Lecture 22: Decision rules, loss, and risk

Statistical decision theory

X: a sample from a population P € P

Decision: an action we take after observing X

A: the set of allowable actions

(A, F4): the action space

X: the range of X

Decision rule: a measurable function (a statistic) 7" from (X, Fy) to (A, F4)
If X is observed, then we take the action T'(X) € A

Performance criterion: loss function L(P,a) from P x A to [0, 00) and is Borel for each P
If X =z is observed and our decision rule is 7', then our “loss” is L(P,T(z))

It is difficult to compare L(P,T}(X)) and L(P,T3(X)) for two decision rules, 77 and T, since
both of them are random.

Risk: Average (expected) loss defined as

Ro(P) = EIL(P.T(X))] = [ L(P.T())dPx(x).

If P is a parametric family indexed by 6, the loss and risk are denoted by L(6,a) and Rr(6)

For decision rules T7 and T3, T} is as good as Ts if and only if
Rr (P) < Rp,(P) forany P e P,

and is better than T if, in addition, Ry, (P) < Ry, (P) for at least one P € P.
Two decision rules 77 and Ty are equivalent if and only if Ry, (P) = Ry, (P) for all P € P.

Optimal rule: If T, is as good as any other rule in &, a class of allowable decision rules, then
T, is S-optimal (or optimal if & contains all possible rules).

Sometimes it is useful to consider randomized decision rules.

Randomized decision rule: a function § on X' x F4 such that, for every A € Fy4, 0(-, A) is a
Borel function and, for every x € X, §(x,-) is a probability measure on (A, Fy).

If X = z is observed, our have a distribution of actions: §(z,-).

A nonrandomized decision rule T" previously discussed can be viewed as a special randomized
decision rule with 6(z, {a}) = I{o3(T(2)), a € A, x € X.

To choose an action in A when a randomized rule 0 is used, we need to simulate a pseudo-
random element of A according to d(z, -).

Thus, an alternative way to describe a randomized rule is to specify the method of simulating
the action from A for each x € X.

For example, a randomized rule can be a discrete distribution §(z,-) assigning probability
p;(z) to a nonrandomized decision rule Tj(x), j = 1,2, ..., in which case the rule § can be



equivalently defined as a rule taking value 7};(x) with probability p;(z), i.e.,

T1(X)  with probability p;(X)
T(X) =
Tp(X)  with probability px(X)

The loss function for a randomized rule ¢ is defined as

L(P,8,x) = /A L(P, a)dd(z, a),

which reduces to the same loss function we discussed when ¢ is a nonrandomized rule.
The risk of a randomized rule § is then

Rs(P) = E[L(P,8,X)] = /X /A L(P,a)d8(z, a)dPyx ().

For T'(X) defined above,
L(Pv T7 JJ) = Z L(P7 TJ(I))pj(x>

and
Rr(P) = ;E[L(P, T3(X))p; (X))

J

Example 2.19. Let X = (Xq,...,X,,) be a vector of iid measurements for a parameter
0eR.

Action space: (A, F4) = (R, B).

A common loss function in this problem is the squared error loss L(P,a) = (6 — a)?, a € A.
Let T(X) = X, the sample mean.

The loss for X is (X — 6)2.

If the population has mean p and variance 0 < oo, then
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Rx(P) =T,

is an increasing function of the population variance o2 and a decreasing function of the sam-
ple size n.
Consider another decision rule 73 (X) = (X + X@))/2.
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Ry, (P) does not have a simple explicit form if there is no further assumption on the popu-
lation P.

Suppose that P € P. Then, for some P, X (or Tj) is better than T} (or X) (exercise),
whereas for some P, neither X nor 7} is better than the other.

Consider a randomized rule:

X with probability p(X)
T1(X)  with probability 1 — p(X)

The loss for T5(X) is

(X = 0)*p(X) + [T1(X) = 07°[1 — p(X)]
and the risk of T is

Rr,(P) = E{(X — 0)’p(X) + [T1(X) — 0][1 — p(X)]}

In particular, if p(X) = 0.5, then

Rx(P)+ Rp (P
The problem in Example 2.19 is a special case of a general problem called estimation.
In an estimation problem, a decision rule T is called an estimator.
The following example describes another type of important problem called hypothesis testing.

Example 2.20. Let P be a family of distributions, Py C P, and Py = {P € P: P & Py}.
A hypothesis testing problem can be formulated as that of deciding which of the following
two statements is true:

Hy: PePy versus H,: PeP. (1)

Here, Hy is called the null hypothesis and H; is called the alternative hypothesis.

The action space for this problem contains only two elements, i.e., A = {0,1}, where 0 is
the action of accepting Hy and 1 is the action of rejecting Hj.

A decision rule is called a test.

Since a test T'(X) is a function from X to {0,1}, T(X) must have the form /o (X), where
C € Fx is called the rejection region or critical region for testing Hy versus Hj.

0-1 loss: L(P,a) = 0 if a correct decision is made and 1 if an incorrect decision is made, i.e.,
L(P,j)=0for P € P; and L(P,j) =1 otherwise, j =0, 1.

Under this loss, the risk is

P(I(X)=1)
P(T(X) =0)

P(XGC) PePy
P(X ¢C) PeP.

See Figure 2.2 on page 127 for an example of a graph of Rp(f) for some T and P in a
parametric family.



The 0-1 loss implies that the loss for two types of incorrect decisions (accepting Hy when
P € Py and rejecting Hy when P € Py) are the same.

In some cases, one might assume unequal losses: L(P,j) =0 for P € P;, L(P,0) = ¢y when
P e Py, and L(P,1) = ¢; when P € P,.

Admissibility

Definition 2.7. Let & be a class of decision rules (randomized or nonrandomized). A
decision rule 7' € & is called S-admissible (or admissible when & contains all possible rules)
if and only if there does not exist any S € & that is better than 7" (in terms of the risk).

If a decision rule T is inadmissible, then there exists a rule better than 7'.

Thus, T should not be used in principle.

However, an admissible decision rule is not necessarily good.

For example, in an estimation problem a silly estimator T'(X) = a constant may be admis-
sible.

If T, is S-optimal, then it is $-admissible.

If T, is S-optimal and Ty is S-admissible, then Ty is also S-optimal and is equivalent to 7.
If there are two G-admissible rules that are not equivalent, then there does not exist any
$-optimal rule.



