The Chelate Effect

- I. How to Make a Strong Complex
 - A. Factors Effecting M—L Binding Strength = Molecular Organization
 - 1) **Complementarity** = sum of size, geometry, and electronic matching between the metal ion and the ligand(s)
 - a) The individual components are simple and can be predicted or found experimentally
 - b) Example: HSAB Theory predicts Fe^{3+}/O^{2-} is more complementary than Fe^{3+}/S^{2-}
 - c) Example: d⁸ Ni²⁺ should have good complementarity with cyclam
 - d) Complementarity is only the first step towards complex stability
 - 2) **Constraint** = the number of and flexibility between ligand donor atoms
 - a) **Topology** = interconnectedness of donor atoms
 - **b**) **Rigidity** = how fixed in space donor atoms of the ligand are with respect to each other
 - c) These constraint factors are more difficult to grasp than complementarity
 - d) Maximizing these factors can lead to huge increases in complex stability

- B. Topological Effects
 - 1) The Chelate Effect
 - a) Two donor atoms linked together = a chelate (claw)
 - b) Chelate ligands form much more stable metal complexes than monodentate related ligands (up to 10⁵ times as stable)
 better

c) Thermodynamic Reasons for the Chelate Effect = Entropy

	ΔG	ΔH	ΔS	$\Delta(\Delta G)$	$\Delta(\Delta H)$	$\Delta(\Delta S)$
$Ni(NH_3)_2^{2+}$	-6.93	-7.8	-3			
$Ni(NH_3)_4^{2+}$	-11.08	-15.6	-15			
$Ni(NH_3)_6^{2+}$	-12.39	-24	-39			
Ni(en) ²⁺	-10.3	-9.8	+4	-3.1	-1.2	+7
$Ni(en)_2^{2+}$	-18.47	-18.3	+3	-7.4	-2.7	+18
Ni(en) ₃ ²⁺	-24.16	-28.0	-10	-11.8	-4	+29
					~1.3/ring	Largest
					(small)	Effect

- d) Kinetics and the Chelate Effect
 - i. Chelate complex formation

ii. The Steady-State Approximation yields:

$$\frac{dC}{dt} = \frac{k_1 k_2 [A][B]}{k_{-1} + k_2} - \frac{k_{-1} k_{-2} [C]}{k_{-1} + k_2}$$

Or rewriting with formation (k_f) and dissociation (k_d) constants:

$$\frac{dC}{dt} = k_{f}[A][B] - k_{d}[C] \qquad k_{f} = \frac{k_{1}k_{2}}{k_{-1} + k_{2}} \text{ and } k_{d} = \frac{k_{-1}k_{-2}}{k_{-1} + k_{2}}$$

iii. Assuming a chelate effect, $k_2 >> k_{-1}$ $k_f = \frac{k_1 k_2}{k_1 + k_2} = k_1$ (the same as for monodentate ligands)

$$k_{d} = \frac{k_{-1}k_{-2}}{k_{-1} + k_{2}} = \frac{k_{-1}k_{-2}}{k_{2}}$$

 k_{f} is not the source of the chelate effect. It is the same as other ligands iv.

v. k_d must be the source of the chelate effect (dissociation is slow!) k_{-1} is the same as for monodentate ligands

 NH_3^+

Data for k₂ (ring closing)

k₂, the formation of the second M—L bond, has been shown to be extremely large compared to a second monodentate ligand binding. This is due to the large "effective concentration" of the second donor atom of a chelate

If k_2 is large, k_d must be small;

Very fast bond reformation after the first donor dissociates is the kinetic source of the chelate effect

vi. Data

\mathbf{M}^+	L	k _f	k _d
Fe ²⁺	HCO ₂ -	7 x 10 ³	10
Fe ²⁺	C ₂ O ₄ ²⁻	$2 \ge 10^4$	3 x 10 ⁻³

- 2) The Macrocycle Effect
 - a) Macrocyclic chelate complexes are up 10⁷ times more stable than non-cyclic chelates with the same number of donors

Ni(trien)^{2+} + H^+Ni^{2+} + H_4 trien^{4+} t_{1/2} = 2 secondsNi(cyclam)^{2+} + H^+Ni^{2+} + H_4 cyclam^{4+} t_{1/2} = 2 years

- b) Connecting all of the donors (having no end group) makes k_{-2} important
 - i. Breaking the first M—L bond requires major ligand deformation
 - ii. The increase in E_a required greatly slows down k_{-2}

- c) A macrocycle is still a chelate, so it still has the k_2 chelate effect going
- d) The result is a very stable complex as k_d becomes miniscule

3) The Cryptate Effect 土窟

a) Additional connections between donor atoms in a macrocycle further enhance complex stability by making dissociation even more difficult

b) Data bridged-cyclam $Cu(H_2O)_6^{2+}$ water substitution $t_{1/2} = 1.4 \times 10^{-9} \text{ s}$ $Cu(Me_4Cyclam)$ in 1 M H⁺ $t_{1/2} = 2 \text{ s}$ $Cu(Bridged-cyclam)Cl^+$ in 1 M H⁺ $t_{1/2} > 6 \text{ years} = 1.9 \times 10^8 \text{ s}$

c) Usefulness of such stable complexes

- i. Oxidation catalysis in harsh aqueous conditions (H⁺ or OH⁻)
- ii. MRI Contrast agents that must not dissociate toxic Gd³⁺

- C. Rigidity Effects
 - 1) More rigid ligands (assuming complementarity) make more stable complexes
 - 2) Data

М	L	t _{1/2}	difference
Cu ²⁺	en	0.006 s	
Cu ²⁺	bipy	0.025 s	x 3
Cu ²⁺	spartiene	295 min	x 10 ⁶
Ni ²⁺	dien	0.07 s	
Ni ²⁺	tach	7 min	x (6 x 10 ³)
Ni ²⁺	TRI	90 days	x 10 ⁸

= N

bipy

N

- D. Encompassing Principles
 - 1) Multiple Juxtapositional Fixedness (Busch, 1970) = lack of end groups and rigidity effects leads to more stable complexes for topologically complex ligands if complementarity is satisfied
 - 2) Pre-Organization (Cram, 1984): Ligands pre-formed into size and geometry match for the metal ion do not require entropically costly reorganization to bind. This savings in entropy leads to more stable complexes Problem: Too much pre-organization can make it hard to get the metal in!

III. Stereochemistry of Reactions

- A. Retention or Inversion of Stereochemistry is possible during substitution reactions
 - 1) Retention is usually favored for D and I_D mechanisms
 - 2) Inversion is often the result of the $S_N 1CB$ mechanism
 - 3) The orientation of the ligand entering the trigonal bipyramidal intermediate determines the outcome

FIGURE 12-5 Mechanisms of Base Hydrolysis of Λ -*cis*- $[Co(en)_2Cl_2]^+$. (a) Retention of configuration in dilute hydroxide. (b) Inversion of configuration in concentrated hydroxide.

B. Substitution in *trans* complexes

1) 3 possible substitution reactions for trans- $[M(LL)_2BX] + Y$

2) Experimental Data

- a) Many factors determine the mixture of isomers in the product
- b) Example: Identity of X

TABLE 12.10 Rate Constants for Reactions of $[Co(en)_2(H_2O)X]^{n+}$ at 25 °C, $k(10^{-5} \text{ s}^{-1})$						
х	$cis \longrightarrow trans$	trans \longrightarrow cis	Racemization	H ₂ O Exchange		
OH-	200	300		160		
Br^-	5.4	16.1	—	—		
CI^{-}	2.4	7.2	2.4	—		
N_3^-	2.5	7.4	—	—		
NCS^{-}	0.0014	0.071	0.022	0.13		
H ₂ O	0.012	0.68	~ 0.015	1.0		
NH ₃	< 0.0001	0.002	0.003	0.10		
NO_2^-	0.012	0.005	_	_		

- c) Prediction is very difficult without experimental data on related complexes
- C. Substitution in *cis* complexes
 - 1) The same 3 possibilities exist as for *trans*
 - 1) The products are just as hard to predict

(b)

- D. Isomerization of Chelate Complexes
 - 1) One mechanism is simple dissociation and reattachment of one donor of the ligand. This would be identical to any other substitution reaction
 - 2) Pseudorotation
 - a) "Bailar Twist" = Trigonal twist = all three rings move together through a parallel intermediate
 - b) Tetragonal Twists = one ring stays the same and the others move

