Lecture 22: Decision rules, loss, and risk

Statistical decision theory
X : a sample from a population $P \in \mathcal{P}$
Decision: an action we take after observing X
\mathcal{A} : the set of allowable actions
$\left(\mathcal{A}, \mathcal{F}_{\mathcal{A}}\right)$: the action space
\mathcal{X} : the range of X
Decision rule: a measurable function (a statistic) T from $\left(\mathcal{X}, \mathcal{F}_{\mathcal{X}}\right)$ to $\left(\mathcal{A}, \mathcal{F}_{\mathcal{A}}\right)$
If X is observed, then we take the action $T(X) \in \mathcal{A}$
Performance criterion: loss function $L(P, a)$ from $\mathcal{P} \times \mathcal{A}$ to $[0, \infty)$ and is Borel for each P If $X=x$ is observed and our decision rule is T, then our "loss" is $L(P, T(x))$
It is difficult to compare $L\left(P, T_{1}(X)\right)$ and $L\left(P, T_{2}(X)\right)$ for two decision rules, T_{1} and T_{2}, since both of them are random.

Risk: Average (expected) loss defined as

$$
R_{T}(P)=E[L(P, T(X))]=\int_{\mathcal{X}} L(P, T(x)) d P_{X}(x)
$$

If \mathcal{P} is a parametric family indexed by θ, the loss and risk are denoted by $L(\theta, a)$ and $R_{T}(\theta)$
For decision rules T_{1} and T_{2}, T_{1} is as good as T_{2} if and only if

$$
R_{T_{1}}(P) \leq R_{T_{2}}(P) \quad \text { for any } P \in \mathcal{P}
$$

and is better than T_{2} if, in addition, $R_{T_{1}}(P)<R_{T_{2}}(P)$ for at least one $P \in \mathcal{P}$.
Two decision rules T_{1} and T_{2} are equivalent if and only if $R_{T_{1}}(P)=R_{T_{2}}(P)$ for all $P \in \mathcal{P}$.
Optimal rule: If T_{*} is as good as any other rule in \Im, a class of allowable decision rules, then T_{*} is \Im-optimal (or optimal if \Im contains all possible rules).

Sometimes it is useful to consider randomized decision rules.
Randomized decision rule: a function δ on $\mathcal{X} \times \mathcal{F}_{\mathcal{A}}$ such that, for every $A \in \mathcal{F}_{\mathcal{A}}, \delta(\cdot, A)$ is a Borel function and, for every $x \in \mathcal{X}, \delta(x, \cdot)$ is a probability measure on $\left(\mathcal{A}, \mathcal{F}_{\mathcal{A}}\right)$.
If $X=x$ is observed, our have a distribution of actions: $\delta(x, \cdot)$.
A nonrandomized decision rule T previously discussed can be viewed as a special randomized decision rule with $\delta(x,\{a\})=I_{\{a\}}(T(x)), a \in \mathcal{A}, x \in \mathcal{X}$.
To choose an action in \mathcal{A} when a randomized rule δ is used, we need to simulate a pseudorandom element of \mathcal{A} according to $\delta(x, \cdot)$.
Thus, an alternative way to describe a randomized rule is to specify the method of simulating the action from \mathcal{A} for each $x \in \mathcal{X}$.
For example, a randomized rule can be a discrete distribution $\delta(x, \cdot)$ assigning probability $p_{j}(x)$ to a nonrandomized decision rule $T_{j}(x), j=1,2, \ldots$, in which case the rule δ can be
equivalently defined as a rule taking value $T_{j}(x)$ with probability $p_{j}(x)$, i.e.,

$$
T(X)= \begin{cases}T_{1}(X) & \text { with probability } p_{1}(X) \\ \cdots & \ldots \\ T_{k}(X) & \text { with probability } p_{k}(X)\end{cases}
$$

The loss function for a randomized rule δ is defined as

$$
L(P, \delta, x)=\int_{\mathcal{A}} L(P, a) d \delta(x, a)
$$

which reduces to the same loss function we discussed when δ is a nonrandomized rule. The risk of a randomized rule δ is then

$$
R_{\delta}(P)=E[L(P, \delta, X)]=\int_{\mathcal{X}} \int_{\mathcal{A}} L(P, a) d \delta(x, a) d P_{X}(x) .
$$

For $T(X)$ defined above,

$$
L(P, T, x)=\sum_{j=1}^{k} L\left(P, T_{j}(x)\right) p_{j}(x)
$$

and

$$
R_{T}(P)=\sum_{j=1}^{k} E\left[L\left(P, T_{j}(X)\right) p_{j}(X)\right]
$$

Example 2.19. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of iid measurements for a parameter $\theta \in \mathcal{R}$.
Action space: $\left(\mathcal{A}, \mathcal{F}_{\mathcal{A}}\right)=(\mathcal{R}, \mathcal{B})$.
A common loss function in this problem is the squared error loss $L(P, a)=(\theta-a)^{2}, a \in \mathcal{A}$. Let $T(X)=\bar{X}$, the sample mean.
The loss for \bar{X} is $(\bar{X}-\theta)^{2}$.
If the population has mean μ and variance $\sigma^{2}<\infty$, then

$$
\begin{aligned}
R_{\bar{X}}(P) & =E(\theta-\bar{X})^{2} \\
& =(\theta-E \bar{X})^{2}+E(E \bar{X}-\bar{X})^{2} \\
& =(\theta-E \bar{X})^{2}+\operatorname{Var}(\overline{\mathrm{X}}) \\
& =(\mu-\theta)^{2}+\frac{\sigma^{2}}{n} .
\end{aligned}
$$

If θ is in fact the mean of the population, then

$$
R_{\bar{X}}(P)=\frac{\sigma^{2}}{n}
$$

is an increasing function of the population variance σ^{2} and a decreasing function of the sample size n.
Consider another decision rule $T_{1}(X)=\left(X_{(1)}+X_{(n)}\right) / 2$.
$R_{T_{1}}(P)$ does not have a simple explicit form if there is no further assumption on the population P.
Suppose that $P \in \mathcal{P}$. Then, for some \mathcal{P}, \bar{X} (or T_{1}) is better than T_{1} (or \bar{X}) (exercise), whereas for some \mathcal{P}, neither \bar{X} nor T_{1} is better than the other.
Consider a randomized rule:

$$
T_{2}(X)= \begin{cases}\bar{X} & \text { with probability } p(X) \\ T_{1}(X) & \text { with probability } 1-p(X)\end{cases}
$$

The loss for $T_{2}(X)$ is

$$
(\bar{X}-\theta)^{2} p(X)+\left[T_{1}(X)-\theta\right]^{2}[1-p(X)]
$$

and the risk of T_{2} is

$$
R_{T_{2}}(P)=E\left\{(\bar{X}-\theta)^{2} p(X)+\left[T_{1}(X)-\theta\right]^{2}[1-p(X)]\right\}
$$

In particular, if $p(X)=0.5$, then

$$
R_{T_{2}}(P)=\frac{R_{\bar{X}}(P)+R_{T_{1}}(P)}{2} .
$$

The problem in Example 2.19 is a special case of a general problem called estimation.
In an estimation problem, a decision rule T is called an estimator.
The following example describes another type of important problem called hypothesis testing.
Example 2.20. Let \mathcal{P} be a family of distributions, $\mathcal{P}_{0} \subset \mathcal{P}$, and $\mathcal{P}_{1}=\left\{P \in \mathcal{P}: P \notin \mathcal{P}_{0}\right\}$. A hypothesis testing problem can be formulated as that of deciding which of the following two statements is true:

$$
\begin{equation*}
H_{0}: P \in \mathcal{P}_{0} \quad \text { versus } \quad H_{1}: P \in \mathcal{P}_{1} . \tag{1}
\end{equation*}
$$

Here, H_{0} is called the null hypothesis and H_{1} is called the alternative hypothesis.
The action space for this problem contains only two elements, i.e., $\mathcal{A}=\{0,1\}$, where 0 is the action of accepting H_{0} and 1 is the action of rejecting H_{0}.
A decision rule is called a test.
Since a test $T(X)$ is a function from \mathcal{X} to $\{0,1\}, T(X)$ must have the form $I_{C}(X)$, where $C \in \mathcal{F}_{\mathcal{X}}$ is called the rejection region or critical region for testing H_{0} versus H_{1}.
$0-1$ loss: $L(P, a)=0$ if a correct decision is made and 1 if an incorrect decision is made, i.e., $L(P, j)=0$ for $P \in \mathcal{P}_{j}$ and $L(P, j)=1$ otherwise, $j=0,1$.
Under this loss, the risk is

$$
R_{T}(P)= \begin{cases}P(T(X)=1)=P(X \in C) & P \in \mathcal{P}_{0} \\ P(T(X)=0)=P(X \notin C) & P \in \mathcal{P}_{1}\end{cases}
$$

See Figure 2.2 on page 127 for an example of a graph of $R_{T}(\theta)$ for some T and P in a parametric family.

The 0-1 loss implies that the loss for two types of incorrect decisions (accepting H_{0} when $P \in \mathcal{P}_{1}$ and rejecting H_{0} when $P \in \mathcal{P}_{0}$) are the same.
In some cases, one might assume unequal losses: $L(P, j)=0$ for $P \in \mathcal{P}_{j}, L(P, 0)=c_{0}$ when $P \in \mathcal{P}_{1}$, and $L(P, 1)=c_{1}$ when $P \in \mathcal{P}_{0}$.
Admissibility
Definition 2.7. Let \Im be a class of decision rules (randomized or nonrandomized). A decision rule $T \in \Im$ is called \Im-admissible (or admissible when \Im contains all possible rules) if and only if there does not exist any $S \in \Im$ that is better than T (in terms of the risk).
If a decision rule T is inadmissible, then there exists a rule better than T.
Thus, T should not be used in principle.
However, an admissible decision rule is not necessarily good.
For example, in an estimation problem a silly estimator $T(X) \equiv$ a constant may be admissible.

If T_{*} is \Im-optimal, then it is \Im-admissible.
If T_{*} is \Im-optimal and T_{0} is \Im-admissible, then T_{0} is also \Im-optimal and is equivalent to T_{*}. If there are two \Im-admissible rules that are not equivalent, then there does not exist any \Im-optimal rule.

