(1)) = F(s) and ¢ is any
positive constant, show that L(f(cr)) = F(s/c)/ec. (Hint:
Use (1).) Use this to obtain ¥(cos wf) from £(cos 7).

24. (Nonexistence) Show that ¢ does not satisfy a
condition of the form (2).

25. (Nonexistence) Give simple examples of functions

(defined for all x 2 0) that have no Laplace transform.
26, (Table 6.1) Derive formula 6 from formulas 9 and 10,
27. (Table 6.1) Convert Table 6.1 from a table for finding

transforms to a table for finding inverse transforms (with
obvious changes, e.g., £71(1/5s™) = 1™ Y(n — 1)}, etc.).

b are constants.)

29 4 — 34 30 2s + 16
st 4P 52— 16
st =32+ 12 10
31. 32, —————
s° 25 + V2
33 narl. 34 20
YL 4 p2qR T s+ 4)
8 Lk + 1)2
3s. \ —_
> $? + ds 36k_1 s + k2
37 1 18¢ — 12
T s = VI + V5) 952 — |
39 1 L 40 !
T s24+5 s+5 T (s+a)(s+ b
41-34| APPLICATIONS OF THE FIRST SHIFTING

THEOREM {s-SHIFTING)

In Probs. 4146 find the transform. In Probs. 47-54 find
the inverse trans{form. Show the details.

41. 3.81e24t
43. 5¢7% gin wt

45. e ®(a cost + b sin 1)

42. —3t%e™ 05
44. ¢~ cos 7t

46. e-t(ﬂo -+ ﬂ]_f + -+ Cl,ntn)

. 8. ——
Tos— 1)3 C (s + P
—6
9, — Y8 50, ——
(s + V2)3 (s— 1 +4
15 4 — 2
S1. 52+ 45 + 29 52. s2 — 65 + 18
5 T s 25 — 56
* 2+ 107s + 2472 "2 — 45— 12

6.2 Transforms of Derivatives and Integrals.

ODEs

The Laplace transform is a method of solving ODEs and initial value problems. The crucial
idea is that operations of calculus on functions are replaced by operations of algebra
on transforms. Roughly, differentiation of f(#) will correspond to multiplication of £(f)
by s (see Theorems | and 2) and integration of f(f) to division of £L(f) by 5. To solve
ODEs, we must first consider the Laplace transform of derivatives.
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THEOREM 1

PROOF

THEOREM 2

EXAMPLE 1

CHAP. 6 Laplace Transforms

Laplace Transform of Derivatives

The transforms of the first and second derivatives of f(t) satisfy

¢)) L) = sL(f) — F(0)
) L(f"y = s2L(f) — sf©O) — F(0).

Formula (1) holds if f(?) is continuous for all t = 0 and satisfies the growth restriction
(2) in Sec. 6.1 and ' (1) is piecewise continuous on every finite interval on the semi-
axis t = 0. Similarly, (2) holds if f and f' are continuous for all t = 0 and satisfy
the growth restriction and f' is piecewise continuous on every finite interval on the
semi-axis t 2 0.

We prove (1) first under the additional assumption that f' is continuous. Then by the
definition and integration by parts,

o0

+ Q) dt.
; sj;e f() dt

oo

L(F') = f..-, e (1) dt = [e=*Hf(0)]

Since f satisfies (2) in Sec. 6.1, the integrated part on the right is zero at the upper limit
when s > k, and at the lower limit it contributes —f(0). The last integral is ££(f). It exists
for s > k because of Theorem 3 in Sec. 6.1. Hence L(f') exists when s > k and (1) holds.
If f' is merely piecewise continuous, the proof is similar. In this case the interval of
integration of ' must be broken up into parts such that f' is continuous in each such part.
The proof of (2) now follows by applying (1) to " and then substituting (1), that is

L(F) = sLf') — £'(0) = s[sL(f) — FO = s*2(f) — sf(0) — F'(0). o

Continuing by substitution as in the proof of (2) and using induction, we obtain the
following extension of Theorem 1.

Laplace Transform of the Derivative f ") of Any Order

Let f, f', -+, £V be continuous for all t = 0 and satisfy the growth restriction
(2) in Sec. 6.1. Furthermore, let f™ be piecewise continuous on every finite interval
on the semi-axis t Z 0. Then the transform of £ satisfies

3) FEF™) = s"L(F) — H0) — s20) — - - - — FI0).

Transform of a Resonance Term (Sec. 2.8)

Let f(t) = £sin wr. Then fX0) = 0. f'(1) = sin wr+ wrcos wr, f'(0) =0, f’ = 2w cos wr — wt sin wt. Hence
by (2),

§

2ws
e’y =2
() = 2w N

(s + wz)2 )

— W2L(f) = s2L(P), thus L(f) = L(r sin wt) = |

wz
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EXAMPLE 2

THEOREM 3

PROOF

EXAMPLE 3

Formulas 7 and 8 in Table 6.1, Sec. 6.1
This is a third derivation of $(cos wi) and ¥(sin wi); cf. Example 4 in Sec. 6.1. Let f(z} = cos wt. Then
FO)Y=1,71(0) =0, F() = — & cos wt. From this and (2) we obtain

M= 2PFy — 5 = — P ¢ -5
BfY=5%(f) — s = 2L(f). By algebra, $E(cos wi) = 2. 2

Similarly, let g = sin wz. Then g(0) = 0, g’ = w cos wt. From this and (1) we obtain

L’y = s8(g) = wE(cos wi). Hence  &(sin wh) = %)-33(003 wl) = sszwE .

Laplace Transform of the Integral of a Function

Differentiation and integration are inverse operations, and so are multiplication and division.
Since differentiation of a function f(f) (roughly) corresponds to multiplication of its
transform £(f) by s, we expect integration of f(#) to correspond to division of £(f) by s:

Laplace Transform of Integral

Let F(s) denote the transform of a function f(f) which is piecewise continuous for
t 2 0 and satisfies a growth restriction (2), Sec. 6.1. Then, for s > 0, s > k, and
1> 0,

t t
4) f.ﬂ{j;f(f) dq-} = %F(s), thus J;f('r) dr = EB‘I{%F(S)} .

Denote the integral in (4) by g(#). Since f(f) is piecewise continuous, g{f) is continuous,
and (2), Sec. 6.1, gives

t £
lg(t)] = = f f(D dr=M f b dr = -ﬂ—/f—(ek* -1 = 2 et (k > 0).
0 0 k

k

fo t) dr

This shows that g(£) also satisfies a growth restriction. Also, g'() = f(f), except at points
at which f(#) is discontinuous. Hence g'(f) is piecewise continuous on each finite interval
and, by Theorem 1, since g(0) = 0 (the integral from 0 to 0 is zero)

i} = L'} = sL{g®) — 5(0) = sL{gM)}.

Division by s and interchange of the left and right sides gives the first formula in (4),
from which the second follows by taking the inverse transform on both sides. |

Application of Theorem 3: Formulas 19 and 20 in the Table of Sec. 6.9

1
Using Theorem 3, find 'the inverse of —5——=— and ——5——5— .
& s(.s‘2 -+ wz) .92(3»'2 + w2)

Solufion. From Tabie 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged)
we obtain

t
1 sin w!? 1 sin wr 1
.S'2 - (02 w s(.$'2 <4 &)2) o @ d'r (02 (l COs wt).
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This is formula 19 in Sec. 6.9. Integrating this result again and using (4) as before, we obtain formula 20 in
Sec. 6.9:

52—1{ 1 } 1 J‘ t(l . T sin wr ° ! sin wt
5. 5 5. = ~ 5 - co dr=|—5——%| =—5 - .
s2(s2 + wz) w? o s @) o @ o o o

It is typical that results such as these can be found in several ways. In this example, try partial fraction
reduction.

Differential Equations, Initial Value Problems

We shall now discuss how the Laplace transform method solves ODEs and initial value
problems. We consider an initial value problem

(5) y' 4+ ay’ + by = r(v), ¥0) = Ko, y'(0) = Ky

where a and b are constant. Here r(¢) is the given input (driving force) applied to the
mechanical or electrical system and y(?) is the output (response to the input) to be obtained.
In Laplace’s method we do three steps:

Step 1. Selting up the subsidiary equation. This is an algebraic equation for the transform
Y = %(y) obtained by transforming (5) by means of (1) and (2), namely,

[s2Y — sy(0) — y'(0)] + alsY — 0)] + bY = R(s)
where R(s) = Z£(r). Collecting the ¥-terms, we have the subsidiary equation

(52 + as + b)Y = (s + a)y(0) + ¥y’ (0) + R(s).

Step 2. Solution of the subsidiary equation by algebra. We divide by s2 + as + b and
use the so-called transfer function

1 1
s>+as+b (s+3a)?+b—3d®"

(6) Q) =

(Q is often denoted by H, but we need H much more frequently for other purposes.) This
gives the solution

7 Y(s) = [(s + a)y(0) + y'(®]Q(s) + R()Q(s).

If y(0) = y'(0) = 0, this is simply ¥ = RQ; hence

_ ¥ _ (output)
Q= R L(input)

and this explains the name of Q. Note that Q depends neither on r(f) nor on the initial
conditions (but only on a and b).

Step 3. Inversion of Y to obtain y = £71(¥). We reduce (7) (usually by partial [fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution y(r) = £~X(¥) of (5).



SEC. 6.2 Transforms of Derivatives and Integrals. ODEs 231

EXAMPLE 4 Initial Value Problem: The Basic Laplace Steps

Solve
Yy —y=t »0) =1, y'(©) =1

Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation {with ¥ = £(y)]
$2Y = sy(0) — ¥ (0) = ¥ = I/, thus (- DY =s+1+ 112

Step 2. The transfer function is Q = [/(32 — 1), and (7) becomes

s+ 1 + 1
52— 1 s2-1)

1
Y=(s+l)Q+?"Q=

Simplification and partial fraction expansion-gives

Step 3. From this expression for ¥ and Table 6.1 we obtain the solution

I
} - Sﬁ_l{'—z'} = ¢* + sinht — 1.
5

yn=2lm= sg-l{s_' I}+.s£‘1{ 21

s“=1
The diagram in Fig. 115 summarizes our approach. |
t-space s-space
Given problem “Subsidiary equation:
¥y -y=t ——— (2-1)Y=s+1+ Us?
H0)=1
¥(0) =1

¥

Soldition-of given probiem | Solution:of subsidjary equation
yl) =etFsinht—¢ & ) S S 3

Fe-1ts2-1 &2

Fig, 115. Laplace transform method

EXAMPLE 5 Comparison with the Usual Method
Solve the initial value problem
y'+y +9y=0, 3(0) = 0.1, ¥'(0) = 0.
Solution. From (1) and (2) we see that the subsidiary equation is
s2Y — 0,165 + s¥ — 0.16 + 9Y = 0, thus %+ 5+ DY =016(s+ 1)

The solution is
_ 016+ 1) 0.16(s +3) + 0.08

Phs+9 (@ +HZP+F

Hence by the first shifting theorem and the formulas for cos and sin in Table 6.1 we obtain

35 0.08 35
N = ¢p—l = —t/2 \ —_— A —— si —_—
=2 "(¥)=e 016cos,(4t %\/ﬁsm =
= ¢~ 090,15 cos 2.961 + 0.027 sin 2.961).

This agrees with Example 2, Case (ITI) in Sec. 2.4. The work was less. o
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Advantages of the Laplace Method

1. Solving a nonhomogeneous ODE does not require first solving the
homogeneous ODE. See Example 4.

2. Initial values are automatically taken care of. See Examples 4 and 5.

3. Complicated inputs r(f) (right sides of linear ODEs) can be handled very
efficiently, as we show in the next sections.

EXAMPLE 6 Shifted Data Problems

This means initial value problems with initial conditions given at some 7 = tp > 0 instead of ¢ = 0. For such
a problem set ¢t = T + 1g, so that 1 = 1y gives I = 0 and the Laplace transform can be applied. For instance,
solve

y 4+ y=2 yGm) = im, _}r'(%vr)=2-‘\/§.
olution. We have ty = 27 and we set t = [ + 27 Then the problem is
Solution. We have ty = i and 17 Then the probl

F' 4§ = 27+ Im), %0) = 1w, 7(O0) =2 —-V2

where (%) = y(z). Using (2) and Table 6.1 and denoting the transform of ¥ by ¥, we see that the subsidiary
equation of the “shifted” initial value problem is

s2Y~—s-§-n-—(2—\/i)+Y=—2-+T, thus (32+I)Y=32+T+-§ws+2—V§.
by
Solving this algebraically for ¥, we obtain

2 i las 2 - V2

Y= + + +
G2+ D2 P+ Ds 2+l 2+

The inverse of the first two terms can be seen from Example 3 (with @ = 1), and the last two terms give cos
and sin,
F=9L"Y¥) =207 —sinT) +im(l — cosT) + FmweosT + (2 — V2)sinT

=2F + 4w — V2sinT.

~ R ‘[ -
Nowf=1—tmsinf= v-,)-(sm t — cos 1), so that the answer (the solution) is

y =2t — sint + cost. ]

-PROBLEM SET-6-2-- - -

1-8| OBTAINING TRANSFORMS BY expressing cos®?2t in terms of cos?, (b) by using
DIFFERENTIATION Prob. 3.

Using (1) or (2), find £(f) if (7) equals: 10-24] INITIAL VALUE PROBLEMS

1. tekt 2. t cos 5t

3 ? 2 CC;S Solve the following initial value problems by the Laplace

. sTn 2“” 4. cos 2’";: transform. (If necessary, use partial fraction expansion as

5. sinh® af 6. cosh® 5t in Example 4. Show all details.)

7. t sin kart 8. sin®* ¢ (Use Prob. 3.) 10. y' + 4y = 0, y(0) = 2.8

9. (Derivation by different methods) It is typical that 11. }” + %}’ = 17 sin 2z, y(0) = —1

various transforms can be obtained by several methods, 12. " — y' — 6y =0, ¥y0) = 6,

Show this for Prob. 1. Show it for $(cos?31) (a) by y'(0) = 13



