
Lecture 22: Decision rules, loss, and risk

Statistical decision theory

X: a sample from a population P ∈ P
Decision: an action we take after observing X
A: the set of allowable actions
(A,FA): the action space
X : the range of X
Decision rule: a measurable function (a statistic) T from (X ,FX ) to (A,FA)
If X is observed, then we take the action T (X) ∈ A

Performance criterion: loss function L(P, a) from P ×A to [0,∞) and is Borel for each P
If X = x is observed and our decision rule is T , then our “loss” is L(P, T (x))
It is difficult to compare L(P, T1(X)) and L(P, T2(X)) for two decision rules, T1 and T2, since
both of them are random.

Risk: Average (expected) loss defined as

RT (P ) = E[L(P, T (X))] =
∫

X
L(P, T (x))dPX(x).

If P is a parametric family indexed by θ, the loss and risk are denoted by L(θ, a) and RT (θ)

For decision rules T1 and T2, T1 is as good as T2 if and only if

RT1
(P ) ≤ RT2

(P ) for any P ∈ P ,

and is better than T2 if, in addition, RT1
(P ) < RT2

(P ) for at least one P ∈ P.

Two decision rules T1 and T2 are equivalent if and only if RT1
(P ) = RT2

(P ) for all P ∈ P.

Optimal rule: If T∗ is as good as any other rule in ℑ, a class of allowable decision rules, then
T∗ is ℑ-optimal (or optimal if ℑ contains all possible rules).

Sometimes it is useful to consider randomized decision rules.
Randomized decision rule: a function δ on X ×FA such that, for every A ∈ FA, δ(·, A) is a
Borel function and, for every x ∈ X , δ(x, ·) is a probability measure on (A,FA).
If X = x is observed, our have a distribution of actions: δ(x, ·).
A nonrandomized decision rule T previously discussed can be viewed as a special randomized
decision rule with δ(x, {a}) = I{a}(T (x)), a ∈ A, x ∈ X .

To choose an action in A when a randomized rule δ is used, we need to simulate a pseudo-
random element of A according to δ(x, ·).
Thus, an alternative way to describe a randomized rule is to specify the method of simulating
the action from A for each x ∈ X .
For example, a randomized rule can be a discrete distribution δ(x, ·) assigning probability
pj(x) to a nonrandomized decision rule Tj(x), j = 1, 2, ..., in which case the rule δ can be
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equivalently defined as a rule taking value Tj(x) with probability pj(x), i.e.,

T (X) =



























T1(X) with probability p1(X)

· · · · · ·

Tk(X) with probability pk(X)

The loss function for a randomized rule δ is defined as

L(P, δ, x) =
∫

A
L(P, a)dδ(x, a),

which reduces to the same loss function we discussed when δ is a nonrandomized rule.
The risk of a randomized rule δ is then

Rδ(P ) = E[L(P, δ, X)] =
∫

X

∫

A
L(P, a)dδ(x, a)dPX(x).

For T (X) defined above,

L(P, T, x) =
k

∑

j=1

L(P, Tj(x))pj(x)

and

RT (P ) =
k

∑

j=1

E[L(P, Tj(X))pj(X)]

Example 2.19. Let X = (X1, ..., Xn) be a vector of iid measurements for a parameter
θ ∈ R.
Action space: (A,FA) = (R,B).
A common loss function in this problem is the squared error loss L(P, a) = (θ − a)2, a ∈ A.
Let T (X) = X̄, the sample mean.
The loss for X̄ is (X̄ − θ)2.
If the population has mean µ and variance σ2 < ∞, then

RX̄(P )=E(θ − X̄)2

=(θ − EX̄)2 + E(EX̄ − X̄)2

=(θ − EX̄)2 + Var(X̄)

= (µ − θ)2 + σ2

n
.

If θ is in fact the mean of the population, then

RX̄(P ) = σ2

n
,

is an increasing function of the population variance σ2 and a decreasing function of the sam-
ple size n.
Consider another decision rule T1(X) = (X(1) + X(n))/2.
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RT1
(P ) does not have a simple explicit form if there is no further assumption on the popu-

lation P .
Suppose that P ∈ P. Then, for some P, X̄ (or T1) is better than T1 (or X̄) (exercise),
whereas for some P, neither X̄ nor T1 is better than the other.
Consider a randomized rule:

T2(X) =











X̄ with probability p(X)

T1(X) with probability 1 − p(X)

The loss for T2(X) is
(X̄ − θ)2p(X) + [T1(X) − θ]2[1 − p(X)]

and the risk of T2 is

RT2
(P ) = E{(X̄ − θ)2p(X) + [T1(X) − θ]2[1 − p(X)]}

In particular, if p(X) = 0.5, then

RT2
(P ) =

RX̄(P ) + RT1
(P )

2
.

The problem in Example 2.19 is a special case of a general problem called estimation.
In an estimation problem, a decision rule T is called an estimator.
The following example describes another type of important problem called hypothesis testing.

Example 2.20. Let P be a family of distributions, P0 ⊂ P, and P1 = {P ∈ P : P 6∈ P0}.
A hypothesis testing problem can be formulated as that of deciding which of the following
two statements is true:

H0 : P ∈ P0 versus H1 : P ∈ P1. (1)

Here, H0 is called the null hypothesis and H1 is called the alternative hypothesis.
The action space for this problem contains only two elements, i.e., A = {0, 1}, where 0 is
the action of accepting H0 and 1 is the action of rejecting H0.
A decision rule is called a test.
Since a test T (X) is a function from X to {0, 1}, T (X) must have the form IC(X), where
C ∈ FX is called the rejection region or critical region for testing H0 versus H1.
0-1 loss: L(P, a) = 0 if a correct decision is made and 1 if an incorrect decision is made, i.e.,
L(P, j) = 0 for P ∈ Pj and L(P, j) = 1 otherwise, j = 0, 1.
Under this loss, the risk is

RT (P ) =











P (T (X) = 1) = P (X ∈ C) P ∈ P0

P (T (X) = 0) = P (X 6∈ C) P ∈ P1.

See Figure 2.2 on page 127 for an example of a graph of RT (θ) for some T and P in a
parametric family.
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The 0-1 loss implies that the loss for two types of incorrect decisions (accepting H0 when
P ∈ P1 and rejecting H0 when P ∈ P0) are the same.
In some cases, one might assume unequal losses: L(P, j) = 0 for P ∈ Pj, L(P, 0) = c0 when
P ∈ P1, and L(P, 1) = c1 when P ∈ P0.

Admissibility

Definition 2.7. Let ℑ be a class of decision rules (randomized or nonrandomized). A
decision rule T ∈ ℑ is called ℑ-admissible (or admissible when ℑ contains all possible rules)
if and only if there does not exist any S ∈ ℑ that is better than T (in terms of the risk).

If a decision rule T is inadmissible, then there exists a rule better than T .
Thus, T should not be used in principle.
However, an admissible decision rule is not necessarily good.
For example, in an estimation problem a silly estimator T (X) ≡ a constant may be admis-
sible.

If T∗ is ℑ-optimal, then it is ℑ-admissible.
If T∗ is ℑ-optimal and T0 is ℑ-admissible, then T0 is also ℑ-optimal and is equivalent to T∗.
If there are two ℑ-admissible rules that are not equivalent, then there does not exist any
ℑ-optimal rule.
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