
From equilibrium principles:
τxy = τyx , τxz = τzx  , τzy = τyz

3D Stress Components

Normal Stresses 

Shear Stresses

Normal stress (σ) : the subscript identifies the face on which the 
stress acts.  Tension is positive and compression is negative.
Shear stress (τ) : it has two subscripts. The first subscript 
denotes the face on which the stress acts. The second subscript 
denotes the direction on that face. A shear stress is positive if it 
acts on a positive face and positive direction or if it acts in a 
negative face and negative direction.

The most general state of stress at a point may 
be represented by 6 components
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For static equilibrium  τxy = τyx , τxz = τzx , τzy = τyz resulting in six independent 
scalar quantities. These six scalars can be arranged in a 3x3 matrix, giving us a stress 
tensor.

The sign convention for the stress elements is that a 
positive force on a positive face or a negative force 
on a negative face is positive. All others are negative.

The stress state is a second order tensor since it is a quantity associated with two 
directions (two subscripts direction of the surface normal and direction of the stress).
Same state of stress is represented by a different set of components if axes are rotated. 
There is a special set of components (when axes are rotated) where all the shear 
components are zero (principal stresses). 



A property of a symmetric tensor is that there exists an orthogonal set of axes 1, 2 and 
3 (called principal axes) with respect to which the tensor elements are all zero except 
for those in the diagonal.
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Eigen values

In matrix notation the transformation is known as the Eigen-values.
The principal stresses are the “new-axes” coordinate system. The angles between the 
“old-axes” and the “new-axes” are known as the Eigen-vectors.

principal stress

Cosine of angle 
between X and the 

principal stress

Cosine of angle 
between Y and the 

principal stress

Cosine of angle 
between Z and the 

principal stress

σ1 k1 l1 m1
σ2 k2 l2 m2
σ3 k3 l3 m3



State of stress in which two faces of the cubic element are free of stress.  For the 
illustrated example, the state of stress is defined by 

.0and,,     xy === zyzxzyx ττστσσ

Plane Stress

Sign Conventions for Shear Stress and Strain

The Shear Stress will be considered 
positive when a pair of shear stress 
acting on opposite sides of the 
element produce a counterclockwise 
(ccw) torque (couple).



A shear strain in an element is positive when the angle between two positive faces 
(or two negative faces) is reduced, and is negative if the angle is increased.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
0
0

yyxy

yxxx

στ
τσ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
0
0

1111

1111

yyyx

xyxx

στ
τσ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
00
00

2

1

σ
σ

1

2
σ2 σ1



Stresses on Inclined Sections
Knowing the normal and shear stresses acting in the element denoted by the xy axes, 
we will calculate the normal and shear stresses acting in the element denoted by the 
axis x1y1.
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Eliminating Ao , secθ = 1/cosθ and 
τxy=τyx

θθτθσθσσ cossin2sincos 22
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Acting in y1

τx1y1Aosecθ = − σxAosinθ + τxyAocosθ + σyAotanθcosθ − τyxAotanθsinθ

Eliminating Ao , secθ = 1/cosθ    and    τxy=τyx
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Using the following trigonometric identities:
Cos2θ = ½ (1+ cos 2θ)   
Sin2θ = ½ (1- cos 2θ)     
Sin θ cos θ = ½ sin 2θ

These equations are known as the transformation equations for plane stress.
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Transformation Equations for Plane Stress



Case 1: Uniaxial stress

Special Cases
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Case 3: Biaxial stress
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An element in plane stress is subjected to stresses σx=16000psi, σy=6000psi, and 
τxy=τyx= 4000psi (as shown in figure below). Determine the stresses acting on an
element inclined at an angle θ=45o (counterclockwise - ccw).

Solution: We will use the following transformation equations:
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Numerical substitution ( )
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A plane stress condition exists at a point on the surface of a loaded structure such as 
shown below. Determine the stresses acting on an element that is oriented at a 
clockwise (cw) angle of 15o with respect to the original element, the principal 
stresses, the maximum shear stress and the angle of inclination for the principal 
stresses

Solution: We will use the following transformation equations:
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Determine the normal stress sw acting perpendicular to the line or the weld and the shear stress 
tw acting parallel to the weld. (Assume sw is positive when it acts in tension and tw is positive 
when it acts counterclockwise against the weld).

Solution:
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Stresses acting on the weld
σw

θ
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A rectangular plate of dimensions 3.0 in x 5.0 in is formed by welding two 
triangular plates (see figure). The plate is subjected to a tensile stress of 600psi 
in the long direction and a compressive stress of 250psi in the short direction.

σw = -25psi and τw = 375psi



Principal Stresses and Maximum Shear Stresses
The sum of the normal stresses acting on perpendicular faces of plane stress 
elements is constant and independent of the angle θ.

YXYX σσσσ +=+ 11

As we change the angle θ there will be maximum and minimum normal and 
shear stresses that are needed for design purposes.

The maximum and minimum normal 
stresses are known as the principal 
stresses. These stresses are found by 
taking the derivative of σx1 with respect 
to θ and setting equal to zero.
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The subscript p indicates that the angle θp defines the orientation of the principal 
planes. The angle θp has two values that differ by 90o. They are known as the principal 
angles. For one of these angles σx1 is a maximum principal stress and for the other a 
minimum. The principal stresses occur in mutually perpendicular planes.
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The plus sign gives the algebraically 
larger principal stress and the minus 
sign the algebraically smaller principal 
stress. 

This are the in-plane principal 
stresses. The third stress is zero in 
plane stress conditions
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The location of the angle for the maximum shear stress is obtained by taking the 
derivative of τx1y1 with respect to θ and setting it equal to zero.
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The planes for maximum shear 
stress occurs at 45o to the principal 
planes. The plane of the maximum 
positive shear stress τmax is defined 
by the angle θS1 for which the 
following equations apply:

The corresponding maximum shear is given 
by the equation

Another expression for the maximum shear 
stress

The normal stresses associated with the 
maximum shear stress are equal to 
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Equations of a Circle
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Alternative sign conversion for shear 
stresses:  
(a)clockwise shear stress,
(b)counterclockwise shear stress, and 
(c) axes for Mohr’s circle.  

Note that clockwise shear stresses are 
plotted upward and counterclockwise 
shear stresses are plotted downward.

a) We can plot the normal stress σx1 positive to the right and the shear stress 
τx1y1 positive downwards, i.e. the angle 2θ will be positive when 
counterclockwise or

b) We can plot the normal stress σx1 positive to the right and the shear stress τx1y1
positive upwards, i.e. the angle 2θ will be positive when clockwise.

Both forms are mathematically correct. We use (a)

Forms of Mohr’s Circle



Two forms of Mohr’s circle: 

τx1y1 is positive downward and the angle 2θ is 
positive counterclockwise, and

τx1y1 is positive upward and the angle 2θ is positive 
clockwise.  (Note: The first form is used here)



Construction of Mohr’s circle for plane stress.



At a point on the surface of a pressurized cylinder, the 
material is subjected to biaxial stresses σx = 90MPa and σy = 
20MPa as shown in the element below.
Using the Mohr circle, determine the stresses acting on an 
element inclined at an angle θ = 30o (Sketch a properly 
oriented element).

Because the shear stress is zero, 
these are the principal stresses.
Construction of the Mohr’s circle

(σx = 90MPa,  σy = 20MPa   and  τxy = 0MPa)
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Stresses on an element inclined at θ = 30o

By inspection of the circle, the coordinates of point D are
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An element in plane stress at the surface of a large 
machine is subjected to stresses σx = 15000psi, σy = 
5000psi and τxy = 4000psi.

Using the Mohr’s circle determine the following:
a) The stresses acting on an element inclined at an 

angle    θ = 40o

b) The principal stresses and
c) The maximum shear stresses. 

Construction of Mohr’s circle:
Center of the circle (Point C):

Radius of the circle: 

Point A, representing the stresses on the x face of the element (θ = 0o) has the 
coordinates σx1 = 15000psi   and τx1y1 = 4000psi

Point B, representing the stresses on the y face of the element (θ = 90o) has the 
coordinates σy1 = 5000psi   and τy1x1 = - 4000psi
The circle is now drawn through points A and B with center C and radius R
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By inspection the angle ACP1 for 
the principal stresses (point P1) is :

Then, the angle P1CD is 80o –
38.66o = 41.34o

( ) oACPACP 66.38
5000
4000tan 11 =⇒=

Stresses on an element inclined at θ
= 40o

These are given by the coordinates of 
point D which is at an angle 2θ = 80o

from point A

Knowing this angle, we can calculate the coordinates of point D (by inspection)
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Principal Stresses
The principal stresses are represented by 
points P1 and P2 on Mohr’s circle.
The angle it was found to be 2θ = 38.66o

or θ = 19.3o

psiR
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3597640310000
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And of course, the sum of the normal stresses is 
14810psi + 5190psi = 15000psi + 5000psi



Maximum Shear Stresses
These are represented by point S1 and S2 in Mohr’s circle. Algebraically the 
maximum shear stress is given by the radius of the circle.
The angle ACS1 from point A to point S1 is  2 θS1 = 51.34o. This angle is negative 
because is measured clockwise on the circle. Then the corresponding θS1 value is –
25.7o.
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3-D stress state
Transform to

In matrix notation the transformation is known as the Eigen-values.

The principal stresses are the “new-axes” coordinate system. The angles between 
the “old-axes” and the “new-axes” are known as the Eigen-vectors.

principal stress

Cosine of angle 
between X and the 

principal stress

Cosine of angle 
between Y and the 

principal stress

Cosine of angle 
between Z and the 

principal stress
16403.1242 0.94362832 0.331006939 0
3596.876 -0.33101 0.943628 0

0 0 0 1



At a point on the surface of a generator shaft the stresses are 
σx = -50MPa, σy = 10MPa and τxy = - 40MPa as shown in the 
figure. Using Mohr’s circle determine the following: 
(a)Stresses acting on an element inclined at an angle θ = 45o,
(b)The principal stresses and
(c)The maximum shear stresses

Construction of Mohr’s circle
Center of the circle (Point C):

Radius of the circle:.

Point A, representing the stresses on the x face of the element (θ = 0o) has the 
coordinates σx1 = -50MPa   and τx1y1 = - 40MPa
Point B, representing the stresses on the y face of the element (θ = 90o) has the 
coordinates σy1 = 10MPa   and τy1x1 = 40MPa
The circle is now drawn through points A and B with center C and radius R.
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Stresses on an element 
inclined at θ = 45o

These stresses are given by 
the coordinates of point D 
(2θ = 90o of point A). To 
calculate its magnitude we 
need to determine the angles 
ACP2 and P2CD.

Then, the coordinates of point D are

And of course, the sum of the normal stresses is -50MPa+10MPa = -60MPa +20MPa
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tan ACP2=40/30=4/3  
ACP2=53.13o    

P2CD = 90o – 53.13o = 36.87o



Principal Stresses
They are represented by points P1 and 
P2 on Mohr’s circle.

The angle ACP1 is 2θP1 = 180o + 53.13o

= 233.13o or θP1 = 116.6o

The angle ACP2 is 2θP2 = 53.13o or θP2
= 26.6o

Maximum Shear Stresses
These are represented by point S1 and S2
in Mohr’s circle. 
The angle ACS1 is  2θS1 = 90o + 53.13o = 
143.13o or θ = 71.6o . 
The magnitude of the maximum shear 
stress is 50MPa and the normal stresses 
corresponding to point S1 is the average 
stress -20MPa. 
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3-D stress state Transform to

In matrix notation the transformation is known as the Eigen-values.

The principal stresses are the “new-axes” coordinate system. The angles between 
the “old-axes” and the “new-axes” are known as the Eigen-vectors.

principal stress

Cosine of angle 
between X and the 

principal stress

Cosine of angle 
between Y and the 

principal stress

Cosine of angle 
between Z and the 

principal stress

30 -0.44721359 0.894427193 0
-70 0.894427 0.447214 0
0 0 0 1



The stress transformations equations were derived solely from equilibrium 
conditions and they are material independent.
Here the material properties will be considered (strain) taking into account the 
following:
a)The material is uniform throughout the body (homogeneous)
b)The material has the same properties in all directions (isotropic)
c)The material follows Hooke’s law (linearly elastic material)
Hooke’s law: Linear relationship between stress and strain
For uniaxial stress:  
(E = modulus of elasticity or Young’s modulus)

Poisson’s ratio:  

For pure shear : (G = Shear modulus of elasticity)
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Hooke’s Law for Plane Stress



Element of material in plane stress (σz = 0).

Consider the normal strains εx, εy, εz in plane 
stress.
All are shown with positive elongation.

The strains can be expressed in terms of the 
stresses by superimposing the effect of the 
individual stresses.
For instance the strain εx in the x direction:
a)Due to the stress σx is equal to σx/E.
b)Due to the stress σy is equal to –νσy/E.
The resulting strain is:
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The shear stress causes a distortion of the element 
such that each z face becomes a rhombus.
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The normal stresses σx and σy have no 
effect on the shear strain γxy

or rearranging the equations:
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These equations are known collectively as Hooke’s Law for plane stress
These equations contain three material constants (E, G and ν) but only two are 
independent because of the relationship:
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Special cases of Hooke’s law (σz = 0)
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Biaxial stress :
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When a solid object undergoes strains, both its 
dimensions and its volume will change.

Consider an object of dimensions a, b, c. The 
original volume is Vo = abc and its final volume is 

V1 = (a + aεx) (b + bεy) (c + cεz) 
V1= abc (1+εx) (1+εy) (1+εz)

Volume Change



Upon expanding the terms:
V1 = Vo (1 + εx + εy + εz + εxεy + εxεz + εyεz + εxεyεz)

For small strains:
V1 = Vo (1 + εx + εy + εz )

The volume change is 
ΔV = V1 – Vo = Vo ( εx + εy + εz )

The unit volume change e, also known as dilatation is defines as: 
e = ΔV / Vo = εx + εy + εz

Positive strains are considered for elongations and negative strains for 
shortening, i.e. positive values of e for an increase in volume.
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We can notice that the maximum possible value of Poisson’s ratio is 0.5, because a 
larger value means that the volume decreases when the material is in tension 
(contrary to physical behavior). 



The strain energy density u is the strain energy stored in a unit volume of the 
material.Because the normal and shear strains occur independently, we can add the 
strain energy of these two elements to obtain the total energy.

Work done = Force x distance

STRAIN ENERGY DENSITY IN PLANE STRESS
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The sum of the energies due to normal stresses:
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Then the strain energy density (strain per unit volume) ( )yyxxu εσεσ +=
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Similarly, the strain energy density associated with the 
shear strain:

By combining the strain energy densities for the normal 
and shear strains:
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The strain energy density in terms 
of stress alone: GEEE
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The strain energy density in terms 
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An element of the material subjected to normal 
stresses σx, σy and σz acting in three mutually 
perpendicular directions is said to be in a state 
of triaxial stress. Since there is no shear in x, y
or z faces then the stresses σx, σy and σz are 
the principal stresses in the material. 

TRIAXIAL STRESS



If an inclined plane parallel to the z-axis is cut through the element, the only stress 
of the inclined face are the normal stress σ and the shear stress τ, both of which act 
parallel to the xy plane.

The same general conclusion hold for normal and shear stresses 
acting on inclined planes cut through the element parallel to the 
x and y axes.

Maximum Shear Stress For a material in triaxial stress, the maximum shear stresses 
occur on elements oriented at angles of 45o to the x, y and z 
axes.
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Because these stresses are independent of the σz, we can use 
the transformation equations of plane stress, as well as the 
Mohr’s circle for plane stress, when determining the stresses 
σ and τ in triaxial stress.

for the inclined plane // z-axis

for the inclined plane // x-axis

for the inclined plane // y-axis

The absolute maximum of the shear stress is the numerically largest of the above.



The stresses acting on elements oriented at 
various angles to the x, y and z axes can be 
visualized with the aid of the Mohr’s 
circle.

In this case   σx > σy > σz



Hooke’s Law for Triaxial Stress

If Hooke’s law is obeyed, it is possible to obtain the 
relationship between normal stresses and normal strains 
using the same procedure as for plane stress.
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They are known as the 
Hooke’s law for triaxial
stress.

Unit Volume Change
The unit volume change (or dilatation) for an 
element in triaxial stress is obtained in the 
same manner as for plane stress.
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Strain Energy Density

The strain energy density for an 
element in triaxial stress is 
obtained by the same method 
used for plane stress.
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In terms of the strains: 

Spherical Stress
A special case of triaxial stress, called spherical stress, occurs 
whenever all three normal stresses are equal:

0σσσσ === zyx

The Mohr’s circle is reduced to a single point. Any plane cut through the element 
will be free of shear stress and will be subjected to the same normal stress so and 
it is a principal plane.
The normal strains in spherical stress are also 
the same in all directions, provided the material 
is isotropic and if Hooke’s law applies:
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Element in spherical stress.

K = bulk or volume modulus of elasticity 

( ) e
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213
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If ν = 1/3 then K = E
If ν = 0 then K = E/3
If ν = 1/2 then K = infinite (rigid material having no 
change in volume)
These formulas also apply to and element in uniform compression,
for example rock deep within the earth or material submerged in 
water (hydrostatic stress).



PLAIN STRAIN

Strains are measured by strain gages.
A material is said to be in a state of plain strain if the only deformations are those 
in the xy plane, i.e. it has only three strain components  εx, εy and γxy.

Plain stress is analogous to plane stress, but under ordinary conditions they do 
not occur simultaneously
Exception when σx = -σy and when ν = 0

Strain components εx, εy, and γxy in the 
xy plane (plane strain).



Comparison of plane stress and plane strain.



The transformation equations for plane stress are valid even when σz is not zero, 
because σz does not enter the equations of equilibrium.Therefore, the 
transformations equations for plane stress can also be used for stresses in plane 
strain.
Similarly, the strain transformation equations that will be derived for the case of 
plain strain in the xy plane are valid even when εz is not zero, because the strain εz
does not affect the geometric relationship used for the derivation.Therefore, the 
transformations equations for plane strain can also be used for strains in plane 
stress.

APPLICATION OF THE TRANSFORMATION EQUATIONS

Transformation Equations for Plain Strain

We will assume that the strain εx, εy and γxy
associated with the xy plane are known.
We need to determine the normal and shear strains 
(εx1 and γx1y1) associated with the x1y1 axis. εy1 can 
be obtained from the equation of εx1 by substituting 
θ +90 for θ. 



For an element of size dx, dy
In the x direction: 
the strain εx produces an elongation εx dx.
The diagonal increases in length by εx dx cos θ. 

In the y direction: 
the strain εy produces an elongation εy dy.
The diagonal increases in length by εy dy sin θ. 

The shear strain γxy in the plane xy produces a 
distortion of the element such that the angle at the 
lower left corner decreases by an amount equal to 
the shear strain. Consequently, the upper face 
moves to the right by an amount γxy dy. This 
deformation results in an increase in the length of 
the diagonal equal to:   γxy dy cos θ



The total increase Δδ of the diagonal is the sum of the preceding three expressions, 
thus: ( ) ( ) ( )θγθεθε CosdySindyCosdxd xyyx ++=Δ
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Shear Strain γx1y1 associated with x1y1 axes.

γ

This strain is equal to the decrease in angle 
between lines in the material that were initially 
along the x1 and y1 axes.
Oa and Ob were the lines initially along the x1 and 
y1 axis respectively. The deformation caused by 
the strains εx, εy and γxy caused the Oa and Ob lines 
to rotate  and angle α and β from the x1 and y1 axis 
respectively. The shear strain γx1y1 is the decrease 
in angle between the two lines that originally were 
at right angles, therefore, γx1y1=α+β. 



The angle α can be found from the deformations 
produced by the strains εx, εy and γxy . The strains 
εx and γxy produce a clockwise rotation, while the 
strain εy produces a counterclockwise rotation.  

Let us denote the angle of rotation produced by 
εx , εy and γxy as α1 , α2 and α3 respectively. 
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The rotation of line Ob which initially 
was at 90o to the line Oa can be found 
by substituting θ +90 for θ in the 
expression for α. Because β is positive 
when clockwise. Thus:
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Transformation Equations for Plain Strain
Using the following trigonometric 
identities:
Cos2θ = ½ (1+ Cos 2θ)   
Sin2θ = ½ (1- Cos 2θ)     
Sin θ cos θ = ½ Sin 2θ
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PRINCIPAL STRAINS

The angle for the principal strains is : 

The value for the principal strains are
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Maximum Shear

The maximum shear strains in 
the xy plane are associated with 
axes at 45o to the directions of 
the principal strains
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For isotropic materials, at a given point in an stressed body, the principal strains 
and principal stresses occur in the same directions.



MOHR’S CIRCLE FOR PLANE STRAIN

It is constructed in the same manner 
as the Mohr’s circle for plane stress 
with the following similarities:
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Strain Measurements
An electrical-resistance strain gage is a device for measuring normal strains (ε) on 
the surface of a stressed object.
The gages are small (less than ½ inch) made of wires that are bonded to the surface of the object. Each 
gage that is stretched or shortened when the object is strained at the point, changes its electrical 
resistance. This change in resistance is converted into a measurement of strain.
From three measurements it is possible to calculate the strains in any direction. A 
group of three gages arranged in a particular pattern is called a strain rosette.
Because the rosette is mounted in the surface of the body, where the material is in 
plane stress, we can use the transformation equations for plane strain to calculate the 
strains in various directions.

45° strain rosette, and element oriented at 
an angle θ to the xy axes.



General Equations

Other Strain Rosette



An element of material in plane strain undergoes the following strains: εx=340x10-6

; εy = 110x10-6 ; γxy = 180x10-6 . Determine the following quantities: 
(a) the strains of an element oriented at an angle θ = 30o ; 
(b) the principal strains and 
(c) the maximum shear strains.

(a) Element oriented at an angle 
θ = 30o (2θ = 60o)
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(b) Principal Strains and Angle of Rotation
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(c) In-Plane Maximum Shear Strain
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(d) Out-of-Plane Maximum Shear Strain
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A 45o strain rosette (rectangular rosette) consists of three electrical-resistance strain gages, 
arranged to measure strains in two perpendicular directions and also at a 45o angle (as shown 
below). The rosette is bonded to the surface of the structure before it is loaded. Gages A, B and 
C measure the normal strains εa, εb and εc in the directions of the lines Oa, Ob and Oc, 
respectively.
Explain how to obtain the strains εx1, εy1 and γx1y1, associated with an element oriented at an 
angle θ to the xy axes.
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The following results are obtained from a 600 strain gauge 
rosette:
Strain in direction of strain gauge A = 750μ;
Strain in direction of SG B, 600 to A = 350μ;
Strain in direction of SG C, 1200 to A = 100 μ.
Determine the principal strains and their directions.
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(A) Using the transformation equations define the maximum and minimum 
principal strains, maximum shearing strain and principal angles given   
εX = 3500μ ; εY = 700μ and γXY = -1050μ

(B) Repeat using the Mohr’s circle.
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(c) In-Plane Maximum Shear Strain
( ) μμμεεγ 4.29908.6042.3595 21 =−=−=Max

(d) Out-of-Plane Maximum Shear Strain

( ) μμμεεγ 2.359502.3595 31 =−=−=Max



The state of stress at a point in a structural member is determined to be as shown. 
Knowing that for this material E=210GPa and ν=0.3, use the Mohr’s circle to 
determine: (1) the principal stresses; (2) the in-plane maximum shear stress; (3) the 
absolute maximum shear stress; (4) principal angles; (5) the strains and the principal 
strains; (6) the  maximum shear strain; (7) the principal angles. 
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2. In-Plane Maximum Shear Stress MPaRMax 8.23==τ

3. The Absolute Maximum Shear Stress (Out of plane)
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5. Strains and Principal Strains
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6. Maximum Shear Strain and Absolute Maximum Shear Strain 
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7. In-plane and Out-of-plane angles 
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