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Let us assume that there exist constants ¢ > 0 and > 0 such that

Yy € B(F(),m) N Ma, By C of'(2)(Bx) — Tos,(3)

Then  belongs to Liminf, .00 f~1(My) and a similar statement holds
true for upper limits.

This result is contained in the following, more general,

Theorem 1.2.9 Lel X and Y be two Banach spaces, We consider
o sequence of closed subsets My, C Y and a map f : X — Y dif
ferentiable on a neighborhood U of f~(Liminfy_.ooMy) (respectively
FY(Limsup,,_,,oMy)) such that the derivatives f'(z) are uniformly
bounded on U. Let us assume that there exist constants ¢ > 0 and
1 > 0 such that for every z € U,

¥ ya € B(£(z),n) N My, By C cf'(z)(Bx) ~ Ti, (tn)

Then
Liminfpoo f 1 (Mn) = f~}(Liminf, o M,)

Tespectibely
Limsupnqu_l(Mn) = f—l(LimsuPn-—vooMn)

We postpone the proof of the last theorem to Chapter 3.

1.3 Set-Valued Maps

Sequences of subsets can be rega:ded as set-valued maps defined on
the set IN of integers.

Naturally, we can replace N by a metric (or even, topalogical)
space X, and sequences of subsets n ~» K, by set-valued .Inaps T~
F(z) (which associates with a point = a subset F(z)) and adapt the

definition of upper and lower limits to this case, called the continuous
case.
. Before proceeding further we recall in thls sect _11 t e'basm de'
nitions deahng with set-valied maps, , also called multqfunctwns mﬂl-
tivalued functions, point to set maps or correspondences
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4. 7 . | g .._1- Contmmty ofSet-VaJued Maps

Deﬁnitibn 1.3. 1 Let X and Y ‘be metnc spaces A set-'ualued map

CFfromX oY’ zs chamctemed by: it graph Gruph(F), the subset

of the pr'oduct space X XY deﬁned by .~
: Graph(F) {(a:, y) € X xY|y € F(:c)}

We shall say that F(:n) is the image or the value of F at z.

A set-valued map is said to be nontrivial if its graph is not empty,
i.e., if there exists at lea.st an element z € X such that F(z) 1s not
empty.

We say that F is stnct 1f all images F( ) are: nat empty The
domain of F is the subset of elements z € X such that F(z) is not
emply: *

! Dom(F) = {z € X | F(z) # 0}

The image of F is the union of the images (or values) F(z), when
ranges over X:
= U Fla)

zeX ’
The inverse F~! of F is the set-valued map from Y to X defined by

#kr:n €EFy) <= yeFz) < (z,y) € Graph(F)

#3 The domain of F is thus the i image of 7! and coincides with the
projection of the graph onto the space X and, in a symmetric way,
the image of F' is equal to the domain of F~! and to the projection
of the graph of F onto the space V.

If K is a subset of X, we denote by F|x the restriction of F to
K, defined by

Fli(z) ;={ Fgf) g

Let P be a property of a subset (for instance, closed, convex,
etc..) Since we shall emphasize the symmetric interpretation of a
set-valued map as a graph (instead of a map from a set to another
one), we shall say as a general rule that o set-valued map satisfies
property P if and only if its graph satisfies it.

For instance, a set-valued map is said to be closed (respectively
convex, closed convex, measurable, monotone, maximal monotone)
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- if and only if its graph is closed (respectively convex, closed convex,

©7 2 measurable, monotone, maximal monotone.):

' If the images of a set-valued map F are closed, convex, bounded
compact, and so on, we say that F is closed-valued,. convez:-valued,
bounded-valued, compact-valued, and so on.

When * denotes an operation.on subsets, we use the same nota-
tion for the operation on set-valued maps, which is defined by

R xF: g ~ Fi(z)* F(z)

We define in that way Fy N Fy, Fy U Fy, Fy + F; (in vector spaces), -
‘etc. Similarly, if & is a map from the subsets of ¥ to the subsets of
Y, we define

rostmamnm. s

a(F): @ ~ a(F(z))

For instance, we shall use F, co(F), etc., to denote the set-valued
maps z ~ F(z), z~ co(F(:z:)), ete.
We shall write

F c G < Graph{(F) C Graph(G)

and say that G is an eztension of F.
Let us mention the following elementary properties:

(i) FK1UK,) = F(K))UF(Ky)
i’i) F(Kanz) C F(Kl)ﬂF(Kz)

i) F(X\K) > Im(F)\F(K)

iv) K1 CKj = F(K)) C F(K»)

\

There are two manners to define the inverse image by a set-valued
map F of a subset M:

i) FIM):={z| Fz)nM #0}
W) FR(M) = {z | Flo) C M)

The subset F~1(M) is called the inverse image of M b.y F and
F*1(M) is called the core of M by F.
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1.3.  Set-Valued Maps 37
They naturally coincide when F' is single-valued.
‘We observe at once that

FHPYY\M) = X\ FY(M) & FFA Y \ M) = X\ F*Y (M)

One can conceive as well two dual ways for defining composi-
tion products of set-valued maps (which coincide when the maps are

single-valued):
Definition 1.3.2 Let X, Y, Z be metric spaces and

G: X ~Y & H:Y ~ Z

be set-valued maps.
1 —  The usual composition product (called simply the product)

HoG: X~ Z of H and G at = is defined by
(HoG)z) == |J Hy)

yEG(z)

2 — The square product HOG:X ~ Z of H and G at z is

deﬁned by i
(HOG)(z) == () H(y)
' yEG(w)

-

" Let 1 denote the identity map from one set to itself. We deduce the
_followmg formulas

Graph(H o G) "= (G x 1)7!(Graph(H))
. = (1 x H)(Graph(G)) (13)

Graph(HE]G) = (G x 1)+1(Graph(H))

as well as formulas Wthh state that the inverse of a product is the
~ product of the inverses (in reverse ‘order): :

= G HN) = (6o 96,

) = e
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'We also observe t_hat o Lo
9 e (HOG) > Glo)c HIG)

T o (@ OH)) < HY() c Glo)
' a.nd thus, that ' : i1
Q) = H\(z) & z € (G'0HY)(z) N (HOG)™(2)

Let us also point out the following relations: When M is a subset of
Z, then

) (HoG)1M(M) = GHE-M)

i) (HoG)tY(M)

G+1 (H+1(M))

1.4 Continuity of Set-Valued maps

The concepts of semi-continuous maps have been introduced in 1932
by G. Bouligand® and K. Kuratowski’. We begin with the upper
semicontinuous set-valued maps:

1.4.1 Definitions

In this section, X, Y, Z denote metric spaces. We describe the con-
cepts of semicontinuous set-valued maps introduced by Bouligand,
Kuratowski and Wilson in the early thirties.

Definition 1.4.1 A set-valued map F : X ~ Y is called upper A
semicontinuous at z € Dom(F) if and only if for any neighborhood ’ o

U of F(z) v fusre £
An>0 suchthat Vo' € Bx(z,n), F(z') CU. n-leoodl % B@“) 'Z)

Swho wrote: “Peut-on rendre plus profond hommage a la mémoire de René
Baire qu'en poursuivant les conséquences d'une idée dégagée par lui et dont 55 1 2
l'importance se révéle chaque jour accrue, la semi-continuité? Elle échappa tout
le XIX® sidcle aux adeptes de la théorie des fonctions, et & plus forte raison, aux’
purs géometres, qui s'adonnaient & des occupations moins subtiles.”
Twho alse wrote:
“D’aprés Monsieur Baire, une fontion est dite semi-continue supérieurement.....
La notion de semi-continuité dont nous allons nous servir ici est tout a fait ana-
logue & celle-ci, mais concerne le cas ol Ja fonction F(z) admet comme valeurs
des sous-ensembles fermés....”

W&W-,M,Mm ol & X 4§
Jor sy P Gotbacnos F(2)
( Fee) Jen) Prere serhon et
Moo e ks Tk PO EN
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1.4.  Continuity of Set-Valued maps 39

It is said to be upper semicontinuous if and only if it is upper semi-
continuous at any point of Dom(I").

When F(z) is compact, F* is upper semicontinuous at z if and only
if

Ve>0, 30> 0 such that Vz' € Bx(z,n), F(z') C By(F(z),e)

We observe that this definition is a natural adaptation of the
definition of a continuous single-valued map. Why then do we use
the adjective upper semicontinuous instead of continuous? One of the
reasons is that the celebrated characterization of continuous maps —
amap f is continuous at = if and only if i maps sequences converging
to z to sequences converging to f(z) — does not hold true any longer
in the set-valued case.

Indeed, the set-valued version of this characterization leads to the
following definition.

Definition 1.4.2 A set-valued map F: X ~ Y is called lower semi-
continuous at x € Dom(F) if and only if for any y € F(z) and for
any sequence of elements x, € Dom(F) converging to z, there exists
a sequence of elements y, € F(z,) converging to y.

It is said to be lower semicontinuous if i is lower semicontinuous
at every point z € Dom(F').

Actually, as in the single-valued case, this definition is equivalent to:
For any open subset I C Y such that i/ N F(z) # 0,

Elﬂn> 0 such that V2’ € Bx(z,n), F(z')ni £ 0

Unfortunately, there exist set-valued maps which enjoy one prop-
erty without satisfying the other. ; '

Exampieé —  The sét-valued map F} : R~ R. defined by

ST FLH) if ozt
; i) = { i’o} : i miO

is lower semicantinuous at zero but not upper semicontinuous at zero,
The set-valued map Fy : R ~+ R defined by o
3 S oS B (1 S T Y
F = {
2(z) { [L+1] i z=0""

TJ« anif n-beood M
(Ly 48) G177
F) = (14N

Wbt U5

at A =0+,
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" ‘Figure 1.3: Semicontinuous and Noncontinuous Maps

lower s.c. & not upper s.c. || upper s.c. & not lower s.c.

is upper semicontinuous at zero but not lower semicontinuous at zero.” O
We are therefore led to introduce still another

Definition 1.4.3 We shall say that set-valued map F is continuous
at z if it is both upper semicontinuous and lower semicontinuous at

z, and that it is continuous if and only if it is continuous at every
point of Dom(F)/’/

Remark —  We can use the concepts of inverse images and
cores to characterize upper and lower semicontinuous maps:

Proposition 1.4.4 A set-valued map F': X ~+ Y is upper semicon-
tinuous at ¢ if the core of any neighborhood of F'(z) is a neighborhood
of © and a set-valued map is lower semicontinuous at = if the inverse
image of any open subset intersecting F(z) is a neighborhood of .

Hence, F' is upper semicontinuous if and only if the core of any
open subset is open and it is lower semicontinuous if and only if the
inverse image of any open subset is open.

IfDom(F) is closed, then F is lower semicontinuous if and only if
the core of any closed subset is closed and F' is upper semicontinuous
if and only if the inverse image of any closed subset is closed.

We shall also need to adapt to the set-valued case the concept of
Lipschitz applications. ‘
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