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Definition 2.4  Given € > 0, a metric space (X, p) is said to be e-chainable if

and only if given u,v € X there is an e-chain from w and v, i.e., there exists a finite
set of points zg,1,...,2, with v = 25 and v = 2, such that plai_1,2;) < e for all
1=1,2,...,n.

~ A set-valued mapping T': (X, p) — CB(X) is said to be (e, a)-uniformly locally
contractive with ¢ > 0 and 0 < o < 1 provided that MT(x), T(y)) < ap(z,y)
whenever z,y € X with p(z,y) <e.

Theorem 2.29  Let (X, p) be a complete e-chainable metric space and T : X —

K(X) an (¢, a)-uniformly locally contractive set-valued mapping. Then T has g
fized point.

Proof. For any z,y € X x X, we define

mn
pe(z,y) = inf{Zp(i??i—l,ﬂfi) ' Ty =I,Z1, - .Typ = Y 15 an e-chain from z to y}.
i=1

We can easily verify that pe is a metric on X. p. also satisfies

(2.7.3) p(z,y) < pe(z,y) forall z.ye X;
aﬁd
(2.7.4) plz,y) = pe(z,y) for all z,y€ X: with p(x,y) <e.
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(2.7.3) follows from the triangle inequality:
o2, y) € pla, 1) + p(x1,72) + -+ + AlZncrs Tn). -

It also follows from (2.7.3), (2.7.4) and the completeness of (X, p) that (X, pe) is
complete. Let A, be the Hausdorff metric on K(X) derived from p.. We can easily
see that if A, B € IK{(X) such that h(A, B) < € then h(A, B) = h(A, B). Now we
will show that T : X — K(X) is a sct-valued contraction mapping of (X, p.) into
(K (X),he) with contraction constant a. Let @,y € X and zo = z,21,...,2p =y
be an e-chain from x to y. Since p(ri—y, 7)) <eforalli=1,2...,n, we have

h{T(xi-1): T(z:)) € 6p(%i—y. %) <€ forall i=1,2...,n.

Hence
he(T'(x), T(y)) < Zhe(T(wm),T(wi)) = Zh(T(ri-l),T(xi)) <a.
i=1 i=1

Now since ©y = z,z1,...,Z, = y is an arbitrary e-chain, it follows that
he(T(x),T(y)) < ape(z,y) for all z,y € X. Thus T is a set-valued contraction
mapping of (X, p,) into (K(X), he) with contraction constant «. Hence by Theo-
rem 2.28, T has a fixed point. O

Remark 2.20  Similar results for a single-valued mapping was first obtained by
Edelstein (1961).

Definition 2.5 Let X and Y be topological spaces and T : X — 2¥ a set-valued
mapping with T(z) # 0 for each z € X, ie, T : X — 2V \ {#}. T is said to be
upper semi-continuous at 2o € X if given an open set GG containing f(zq¢), there |
exists an open neighborhood U(zg) of xg such that T(U(zo) C G, where for any
subset A of X, T(A) = UgeaT(z). T is said to be upper semi-continuous if T is
upper semi-continuous at each point z € X.

A set-valued mapping T : X — 2¥ \ {0} is said to be lower semi-continuous
at zp € X if given an open set G in Y with T(xzo) N G # 0, there exists an open
neighborhood U(zo) of Zo such that T(z) N G # 0 for each z € U(zy). T is said to

be lower semi-continuous if 7" is lower semi-continuous at each point z € X.

Lemma 2.18  Let X and Y be non-empty sets and T : X — 2Y\ {0} a set-valued
mapping. Then for any non-empty set A of Y,

X\ {UyeaT ')} = {z € X : T(z) CY \ A}.
Proof. Let u belong to the left-hand side (of the above expression). Then u ¢

T-1(y) for any y € A. This implies that y & T(u) for any y € A. Thus T'(u) C Y\ A

ich impli he right-hand side.
h implies that u belongs to t
Whllc\Tejlct fet » belong to the right-hand side. Then T(u) C Y \ A. It follows that

w i T-1(y) for any y ¢ A. This implies that u € UyeaT1(y); i.e., u belongs to the
left-hand side. o
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~ For any subset A of Y, let T, (A) = {z e X:T(z)nA#0}.
Lemma 2.19  For any subset A of Y, T4 (A) = UyeAT_](y).

Proof. Let x € A. Then T(z)N A # 0. Let y € T(z) N A. This implies that
z €T Yy) withy € A, ie., 2 € T™Hy) C UyeaT (y). Next, let u € Uye aT™(y).
Then u € T 1(y) for some y € 4, i.e., y € T'(u) with y € 4, i.e., u € T, (A). O

Theorem 2.30  Let X and Y be topological spaces and T : X — 2¥ \ {0} a
set-valued mapping. Then the following statements are equivalent:

(a) T is upper semi-continuous;

(b) For each open set G inY, T*(G) = {z € X : T(z) C G} is open in X

(c) For each closed set F in'Y, T~YF) = UyerT ™ (y) is closed in X, where
T-1(y) = {a € X :y € T(x)),

(d) For each z € X and every net {zs : 6 € D} in X converging to x, and each
open set G in'Y with T(z) C G, T(xs) C G eventually, i.e., T(zs) C G for
all 69 > & for some §y € D.

Proof. First let (a) hold. Let G be an open set in Y and zg € TT(G). By upper
semicontinuity of T at zg, there exists an open neighborhood U (zo) of z¢ such that
T(U(zo)) C G. Hence U(zg) C T*(G) and hence T*(G) is an open set. Thus (a)
implies (b).

Now let T+ (G) be open for every open set G in V. Let zg € X and G be an open
set: containing T'(zo). T*(G) is an open neighborhood of z¢ and T(T*(G)) C G.
Hence T is upper semicontinuous at zg. Since zg is arbitrary, (b) implies (a). That
(b) <= (c) is evident from Lemma 2.18.

Now we prove that (b) implies (d). Let {z5 : § € D} be a net converging to
z € X and G an open subset of ¥ with T'(z) C G. Then by (b), T*(G) is open and
z € TH(G). Since zs — x, x5 € TH(G) eventually. Hence T'(zs) C G eventually.

Finally, we prove that (d) implies (b). Let H be an open set in V. If possible, let
T*(H) be not open. Then there is a point zp € X such that zq € T+ (H) is not an
interior point of T (H). Let Dy = N (zy) be the system of all open neighborhoods
of 2. Then Dy ordered partially by inclusion is a directed set. We choose xs € Dy
such that zs ¢ 77 (H). This is possible as zg is not an interior point of THH).
Evidently {z5 : § € Do} is a net converging to zo and T(x) C H. Hence by (d),
T(zs) C H eventually, which contradicts the fact that z5 ¢ T+(H) for all § € Dy.

O

Theorem 2.31 Let X and Y be lopological spaces and T : X — 9 \ {0} «a
set-valued mapping. Then the following statements are equivalent:

(a) T is lower semi-continuous;
(b) For each open set G inY, T+(G) is open in X ;
(c) For each closed set F in Y, TH(F) is closed in X;
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(d) For each z € X and each net {z5:6 € D} in X converging to z, and each
open set G in Y with T(z) NG # 0, T(zs)NG # 0, ie., T(xzs)NG # 0 for
all 6 > 8¢ for some 6y € D.

Proof. Let (a) hold. Let G be an open set in Y and z, € T+(G). By the lower
semi-continuity of T at zg, there exists an open neighborhood U(zgp) of zy such
that T(2) N G # 0 for cach 2 € U(ay), i.c., U(zo) C T4 (G). Hence T4 (G) is open
in X. Now by virtue of Lemma 2.19, UyeaT~(y) is open. Thus (a) implies (b).
We now suppose that (b) holds. Let zo € X and G be an open set in Y such
that T'(zo) N G # @. Then zq € T4(G). Hence by virtue of Lemma 2.19 and (b),
T4(G) = UyecT~}(y) is an open neighborhood of zo in X. It follows that 7" is is
lower semi-continuous at z¢. Thus (b) implies (a).

Now that (b) <= (c) follows from the Lemma 2.18. Finally, by giving similar
argument as given in Theorem 2.30 we can prove that (b) implies (d). O

Theorem 2.32  (a) Let X and Y be topological spaces with Y a Tz space and
T:X —2Y\ {0} a set-valued upper semi-continuous mapping with closed values.
Then the graph T = G(T) = {(z,y) e X x Y : y € T(x)} is closed.

(b) Let X and Y be topological spaces with ¥ compact and T : X — 2V \ {0}
a set-valued mapping with closed graph (i.c., G(T) is closed). Then T is upper
semi-continuous.

Proof. (a) Let {(x5,ys5) : 6 € D} be a net in G(T') converging to (z,u). If possible,
let (z,u) & G(T), ie., u & T(z). Since T'(z) is closed and Y is T3, there exist open
sets G; containing u and G, containing T'(x) with G; N G, = 0. Now since T is
upper semi-continuous, by Theorem 2.30 (d), T(zs) C Ga eventually. But since
ys € T(zs) for each § € D, y5 € G ventually. This contradicts the fact that Ys — u
asu € Gy and G NGe =0.

(b) If possible, let T be not upper semi-continuous at a point x € X. Let
{zs : 0 € D} be a net converging to z. Then there must exist, by Theorem 2.30 (d),
at least one open set G in Y with f(z) C G such that T(zs5) ¢ G eventually. We
can choose a subnet {zs : 46" € D'} of the net {z5:6 ¢ D} such that T(zs) ¢ G -
for each ¢’ € D’. For this we can select ug from each T(z4) such that us & G,
Now since G’ is compact, {ug : 8’ € D’ }”has a subnet {ugn 18 € D"} converging
to a point u € G'. Clearly, {(zs/,us" : § € D”} is a net in G(T') which converges
to (z,u) € G(T)asu g T(z) CG. O
Theorem 2.33  Let X and Y be topological spaces, T : X — K(Y) a set-valued
upper semi-continuous, mapping and K a compact subset of X. Then TR =
Uzex T () is a compact subset of Y.

Proof. Let {G, : « € I} be an open covering of T(K). Then for a € I, there
exists an open set Hy in Y such that Go = T(K) N H,. For cach z € K, T(z)
being compact is covered by a finite number of H,, say Hioes v Blissaenss H,, with

UI;]_ Ha:‘ D T(.’L‘).
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We set Hy = ([, Ha,. Then {T*(H,) : 2 € K} is an open covering of K. Since
K is compact, there is a finite subcovering T*(H,,), Tt (Hy,), ..., TH(Hy, ) of K.
It follows that {H, : i = 1,2,...,n} cover T(K) and ;- Gz, = U=, (Hz.N(K)) =
T(K). Hence {Gz, :i =1,2,...,n} is a subcover T'(K). m]

Theorem 2.34  Let X and Y be topological spaces, T : X — 2V \ {0} a set-valued
upper semi-continuous (or lower semi-continuous) mapping, I is a connected subset
of Y and T'(z) is a connected subset of Y for each x € K. Then T(K) is a connected

subset of Y.

Proof. If possible, we suppose that T'(/{) is not connected. Then there are two
disjoint non-empty open subsets Gy and Gy of T(K') such that T(K) = G; N Ga.
Hence there exist two non- empty open subsets H; and Hy of Y such that G| =
H\NT(K)and G, = HoNT(K). Thus T(K) C H,U H,. By upper semi-continuity
of T', T*(H;) and T (H,) are open sets of X. Let z € K, then T'(z) C HyUH,. But
since T'(z) is connected, it follows that T'(z) is contained in either H; or in Hz. Thus
K C T*(H,)UT*(H3). Obviously, T*(H) N TH(H) = 0 and K NTH(H,) # 0
and K NT*(H,) # 0. Thus K is not connected, which is a contradiction. Hence
T'(K) must be connected. O

For the proof in the case of lower semi-continuity, we refer to Klein and Thomp-
son (1984, p. 90).

Theorem 2.35  Let X, Y and Z be topological spaces, and Ty : X — 2¥\ {0}
and Tp : Y — 22\ {Q} are set-valued upper semi-continuous mappings. Then the
set-valued mapping T : X — 2%\ {0} defined by T = Tp 0o Ty = To(T1(z)) is upper
semi-continuous.

Proof. Let G be an open subset of G. Then TT(G) = (T, o T1)7(G) = {z € X :
(TooTh)(z) C G} ={z € X : Th(z) C T,/ (G)} = T}/ [T, (G)] is an open subset of
X. Hence T is upper semi-continuous. O

2.7.1 End Points

Definition 2.6  For set-valued mapping T : X — 2%\ {}, a point zg € X us
said to be en end point of T if T(zo) = {zo}. Let X be a topological space. Then
an upper semi-continuous set-valued mapping 7 : X — 2%\ {#} with closed values
is said to be a topological contraction if, for each non-empty closed subset A of X
with T(A) = A, A is a singleton set, i.e., A is an end point of 7.

Theorem 2.36  Let X be a compact Hausdorff topological space and T : X —
2%\ {0} a set-valued topological contraction. Then T has a unique end point g€ X
such that {zo} = Mheo T™(X), where T*(X) = X and T™(X) = T(T"~Y(X)) for
=y Ly

Proof. Foreachn =0,1,2,..., let Fy, = T™(X). Since T is upper semi-continuous
with closed (and hence compact) values, by Theorem 2.33 F,, is compact for each
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