3D Stregs Compgnents The most general state of stress at a point may

be represented by 6 components

From equilibrium principles: Normal Stresses O, O, O,
T

xy=Tyx » Tz = Tax s sz=

T

yZ
Shear Stresses U T Yg

Normal stress (o) : the subscript identifies the face on which the
stress acts. Tension is positive and compression 1s negative.
Shear stress (7) : it has two subscripts. The first subscript
denotes the face on which the stress acts. The second subscript
denotes the direction on that face. A shear stress is positive if it
AO, acts on a positive face and positive direction or if it acts in a

negative face and negative direction.
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T
Tyz G, Ty ée\ Direction
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For static equilibrium ¢, =7, , 7,,= 7, , T, = T, resulting in Jix independent

y = tyx v zy = ‘yz
scalar quantities. These six scalars can be arranged in a 3x3 matrix, giving us a Stress
tensor. T
O X Tyx sz ée\ Direction
c=0,=\7, O, T, The sign convention for the stress elements is that a
positive force on a positive face or a negative force
_sz t,, O, | onanegative face is positive. All others are negative.

The stress state Is a second order tensor since it is a quantity associated with two
directions (two subscripts direction of the surface normal and direction of the stress).

Same state of stress is represented by a different set of components if axes are rotated.
There is a special set of components (when axes are rotated) where all the shear
components are zero (principal stresses).
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A property of a symmetric tensor is that there exists an orthogonal set of axes 1, 2 and
3 (called principal axes) with respect to which the tensor elements are all zero except
for those in the diagonal.

O, z-yx T 0, 0 0

-
G:Jl_j: z'xy o'y sz G—O'l.j— 0 O, 0
e Eigen values 0 0 o,

| Xz yz Z_ — L

In matrix notation the transformation is known as the Eigen-values.

The principal stresses are the “new-axes” coordinate system. The angles between the
“old-axes’ and the “new-axes” are known as the Eigen-vectors.

“pld” axes
x1 x2 X3
x'1 all al? al3
“new” X2 a2l a2? a?3
X3 a3l a32 ai3

principal stress

Cosine of angle

between X and the

principal stress

Cosine of angle
between Y and the
principal stress

Cosine of angle
between Z and the
principal stress




Plane Stress

State of stress in which two faces of the cubic element are free of stress. For the
illustrated example, the state of stress is defined by

c.,0,,T and o,=7,=7,=0.

Sign Conventions for Shear Stress and Strain

i 5 The Shear Stress will be considered
—1—» ¥* positive when a pair of shear stress
. ﬁ}r acting on opposite sides of the
4% 5  element produce a counterclockwise
Txy * (cew) torque (couple).
1




Positive x-face

Negative x-face : Negative y-face
(a) (b)

A shear strain in an element is positive when the angle between two positive faces
(or two negative faces) is reduced, and is negative if the angle is increased.
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—ryrxy 2 (o]
o o,
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Stresses on Inclined Sections

Knowing the normal and shear stresses acting in the element denoted by the Xy axes,
we will calculate the normal and shear stresses acting in the element denoted by the

aXiS lel' y
R
y1 ‘\‘\ //o/' X1 T
‘\\ ," — VX
“\ ,’/’ \ T
ol o 9 S XY
0, o
x el
r,\'_\-‘

[ el

Equilibrium of forces:
Acting 1n X,

4 _ o, cos0-A,+1,,51n0- 4, +0,Sinl- 4, Sind +17,, €080 4, Sind
cost Cos0 Cos0

Oy -



|y
i Eliminating A, , secd= 1/cos@and
T~ T,
% Xy yX
5{9\ TeyAo secd
| o
CTIA{] \/
Oy, Ag secd
0 \ m
leﬁﬂ \ 5 5
Oy =0,c08 " 0+0,sin” 0+2r,,sinfcosl
T}rxAD tan &
(b) Forces Act|ng in yl

1A sect = — o, A sind + 1, A cosb + 6, A tanBcosO — 1, A tanBsinb

x1y xXy* *o

Eliminating A, , secd =1/cosé and 7,,~7,

T —0,-sinf-cosf+o, -sin<9-cosé?+rxy(cos2 & —sin’ 0)

xlyl —



Transformation Equations for Plane Stress

Using the following trigonometric identities:

Cos?0 = V2 (1+ cos 20) c.+0, o -0 |
Sin20 = %% (1- cos 26) o, = L+ ~c0s 26+t sin 26
Sin 6 cos 6 = 72 sin 20 2 2

c.to, o0,-0O

— o Y :
o, = — cos20 -7 sin26
2 2
c.—0, .
T.,,=———>=>sin260+7_cos20
y 2 Xy

These equations are known as the transformation equations for plane stress.



i c.+o, o0,-0, .
Speclal cases o, = 5 + 5 c0s26 + T, sin26
° . O-x _ O-y o
Case 1: Uniaxial stress 7, , =————sin20+7 _ cos20
0'y=0 rxyzryxzo .
1+ Cos26 . .
c,=0, (T) Case 3: Biaxial stress
a, o,
. G— = X =
. (SinZ@j ' Ty =0
xlyl — Y7 o +o O —0O
' 2 o,=——+——=-Cos26
2 2
%% in26
T =" -Sin
Case 2 : Pure Shear L
y ;
o,=0,=0 1. :
_ * T_xy r O",
o, =1, Sin26 l B I ]
Ty =Ty, - Cos20 N o o
Ty e O »




|Example|

An element in plane stress is subjected to stresses 0,=16000psi, 0,=6000psi, and

7= T,x= 4000psi (as shown in figure below). Determine the stresses acting on an
element inclined at an angle £=45° (counterclockwise - ccw).

y
A5 = 6,000 psi Solution: We will use the following transformation equations:
y E
— > | o.+to, 0,-0, ,
o= 4,000 oz o, = + cos20+17_sin26
oy l T o, = 16,000 psi 2 9) Y
— 0 . 3
r o +o. O -0 ,
e— o,=——>———2>c0s20 -7, 5sin20
% y Xy
l 2 2
Oy

o.—0, .
an =TT sin26+ 7 cos26




Numerical substitution
For x-axis 0 =+45°(ccw)
Sin(26) = Sin(90°)=1
Cos(20) = Cos(90°)=0

For y-axis 6 =+45" +90°(ccw)
Sin(26) = Sin(270°)= -1
Cos(20) = Cos(270°)=0

B %
o,, = 15,000

pSl 8 = 45°

\tm =-5,000 ps\

o.+0o, (16000+6000)
2

o,—o, (16000 -6000)
2
7., = 4000 psi
o, = 11000+ 5000(0)+ 4000(1) = 15000 psi
=11000 —5000(0)—4000(1) = 7000 psi
=—5000(1)+ 4000(0) = —5000 psi

=11000 psi

= 5000 psi

xlyl

Note: 0, +0,=0,+0,



|Example|

A plane stress condition exists at a point on the surface of a loaded structure such as
shown below. Determine the stresses acting on an element that i1s oriented at a
clockwise (cw) angle of 15° with respect to the original element, the principal

stresses, the maximum shear stress and the angle of inclination for the principal
stresses

y Solution: We will use the following transformation equations:
o.+o, o©,—0O ,
112 MPa o, = L+ ~cos 260 + r, sin 26
2 2
o,—0, |
FENTP Ty =————sin260 +7 cos 26
—}-T O l: - 2
19 MPa For x-axis 0 =—15"(cw)
l | Sin(20) = Sin(-30°)=-0.5 T
Cos(20)= Cos(-30°)=0.866 /
n _ 1.4 MPa
oo, (46+12)_ 10y p, «L
2 o, +0,=0,+0, e
Gx—Jy_(_46_12)_ So1P \,../' 26 MPa
S = —29MPa o, =-1.4MPa /‘L_\Jﬁ,\z_ls,
7, =—19MPa */\ SHORMESE iy
o, =(=17)+(-29)0.866)+(~19)(—0.5) = —32.6 MPa

7., =(=29)-0.5)+(~19)0.866)=—31MPa



|E}{E.|"T'ID|E A rectangular plate of dimensions 3.0 in x 5.0 in is formed by welding two
triangular plates (see figure). The plate is subjected to a tensile stress of 600psi
in the long direction and a compressive stress of 250psi in the short direction.

Determine the normal stress sw acting perpendicular to the line or the weld and the shear stress
tw acting parallel to the weld. (Assume sw is positive when it acts in tension and tw is positive
when it acts counterclockwise against the weld).

250 psi Solution: o, +0, . c,—0, . :

LLTT T N T A
:: " | _i o, =375psi Ty, =—375psi
= | R\ 3in. L5 600 psi o, =—25psi \
«— 5in -
o2 « [ o,t0,=0,t0, 29psi | -375psi 4375psi

T . N, Z N

® = 30.96°

For x-axis tanf ===

0 =3096"° = 20 = 6192° \ /
Stresses acting on the weld
5 25psi / \

0=3096° ©, =-25psiand t, = 375psi




Principal Stresses and Maximum Shear Stresses

The sum of the normal stresses acting on perpendicular faces of plane stress
elements 1s constant and independent of the angle 6.

. 2 ) .
O, =0,C08 0+0,sin” 0+ 27,, sinfcosl

O v +O_Y1 = O y +O'Y
As we change the angle @there will be maximum and minimum normal and
shear stresses that are needed for design purposes.
c.+o, O0,-0
2

The maximum and minimum normal O =
stresses are known as the principal
stresses. These stresses are found by
taking the derivative of o, with respect = 00
to @ and setting equal to zero. T
tan 26, = =

£

+ Y cos260 +17_sin26
2 o

% =—(o, — O'y)sin29+ 27, cos26 =0




The subscript p indicates that the angle 6, defines the orientation of the principal
planes. The angle 6, has two values that differ by 90°. They are known as the principal
angles. For one of these angles o, is a maximum principal stress and for the other a
minimum. The principal stresses occur in mutually perpendicular planes.

T

— XY
tan 26, = 6= O'y)/
2
r, T o -0
Ysin26, =< 0826, = (9, -9,)
R 2R
oc.+0, 0.—0C

D'X—D'_.l. O, =

x1 2
for the maximum stress 0 =06,

2
O +0 O.—0O O.—0O T O +0 O.—0O
A e A R LA
2 2 2R " R 2 2 R "R

+ Y cos260+ 7. sin26
2 i




Principal Stresses

2 The plus sign gives the algebraically
o, = (GX 9, ] + \/ ( %: 79, j + (Txy)z = 0 tyerage + R larger principal stress and the minus
sign the algebraically smaller principal
stress.

O +0 O —0O ?
O-2 - ( - : ] — ( - . j + (Txy)z - O-Average - R This are the |n'p|ane pI’InCIpa|
stresses. The third stress is zero in

plane stress conditions

Maximum Shear Stresses

The location of the angle for the maximum shear stress is obtained by taking the
derivative of 7,,,, with respect to #and setting it equal to zero.

o.—0C

= — Y sin260 +7. cos26 ot
2 >

x1yl :
5‘; =—(0,—0,)c0s20 - 27 _sin20 =0

(O-x B O-y)/
tan 260, = — 2

Txy

Z-)clyl




Z-xy (Gx - Gy)

c0s26, =—2 sin260, =- and 6, =06, —45
R
Therefore, 26-26,=-90° or = 6, +/- 459

The planes for maximum shear (0. -0 1

stress occurs at 45° to the principal ~ tan26s =-— . —=- ey —cot20,

planes. The plane of the maximum o ’

positive shear stress 7. is defined SM20s _ 0820, _ - sin(90" -2, ) _ sin(26, —90")
by the angle 6, for which the cos 20, sin 26, cos(900 - 249P) cos(2¢9p - 90")
following equations apply:

2
. : . O _—0O
The corresponding maximum shear is given Trnr = ( v j + (Txy)z =R

by the equation 2
Another expression for the maximum shear (Gl -0, )
stress Craax = 7

o, +0,)

The normal stresses associated with the
maximum shear stress are equal to




Equations of a Circle

o, +to, o0,-0

. X y .
General equation O =" + cos20 + 7, ,sin260
: o,—0C
— Y :
Consider Ot ~Caypr = — 5008 20 +17,,sin20

X

— Y sin20 + 7. cos26
2 >

2
. o.—0O
Equation (2) (Txlyl)2 = {— - > ~sin26 + 7, cos 20}

Equation (1) + Equation (2)



2

2 2 0,0, : i 0,-0, .
(6., 0 m) + (z—xlyl) = Tcos 20+7 ,sin26 - Tsm 20+7  cos20

2 2
o -0 o -0
ycos20+rysin2z9} =[ : yj cos” 20+ (z )zsin22¢9+2( : yJ(r )sin 20 cos 20
X 2 Xy 2 Xy

O —0O

2 2
o o -0
= Y sin20 + 7 cos 29} = [— =Y j sin® 20 + (r )2 cos’ 20 — 2( AR J(r )sin 20 cos?26
2 Y 2 i 2 Y

2
SUM =[ax;ayJ (e, =R

2 2 52
(O-xl_GAVER) +(Tx1y1) =R



Mohr Circle

The radius of the Mohr circle is the
magnitude R.

The center of the Mohr circle is the
magnitude
. +0,)

O =
AVER
2

C.—O
2 2 2
State of Stresses (le — O ,ur ) + (Txlyl ) — a 2 (Txy )



7~y Clockwise shear stresses
Alternative sign conversion for shear

29,\ stresses:

N X\ c (a)clockwise shear stress,
@ “a (b)counterclockwise shear stress, and
R (c) axes for Mohr’s circle.

(a) (b)

. O-EIVEI‘ »

Note that clockwise shear stresses are
\_/ Counterclockwise shear stresses plotted upward and counterclockwise
(c) shear stresses are plotted downward.

Forms of Mohr’s Circle

a) We can plot the normal stress o, positive to the right and the shear stress
T,4y1 POsitive downwards, i.e. the angle 20 will be positive when
counterclockwise or

b) We can plot the normal stress oy, positive to the right and the shear stress 7,
positive upwards, 1.e. the angle 260 will be positive when clockwise.

Both forms are mathematically correct. We use (a)



Two forms of Mohr’s circle:

Tyy1 18 positive downward and the angle 261s
positive counterclockwise, and

Tyy1 18 positive upward and the angle 201s positive
clockwise. (Note: The first form 1s used here)

y yl\ y
4 Doy
B % ;
\ — 4N
Ty o, ¢
L ALY

£ Jﬂ\"ﬁl’ *

(a) (b) (b)



Construction of Mohr’s circle for plane stress.

Oy

T
F

fpo-
87

! P
O Pz f 3
TII}‘I
«— 0, S 2 Txy
D@ =8)
A(G =0)
"_Javer=gx+ay re¥ 5 i
2 2
- JI >
- Jxl >
T

i)

X1



|Example|

At a point on the surface of a pressurized cylinder, the

material 1s subjected to biaxial stresses o, =

20MPa as shown in the element below.

90MPa and o, =

Using the Mohr circle, determine the stresses acting on an
element inclined at an angle 8= 30° (Sketch a properly

oriented element). (5 = 90MPa, o, =20MPa and z,, = OMPa)

Because the shear stress is zero,
these are the principal stresses.

Construction of the Mohr’s circle

The center of the circle is

B

N\

l

o, +0,)_(0 : 20) _ 55p1pa

Average = 2

. 72.5 ]
| D (6=30°
«—20 ~>‘ I
60° 30.3
i |
B 35 35 (6=0)
(8 = 90°)
o
(8 =120°)
« 55

F Y

90

Y



Stresses on an element inclined at 6 = 30°

By inspection of the circle, the coordinates of point D are

O = O grorage + R - C0s60” =55+35-Cos60 = 72.5MPa

7., =—R-Sin60° =-35

xlyl —

)1 = O pyerage — R - C0s60" =55—-35-Cos60 =37.5MPa

J2.5 >
’ D (@=30°
«— 20 4,‘ I
60° 30.3
A i Ty
O B 35 35 (6=0)
(6 =90°)
D'
(8=120°
o)

X1V

90

Y

($in60° )= -30.3MPa

y

/725 MPa
/\TZSMP”’(




|EXEI’TID|E| An element 1n plane stress at the surface of a lar 4
machine is subjected to stresses o;, = 15000psi, A 5,000 psi
5000psi and z,, = 4000psi. B\ g .

Using the Mohr’s circle determine the following: 4,000 psi

a) The stresses acting on an element inclined at an *_l o Y 15,000

angle 6=40°

b) The principal stresses and ¥ %

c) The maximum shear stresses. l
Construction of Mohr’s circle: - (o-x + o-y) - (1 5000 + 5000) i .
Center of the circle (Point C): 4~ 5 2 =10000pst
Radius of the circle: = \/ ( = ;Gy) +(e,f = \/ (150002_ 5000) +(4000)" = 6403 psi

Point A, representing the stresses on the X face of the element (0 = 0°) has the
coordinates 6,; = 15000psi and t,,,; = 4000psi

Point B, representing the stresses on the y face of the element (6 = 90°) has the
coordinates 6,; = 5000pst and 1, = - 4000psi

The circle is now drawn through points A and B with center C and radius R



A

4,000

10,000

Txiyn

B (8 =90°)

(+3
)%\‘?

S5 (8, =64.3%)

80°

D( =40

Py (8y,=19.37

bgﬁg’ 41.34°
%

[0}

%, 38.66°

S
(8, =—25.7°)

5,000 —

B

15,000

|

Stresses on an element inclined at &
= 4Q0
These are given by the coordinates of

point D which is at an angle 26 = 80°
from point A

By inspection the angle ACP, for
the principal stresses (point P,) 1s :

)= 2999 _, JICP = 38.66°
00

tan(A CH,

Then, the angle P,CD 1s 80° —
38.66° =41.34°

Knowing this angle, we can calculate the coordinates of point D (by inspection)

Ol = O prerage T R - Cos41.34° =10000 + 6403 - Cos41.34° =14810 psi

7., =—R-S5in41.34° = -6403

xlyl —

O

vl — GAverage

(Sin41.34°)= —4230 psi

— R -Cos41.34° =10000 — 6403 - Cos41.34° = 5190 psi



And of course, the sum of the normal stresses i1s
14810psi + 5190psi = 15000psi + 5000psi 5,190 psi 14,810 psi

Principal Stresses | \ >’/3= 40°
B / \4,230 psi

The principal stresses are represented by "
points P, and P, on Mohr’s circle. \

The angle it was found to be 20 = 38.66°

Z4
or 0 =19.3° \‘

8> (8;,=64.3%)

< 5,000 —
B (6 =90°)

.

O = O yrerage T B =10000 + 6403 = 16403 psi
Oy =0 terage — R =10000 — 6403 = 3597 psi

D( =40°)

Py (8, = 19.3° y

3,600 psi \
P, 16,400 psi

//(

6, =19.3°

X

P,

(8,,=-25.7%)
10,000 >— 5,000 —> \

15,000 =

Triv



Maximum Shear Stresses
These are represented by point S, and S, in Mohr’s circle. Algebraically the
maximum shear stress is given by the radius of the circle.

The angle ACS, from point A to point S, i1s 2 65, = 51.34°. This angle 1s negative
because is measured clockwise on the circle. Then the corresponding ¢, value is —

25.7°.

y
1{} 000 psi
\
6,400 p51
\ 6'31 = -25 7°

/ 10,000 ps\&
S



(15000 4000 0O (16403 0 O
4000 5000 O |Psi Transform to 0 3597 0 |Psi
0 0 0 0 0 0

3-D stress state

In matrix notation the transformation 1s known as the Eigen-values.

The principal stresses are the “new-axes” coordinate system. The angles between
the “old-axes” and the “new-axes” are known as the Eigen-vectors.

Cosine of angle Cosine of angle Cosine of angle
between X and the  between Y and the between Z and the
principal stress principal stress principal stress principal stress
16403.1242
3596.876

0



|Example| y
At a point on the surface of a generator shaft the stresses are B |
o, =-50MPa, 6, = 10MPa and 1, = - 40MPa as shown in the g
figure. Using Mohr’s circle determine the following: _,1 . 1‘ 50 MPa
(a)Stresses acting on an element inclined at an angle 6 = 45°, 40 MPa
(b)The principal stresses and T
(¢)The maximum shear stresses
Construction of Mohr’s circle o _ o, +o y) _ (=50)+(10) — _20MPu

Average ~ 7

R= \/(0 ;Gy T +e f = \/((_ 50)2_ (10))2 + (= 40) =50MPa

Center of the circle (Point C):

Radius of the circle:.

Point A, representing the stresses on the X face of the element (6 = 0°) has the

coordinates 6,; =-50MPa and t,,,, = - 40MPa

Point B, representing the stresses on the y face of the element (6 = 90°) has the
coordinates 6,; = 10MPa and 1,,; =40MPa

The circle 1s now drawn through points A and B with center C and radius R.

ylxl



* 50 »
_E;_'”"H Stresses on an element
A(@=0) J inclined at 6= 45°
I 2 These stresses are given by
40 / ) /‘:9’ the coordinates of point D
20 = 90° of point A). To
l BiGp= 11607 f:alculate its r}ilagnitu)de we
P, i X1 need to determine the angles
@), =26.6%) ACP2 and P2CD.

tan ACP,=40/30=4/3
y ACP,=53.13°

B (6 =90°) P,CD =90° — 53.13°=36.87°

@5, =71.6°)

20 |10
Then, the coordinates of point D'are

O =0 trorage + R C0536.87° = (—20)+50- Cos36.87° = —60MPa
£, = R-Sin36.87° = 50(Sin36.87° )= 30MPa

x1yl

)1 =0 prurage — R C0536.87° = (—20)+50- Cos36.87° = 20MPa
And of course, the sum of the normal stresses 1s -5S0MPa+10MPa = -60MPa +20MPa




O = 0 yrerage + R =—20+50=30MPa
—R=-20-50=-70MPa

O-2 = O-Average

Maximum Shear Stresses

These are represented by point S, and S,
in Mohr’s circle.

The angle ACS, is 204, =90° + 53.13° =
143.13° or 6 =71.6°.

The magnitude of the maximum shear
stress 1s S0MPa and the normal stresses

corresponding to point S1 is the average
stress -20MPa.




3-D stress state

— 50
— 40
0

—40 0]
10 0
0 0

MPa

Transform to

30
0

0

In matrix notation the transformation is known as the Eigen-values.

0 O
-70 0
0 O

MPa

The principal stresses are the “new-axes” coordinate system. The angles between
the “old-axes” and the “new-axes” are known as the Eigen-vectors.

principal stress

30
-70
0

Cosine of angle
between X and the
principal stress

-0.44721359
0.894427

0

Cosine of angle
between Y and the

principal stress

0.894427193

0.447214
0

Cosine of angle
between Z and the
principal stress

0
0
1



Hooke’s Law for Plane Stress

The stress transformations equations were derived solely from equilibrium
conditions and they are material independent.

Here the material properties will be considered (strain) taking into account the
following:

a)The material is uniform throughout the body (homogeneous)
b)The material has the same properties in all directions (isotropic)
c)The material follows Hooke’s law (linearly elastic material)
Hooke’s law: Linear relationship between stress and strain

For uniaxial stress: o=FEc
(E = modulus of elasticity or Young’s modulus)
b o b lateral strain &, e
o1sson’s ratio: - - .
axial strain & longitudinal

Gy

For pure shear : (G = Shear modulus of elasticity) 4



-
¥

]

Consider the normal strains ¢,, ¢, ¢,in plane
stress.

All are shown with positive elongation.

The strains can be expressed in terms of the
stresses by superimposing the effect of the
iIndividual stresses.

For instance the strain ¢, in the x direction:
a)Due to the stress o, is equal to ¢, /E.
b)Due to the stress o, is equal to —vo /E.

The resulting strain is:

. : ]
[ s
| Ol
=
O O
g =—~L-vy—=
E E
O O
£, =—V—"F—
E E
O O
g =—v—=x —y—-2




The shear stress causes a distortion of the element
such that each zface becomes a rhombus.

_ Txy

7/XY_G

The normal stresses o, and o, have no
effect on the shear strain y,,

Gx Gy Gx O-y Gx
E. = —V— T === E,=—V
E E g E FE E
or rearranging the equations:
o = ke, + vEe, o, = vEe, + e, + Tww =G
! (1—1/2) (1—1/2) ' (1—1/2) (1—1/2) Y Fxr

These equations are known collectively as Hooke’s Law for plane stress

These equations contain three material constants (E, G and v) but only two are
independent because of the relationship:

G = £
2(1+v)




Special cases of Hooke’s law (o, = 0)

Uniaxial stress : Pure Shear :
c,=0 17,=0 c,=0,=0
5x—o-x gy:‘gz:_uo-x e o _ Ty
E E gx_gy_gz—() 7/xy_G
Biaxial stress : by = L
g Ui & :—UO-"Jri g =—UG’C-Ui

Volume Change
When a solid object undergoes strains, both its ‘ agy

. . . . “ a »
dimensions and its volume will change. :ﬂ/cj ____________ Lt

_____

Consider an object of dimensions g, b, ¢. The
original volume is V,, = abc and its final volume is

V7 = (a + ag)J (b + bgy) (C + ng) —
V,= abc (1+¢,) (1*¢,) (1+€,) —




Upon expanding the terms:
=V (T+e 1, +e, 168, 168, 168, 1655
For small strains:
V=V, (1+¢. +¢,*¢,)

The volume change is

AV=V,-V,=V, (¢ *¢, *¢&,)
The unit volume change ¢, also known as dilatation is defines as:

e=AV/V,=¢g, tg tg,
Positive strains are considered for elongations and negative strains for

shortening, i.e. positive values of efor an increase in volume.

O O O O O O
E. = < 4 g =—py—x4 7 g =—Vv x Y
E E g E E E E
—M_ \(1_20) For uniaxial stress o,=0 e=0 (1 20)
€ = — Jx_l_ay/ y .
V E E

We can notice that the maximum possible value of Poisson’s ratio is 0.5, because a
larger value means that the volume decreases when the material is in tension
(contrary to physical behavior).



STRAIN ENERGY DENSITY IN PLANE STRESS

The strain energy density U is the strain energy stored in a unit volume of the
material. Because the normal and shear strains occur independently, we can add the
strain energy of these two elements to obtain the total energy.

Work done = Force x distance ‘y as,
ALY Al
2 X

Work done in the x - direction =

Work done in the y - direction = % (bgy)

B
The sum of the energies due to normal stresses: abc
U= — ((Txé'x + O'ygy)
Then the strain energy density (strain per unit volume) ¢, = l((y s + o‘ygy)
2 X X

Similarly, the strain energy density associated with the — ,, _— lz-

. 2 xyy Xy
shear strain: 2
By combining the strain energy densities for the normal 1

and shear strains:



2 2 2
The strain energy density in terms _9%x Oy 940y  xw
of stress alone: 2F  2F E 2G
The strain energy density in terms E 2 2 G ,
. u = Ey + &y — 206 &, |+ —
of strain alone: 2(1 — v )( T * Y) 2 Vo
For the special case of uniaxial stress: For the special case of pure shear:
c,=0 7,=0 ¢ =-ve  y,=0 c.=0 o0,=0 ¢ =¢=0
o Eg’ Tfy G}/)fy
u= or u= u= or u=
2F 2 2G 2
TRIAXIAL STRESS -
¥
An element of the material subjected to normal | o,
stresses ¢, 0, and o, acting in three mutually i A
perpendicular directions is said to be in a state 0, «—t-- Eo —> 0,
of triaxial stress. Since there is no shearin x, y - x
or zfaces then the stresses o,, o,and o, are ol
the principal stresses in the material. Z/ l



If an inclined plane parallel to the z-axis is cut through the element, the only stress
of the inclined face are the normal stress o and the shear stress 7, both of which act
parallel to the Xy plane.

Because these stresses are independent of the o, we can use
the transformation equations of plane stress, as well as the
Mohr’s circle for plane stress, when determining the stresses
o and 71n triaxial stress.

The same general conclusion hold for normal and shear stresses
1 acting on inclined planes cut through the element parallel to the
@ X and Yy axes.

Maximum Shear Stress FOor a material in triaxial stress, the maximum shear stresses
occur on elements oriented at angles of 43° to the X, y and z
axes.

Oy — Oy
for the inclined plane // z-axis (TMAX )z =t 7
. . . O, — O
for the inclined plane // x-axis (z- Y )X — +_7 ; Z
o, —0,

for the inclined plane // y-axis (TMAX )Y =% 5

The absolute maximum of the shear stress is the numerically largest of the above.



The stresses acting on elements oriented at
various angles to the X, y and z axes can be
visualized with the aid of the Mohr’s
circle.

In this case o, > 0, > o,

«— 0 —»

L
by

A

Y




Hooke’s Law for Triaxial Stress

If Hooke’s law 1s obeyed, it is possible to obtain the e %, o, L9
relationship between normal stresses and normal strains *  E E E
using the same procedure as for plane stress. oc. O, o,
g, =—-Vv—=+ -V
O g E E E
r E g =y 20 O
o, = [(l—u)5x+ugy+ugz] ) E E E
1+0)1-20)
o E -ug + (1 U)g + ve | Th kn th
y = ~ (23 - y -] ey are known as the
(1 Ml )(1 20 ) Hooke’s law for triaxial
E = =
o, = ve  + Ve + (1 — U)é‘z stress.
I+ov)1-20)" -
Unit Volume Change AV
. L e=—=¢,+&, +&,
The unit volume change (or dilatation) for an 5
lement in triaxial stress is obtained in the
© ) If Hooke's laws apply, then
same manner as for plane stress.
AV (1-2v)
e=— = (6, +0,+0,)

v, E



Strain Energy Density

The strain energy density foran o &, N 0,&, N O.&,
element in triaxial stress is “= 7 5 0
obtained by the same method

used for plane stress.

In terms of stresses :

-l ol +a?)- 2 )
u—ﬁ L to, +o; = 0.0,+0.0.+0,0.

In terms of the strains:

Y uj)E(l —20) (-v)e + 22 +e2)+20(e.e, + 26, + 6.

Spherical Stress
A special case of triaxial stress, called spherical stress, occurs oc.=0,=0.=0,
whenever all three normal stresses are equal: ’

The Mohr’s circle is reduced to a single point. Any plane cut through the element

will be free of shear stress and will be subjected to the same normal stress SO and

it 1s a principal plane.

The normal strains in spherical stress are also ~ €p = %(1 —2v) The volume change
the same in all directions, provided the material

is 1sotropic and if Hooke’s law applies: e =3¢, =30, (1 _ 20)

E




T o K = bulk or volume modulus of elasticity
i % 3(1-2v) e
| *
I
%0 <" EO 7%  Ifv=13thenK=E
t/,—r’"" """ ¥ Ifv=0 then K=E/3
% B : If v=1/2 then K = infinite (rigid material having no
/ l o change in volume)
N i These formulas also apply to and element in uniform compression,
Element in spherical stress. for example rock deep within the earth or material submerged in

water (hydrostatic stress).



PLAIN STRAIN

Strains are measured by strain gages.
A material 1s said to be in a state of plain strain if the only deformations are those
in the Xy plane, i.e. it has only three strain components &, & and .

Plain stress is analogous to plane stress, but under ordinary conditions they do

not occur simultaneously ¥ .
Exception when o, = -0}, and when v=0 ¢ 9
W
Strain components &, &, and y, in the i
Xy plane (plane strain). . -y X i
s (} __:
1= 'a.J.‘i
;"i'
l 4
bey, I |
X [ __:
1 !
YVey™1 JILF‘-\‘ ‘_IF
b Fj Fj
j.f: FII
Y O i i




Plane stress

Plane strain

¥ y
i =
vl T
v || v -d_.-" [
K E _I. }, I_"‘"_!.__J.___ _!I.-* Il_f
{ H Xy ] : |
i | Y TS
I J 1/ e
l|' i
J L D Os__ i
_.__.—""' X 'I_..""f 'rf,-’ X
Z l Z l
0,=0 Ty, =0 T,vzzﬂ T, =0 {v:zﬁ
Stresses
O, Oy, and 7,, may have O, Oy, 0., and 7, may have
nonzero values nonzero values
Yz =0 %z=0 g,=0 Yer =0 %z=0
Strains ‘ v he , v he
&y, &y, &, and ymay have &y &y, and J,may have

nonzero values

nonzero values

Comparison of plane stress and plane strain.




APPLICATION OF THE TRANSFORMATION EQUATIONS

The transformation equations for plane stress are valid even when o, is not zero,
because o, does not enter the equations of equilibrium.Therefore, the
transformations equations for plane stress can also be used for stresses in plane
strain.

Similarly, the strain transformation equations that will be derived for the case of
plain strain in the Xy plane are valid even when ¢&, 1s not zero, because the strain &,
does not affect the geometric relationship used for the derivation.Therefore, the
transformations equations for plane strain can also be used for strains in plane

stress.
Transformation Equations for Plain Strain

We will assume that the strain &, & and i y
associated with the xy plane are known.

We need to determine the normal and shear strains
(&, and p,,,) associated with the Xy, axis. &, can X
be obtained from the equation of &, by substituting 0

6 +90 for 6. o |




) ¥ &, dx cos@
For an element of size dx, dy il M
In the X direction: e
the strain &, produces an elongation &, dx. A
The diagonal increases in length by g dx cos 6. y - Ll | dy
|
J &ydy sint?< v 6\ | “
0 7 X
______________:ixx_,, s /‘:1 dx «—»‘ &, dx
Il i A &, dy
i | In the y direction:
the strain g, produces an elongation g, dy.
,,’ ds 2 dy . . . -
> 9\ The diagonal increases in length by &, dy sin 6.
0 | X
s dx >
The shear strain y, in the plane Xy produces a ! iy dy cosf x|
distortion of the element such that the angle at the \' Tydy
lower left corner decreases by an amount equal to 1 Ty L -7 T
. i -7 J
the shear strain. Consequently, the upper face L L ﬁ i
moves to the right by an amount y dy. This O | @ / %
deformation results in an increase in the length of A \ /
the diagonal equal to: %, dy cos & 0 5 : X




The total increase A0 of the diagonal is the sum of the preceding three expressions,

thus: Ad = & dx(Cos0)+ &,dy(Sin6)+ y, dy(Cos )
Ad dx dy \/ . dy
But —— =g | —= A hid
u & e gx( s j(Cos 6)+ gy[ s j(Szn 6)+ yxy( s j(Cos 0)
ax _ Cos 0 D _ Sind
ds ds

g.,=¢&.Cos °0 + & ,Sin 0 + Y Sin 8Cos 0

X

Shear Strain x, , associated with X,y, axes.

This strain 1s equal to the decrease in angle

between lines in the material that were initially

along the X1 and y1 axes.

Oa and Ob were the lines initially along the X1 and y\  \
y1 axis respectively. The deformation caused by £\ %}‘-‘" sath 4
the strains g,, & and y,, caused the Oa and ODb lines \ AL
to rotate and angle « and £ from the X, and y, axis \ .
respectively. The shear strain y,,, is the decrease \ o2

in angle between the two lines that originally were \ P l
at right angles, therefore, %,,,=a+p.



. b &,dx cosf ¥
The angle & can be found from the deformations \y, \
produced by the strains &, & and y, . The strains 0 S
& and y,, produce a clockwise rotation, while the A
strain &, produces a counterclockwise rotation. X T i i
Y &ydy sint?< fﬁ’f ,5»\ % E
-1 I
| ) 4
____________________ _ X 0 T X
no /\3 “ay( & ]yl
j | Let us denote the angle of rotation produced by
a's % | g &, & and ¥, as @ , &, and ; respectively.
o g . dx dx d :
7 \ r alzngmé’— — =Cos0 —y:Slng
0 X ds ds ds
-« dx » d
a, = gyCOSHd—y
y Yy dy cos@ % dS
X Tedy o = Y oSin 0%
] _’,'}' K dS
— Yy ,;\ P
;i ds f"'T !,'! ! a=—a,+a,—0,= —(ex - £, )Sin GCos 0 — 7/xySin29
;f; ’,f"ﬂﬁ g “ ;;' y
3 ) \ / y
0 %
« dx




The rotation of line Ob which initially

was at 90° to the line Oa can be found g - (gx 5 )Sin(6? +90)Cos(6+90)+y,,Sin*(6+90)

L N :
by subsFltutmg 6 +90 for 919 the B _(8 ., )Sin 0Cos0 +y Cos'0
expression for a. Because f1s positive Y o
when clockwise. Thus:

7/2xy [C0S2(9 — Sin26’]

yan =a+B=—le.—¢ )SinfCos6 +

Transformation Equations for Plain Strain
Using the following trigonometric

1dentities: ~ (gx + gy) (gx — & y)

Cos20 = ' (1+ Cos 20) fa=—— - s 20 + 72"y sin 26
Sin%0 = Y (1- Cos 260)
E.—&
Sin 6 cos 6 = % Sin 20 ﬂz—()‘ y)sin29+7xycos29
2 2 2
Invariant =&, +&, =&, + &, _ (gx T gy)

gAverage o 7



PRINCIPAL STRAINS

.. . Vi
The angle for the principal strains is : / % \ Y
tan 291) = (g = ) =
. . . 3 y gx - gy
The value for the principal strains are 4

(e, +2,) (Ex—é‘ jz (n T
5 = Y/ 4 y + Y
2 2 2
gzz(gx”y)_ (gx—gyj2+(7/xyjz
2 2 2

Maximum Shear

The maximum shear strains in

2 2
. . E.—E&
the Xy plane are ass'001a.ted with  Ymax _ n x S| 4 xy or y,, = ( £ — 52)
axes at 45° to the directions of 2 2 2

the principal strains

For isotropic materials, at a given point in an stressed body, the principal strains
and principal stresses occur in the same directions.



MOHR’S CIRCLE FOR PLANE STRAIN

It 1s constructed in the same manner
as the Mohr’s circle for plane stress

with the following similarities:

-

€

- 8}, .-=i B(ﬁ = 9{]‘3)
| "
Ity P
2
l Py
A &
0 P2 ¢ 2; yxl)’l T .
7 2 Yoy
<« & 26 N >
D@ =8) l
S)
A(@=0
&+ & & — &
e————— {-.'aver = 2 o4t > 2
< Ex >
-« {;'xl -

xlyl




Strain Measurements
An electrical-resistance strain gage is a device for measuring normal strains (&) on

the surface of a stressed object.

The gages are small (less than 72 inch) made of wires that are bonded to the surface of the object. Each
gage that is stretched or shortened when the object is strained at the point, changes its electrical
resistance. This change in resistance is converted into a measurement of strain.

From three measurements it is possible to calculate the strains in any direction. A
group of three gages arranged in a particular pattern is called a strain rosette.
Because the rosette is mounted in the surface of the body, where the material 1s in
plane stress, we can use the transformation equations for plane strain to calculate the
strains 1n various directions.

Y1

45° strain rosette, and element oriented at
1 an angle @ to the Xy axes.




General Equations

£ = £ _f.:ﬂszﬂ +E‘”9inEEl v smnB cosd
{a XX a Yy i1 Xy a 1
3 E'E]' . . EB . . 5
£, = £, .cos B E_F_Fsm h ';,fr.}f,gm peosty
2

£ =& cos B +g sn B +vy sinB cosd
C XX co oy c  'xy C c

t
X

Other Strain Rosette

a,=10
&, = 60"
g.= 1207 or —60




|[Example]

An element of material in plane strain undergoes the following strains: £=340x10°

, & = 110x10° , ¥y = 180x10° . Determine the following quantities:
(a) the strains of an element oriented at an angle 8= 30°;
(b) the principal strains and y
(¢) the maximum shear strains. 110x 10-°
(a) Element oriented at an angle T# ;:\ ;"
0 =30° (20 = 60°) 180 106 | / 1 /
E +¢& E —¢& a’i ;I
gxlz(x y)+(x y)cos26'+7/isin29 o s x
2 2 2 0 |‘7
_ —> 340 x 10-6
€ :{340 _2”10 s 340 ~110 COS6O+%SZ'I’I6O:|XIO6
£, =360 %107 G ey = Ea T
3404 +1104 =360 + £,
yxlyl_ (x_gy)- 20 yxy 29
) sin 26 + > CcOS £, =90u
% = {— 540 ~110 660 %COS 60} x107° = -55x10"°

= 225 u

& Average



(b) Principal Strains and Angle of Rotation

2 2 V. —S5u
e.+e), [[e-& ) (7 tan 20, = — 2 -
6‘1’2_2y+\/( 5 y] +[7yJ "o —e, 340u-1104
: : 0, =19"
o =msus (M0 100Y (0,
3404 —110Y) (180Y
52=225,u—\/( “2 “j +(Tj -804
Y y

¥ 2|
\ #’f’,#" \_\\ 80 % 106
90 x 10—\}/ /?‘1 N
k- 8 = 30° ’(
’</v N - \</

110X 106 ™\ 360 x 10-6 \

=0.7826

0 X




(c) In-Plane Maximum Shear Strain

2 2 > >
E.—& i,
Vvax _ o || Sx "% | o Yo | _ 340 -110u N 180u 145
2 2 2 2 o) H

7/Max = (81 _82):37()#_80# — 290ﬂ

y x|
-"--‘- I-‘-"‘.
-’ 1‘—‘-"‘1
} _‘-h""'r
§ / \Z

= 225 u

& Average

Y ;,f# 7\ 952= 64.0°
NS 225 x 106
2 10—51,«
= ‘T~ ~90 \
290 x 106 X

(d) Out-of-Plane Maximum Shear Strain

Vi = (6, — &) =370 — 0 =370



Transformation Equations

ChR =N 00520+5Ysin20+(7/7”j2sin 0 cos 0

Y x1v1

=—¢&,sinfcosf + &, sin & cos O + T(COS2 @ —sin” 6’)

:[T]x

:[T]_lx

£,, = &,sin >0 + &, cos 29—(7—j23in 0 cos O

r]-

) xy

cos’ 0
sin’ @

—sin@cosd

cos’ 6
sin’ @

—sinécosd

sin’ @

cos’ 0

sin’ @

cos’ 0

2

2sin@cosd

—2sinf@cosl

sin & cos 6 (0052 6 —sin” 9)

2sin@cosé

—2sin@cosd

sin @ cos @ (0082 6 — sin’ 0)




|[Example]

For ©=30 degrees

cos” 30

sin” 30

- 0.75

0.25
0.25 0.75
—0.438 0.438

—0.876

sin” 30

cos” 30

0.876 |

0.5

2sin30co0s30
—2sin30cos30
—sin30cos30 sin30cos30 (cos2 30 —sin® 30)

340
110
90

[ 361.3 |
88.6

—55.8




Example
gxx
1
[5 ] = EJ/xy
1
2 Yz

FEigen Values =

1

27

gyy

1

2

| 1
gxx —7/yx Eyzx
£]=] - .
¢1= Ej/xy (C,'yy Ej/zy
1
_E}/XZ 7/3/2 gZZ
] ]
2= 340 18% 0
|
_|1
0 0 0
gZZ — —
(371 0 O]
0O 79 O
0 0 O_

= Strain _Tensor




|[Example]

A 45° strain rosette (rectangular rosette) consists of three electrical-resistance strain gages,
arranged to measure strains in two perpendicular directions and also at a 45° angle (as shown
below). The rosette is bonded to the surface of the structure before it is loaded. Gages A, B and
C measure the normal strains &,, & and &, in the directions of the lines Oa, Ob and Oc,
respectively.

Explain how to obtain the strains &,;, &, and x,,,, associated with an element oriented at an
angle @to the Xy axes.

B4

a

. & :gxcos26?+gysin20+(7/2"y]2sin6’c0s0

Angles with respect to x-axis: (a) 1s zero ; (b) is
45 degrees CCW ; (¢) 90 degrees CCW

£ :ng0820+8ySin20+(7/2xy stin 0cos 0

X a
g, =¢&,008 " 45 + & sin * 45 + 7/2xy (2sin 45 cos 45) &, =&,
2 .2 Y x . yxyzng_ga_gc
g, =¢€,c08 90 + ¢ sin”90 + Ty (ZSm 90 cos 90)



|[Example]

The following results are obtained from a 60° strain gauge \ h
rosette: ‘ ot/
Strain in direction of strain gauge A = 750y; "X/ /.
Strain in direction of SG B, 60° to A = 350p; - -
Strain in direction of SG C, 120° to A = 100 . \

Determine the principal strains and their directions. VARN
E = gx = 750 e ¢ ‘ "

a

g, =¢&,008 " 60 + & sin*60 + (yxy )(2sin 60 cos 60 )
Z g, =50u
y —
g, =¢,(0.25)+¢,(0.75)+ ( zxy j(o.433 ) Ve =289u

72” j(z sin 120 cos 120 )

™
S
Il

£,cos 2120 + ¢ sin 120 +

|
e, =¢,(025)+2,(0.75)+ (7; j(— 0.433 )
6=11.2"and 101.2°
£, =1T9UE
€01, = 21ue



1 1
o EVyx EVZx [ 750 28% 0
le]= %ny £, %ny =289, 50
1 1 0 0
_57&2 57@2 &, |-
779 0 0]
Eigen Values =| 0 21 0 |u
0 0 O
0981  0.1945 0]
Eigen Vectors = |—0.1945 0.981 0
0 0 1

0

0

ArcCos(angle)=0.981
Angle =11.2degress



|[Example]

(A) Using the transformation equations define the maximum and minimum
principal strains, maximum shearing strain and principal angles given
& =3500u ; & = 700 and x., = -1050u

(B) Repeat using the Mohr’s circle.

[¢]=| ~1050/
0

Eigen Values =

3500 ~1050/ 0]

700 0|
0 0

(35952 0 0]

0 0 0
(0984 —0.178 0]

Eigen Vectors =|0.178 0.984 0

(d) Out-of-Plane Maximum Shear Strain
Vi =& — &) =35952—0u =35952

0 0 1

0 6048 0|u

ArcCos(angle)=0.984
Angle =10.28degress

(c) In-Plane Maximum Shear Strain
Vi = (6, —£,)=3595.21— 604.8 11 = 2990.4 1




|[Example]

The state of stress at a point in a structural member is determined to be as shown.

Knowing that for this material E=210GPa and v=0.3, use the Mohr’s circle to

determine: (1) the principal stresses; (2) the in-plane maximum shear stress; (3) the
absolute maximum shear stress; (4) principal angles; (5) the strains and the principal
strains; (6) the maximum shear strain; (7) the principal angles.

14MPa

1. Principal Stresses

56MPa

~1-

11 oMPa 912 :(

0, +0,|, [[0:=0,
2 - 2

2
) + (Txy)z = GAverage T R

_ \/(‘56 ‘2(‘14))2 +(11.2F =23.8MPa

O-Average — (_ 20 +2(_ 14)) =—-35MPa

-56 112 0|
[G]zStreSS_Tensor: 11.2 -14 0

o, =—35+23.8=-11.2MPa
o, =—35-23.8 =—58.8MPa

MPa

Eigen Values =

0
0
0

= 0MPa
o, =-11.2MPa
o, =—58.8MPa

0 0 |
~112 0 |MPa

0 —588




2. In-Plane Maximum Shear Stress Ty = R =23 8MPa
ax

3. The Absolute Maximum Shear Stress (Out of plane)

TMax = % 0= (_258'8) =29.4MPa

> 4. Angle between the x-axis and the
Principal Stresses
2

11
0'/ ~ (=36 14))

(In _Plane) = tan 20

11.2
B 1 tan(28,)=——=-0.533
0 0 0 an( P) 1

Eigen Vectors = |0.2425 0.9701 0| 260, =-28.07deg
10.9701 —0.2425 1

For 6,=0 For 6,=-11.2MPa For 0;=-58.8MPa
ArcCos(angle)=0.0 ArcCos(angle)=0.2425 ArcCos(angle)=0.9701
Angle =90degress Angle =76degress Angle =14degress



5. Strains and Principal Strains

o °, _, 0O 5 —i—(os)i—(—zw 6+ 20 )i = —246 .6
E =———V——V — x - = : H = Ou
T E E 210000 210000
o, 0, o, & =-(03) —>6 -4 = (80 —66.6)u =13 .4
e S e ¢ 210000 210000
~ 56 —14
e =—(03)————(0.3)———=(80 + 20 )u =100
g =y 9:_,% 0. % O~ Ol Ju “
: E E E ; -
(5 + & ) E.—& 4
% o Txy 11.2 E .= i Y/ + al 2 + ad
Vv = Vg == =139u L2 2 2 2
G G 80770
E 210 E ., =& + R
_ _ — 8077GPa 1,2 Average
21+v)  2(1+0.3) . _(2466+134) 11662
— = Average ~— - 0
1 1 2
B hwm olm| [ 139 |
0T 1116'6 2 R=[[Z2200-134 2+ 139) =147.4
le]= e Ew STa|= A 134 0 (g It= 5 5 | T H
1 1 0 0 100
_Ej/xz 57/)/2 gzz | - - gl :3().8’[1
100 0 0 &, =—2064u

Eigen Values=| 0 30.8 0 |u
0 0 —-264.0



6. Maximum Shear Strain and Absolute Maximum Shear Strain

2 2
J/MT“X(in_plane)z R= \/(_ 246'2_ 13'4) + (%j =147.4u

Vs = 294.8 1

7/ Max

N (out _of plane

P 100—(2—264):182ﬂ

yMax = 364/”

7. In-plane and Out-of-plane angles !

!V x
tan 20. == + %\ — Yy — 139 —_-0.534 tan(2t9p) =—0.533
P le-e))/ e —e, (-246.6-13.4)
: yz Y 20, =-28.07deg
0 0 0
Eigen Vectors =(0.2425 0.9701 O
109701 —-0.2425 1]
For £,=100pn For €,=30.8 For £;=-264n
ArcCos(angle)=0.0 ArcCos(angle)=0.2425 ArcCos(angle)=0.9701

Angle =90degress Angle =76degress Angle =14degress



