Lecture 22: Decision rules, loss, and risk

Statistical decision theory

X: a sample from a population $P \in \mathcal{P}$ Decision: an action we take after observing X \mathcal{A} : the set of allowable actions $(\mathcal{A}, \mathcal{F}_{\mathcal{A}})$: the action space \mathcal{X} : the range of X Decision rule: a measurable function (a statistic) T from $(\mathcal{X}, \mathcal{F}_{\mathcal{X}})$ to $(\mathcal{A}, \mathcal{F}_{\mathcal{A}})$ If X is observed, then we take the action $T(X) \in \mathcal{A}$

Performance criterion: loss function L(P, a) from $\mathcal{P} \times \mathcal{A}$ to $[0, \infty)$ and is Borel for each PIf X = x is observed and our decision rule is T, then our "loss" is L(P, T(x))It is difficult to compare $L(P, T_1(X))$ and $L(P, T_2(X))$ for two decision rules, T_1 and T_2 , since both of them are random.

Risk: Average (expected) loss defined as

$$R_T(P) = E[L(P, T(X))] = \int_{\mathcal{X}} L(P, T(X)) dP_X(X)$$

If \mathcal{P} is a parametric family indexed by θ , the loss and risk are denoted by $L(\theta, a)$ and $R_T(\theta)$ For decision rules T_1 and T_2 , T_1 is as good as T_2 if and only if

$$R_{T_1}(P) \leq R_{T_2}(P)$$
 for any $P \in \mathcal{P}$,

and is better than T_2 if, in addition, $R_{T_1}(P) < R_{T_2}(P)$ for at least one $P \in \mathcal{P}$.

Two decision rules T_1 and T_2 are *equivalent* if and only if $R_{T_1}(P) = R_{T_2}(P)$ for all $P \in \mathcal{P}$.

Optimal rule: If T_* is as good as any other rule in \Im , a class of allowable decision rules, then T_* is \Im -optimal (or optimal if \Im contains all possible rules).

Sometimes it is useful to consider randomized decision rules.

Randomized decision rule: a function δ on $\mathcal{X} \times \mathcal{F}_{\mathcal{A}}$ such that, for every $A \in \mathcal{F}_{\mathcal{A}}$, $\delta(\cdot, A)$ is a Borel function and, for every $x \in \mathcal{X}$, $\delta(x, \cdot)$ is a probability measure on $(\mathcal{A}, \mathcal{F}_{\mathcal{A}})$.

If X = x is observed, our have a distribution of actions: $\delta(x, \cdot)$.

A nonrandomized decision rule T previously discussed can be viewed as a special randomized decision rule with $\delta(x, \{a\}) = I_{\{a\}}(T(x)), a \in \mathcal{A}, x \in \mathcal{X}.$

To choose an action in \mathcal{A} when a randomized rule δ is used, we need to simulate a pseudorandom element of \mathcal{A} according to $\delta(x, \cdot)$.

Thus, an alternative way to describe a randomized rule is to specify the method of simulating the action from \mathcal{A} for each $x \in \mathcal{X}$.

For example, a randomized rule can be a discrete distribution $\delta(x, \cdot)$ assigning probability $p_j(x)$ to a nonrandomized decision rule $T_j(x)$, j = 1, 2, ..., in which case the rule δ can be

equivalently defined as a rule taking value $T_j(x)$ with probability $p_j(x)$, i.e.,

$$T(X) = \begin{cases} T_1(X) & \text{with probability } p_1(X) \\ \dots & \dots \\ T_k(X) & \text{with probability } p_k(X) \end{cases}$$

The loss function for a randomized rule δ is defined as

$$L(P, \delta, x) = \int_{\mathcal{A}} L(P, a) d\delta(x, a),$$

which reduces to the same loss function we discussed when δ is a nonrandomized rule. The risk of a randomized rule δ is then

$$R_{\delta}(P) = E[L(P, \delta, X)] = \int_{\mathcal{X}} \int_{\mathcal{A}} L(P, a) d\delta(x, a) dP_X(x).$$

For T(X) defined above,

$$L(P, T, x) = \sum_{j=1}^{k} L(P, T_j(x)) p_j(x)$$

and

$$R_T(P) = \sum_{j=1}^{k} E[L(P, T_j(X))p_j(X)]$$

Example 2.19. Let $X = (X_1, ..., X_n)$ be a vector of iid measurements for a parameter $\theta \in \mathcal{R}$.

Action space: $(\mathcal{A}, \mathcal{F}_{\mathcal{A}}) = (\mathcal{R}, \mathcal{B}).$

A common loss function in this problem is the squared error loss $L(P, a) = (\theta - a)^2$, $a \in \mathcal{A}$. Let $T(X) = \overline{X}$, the sample mean.

The loss for \bar{X} is $(\bar{X} - \theta)^2$.

If the population has mean μ and variance $\sigma^2 < \infty$, then

$$R_{\bar{X}}(P) = E(\theta - \bar{X})^2$$

= $(\theta - E\bar{X})^2 + E(E\bar{X} - \bar{X})^2$
= $(\theta - E\bar{X})^2 + \operatorname{Var}(\bar{X})$
= $(\mu - \theta)^2 + \frac{\sigma^2}{n}$.

If θ is in fact the mean of the population, then

$$R_{\bar{X}}(P) = \frac{\sigma^2}{n},$$

is an increasing function of the population variance σ^2 and a decreasing function of the sample size n.

Consider another decision rule $T_1(X) = (X_{(1)} + X_{(n)})/2.$

 $R_{T_1}(P)$ does not have a simple explicit form if there is no further assumption on the population P.

Suppose that $P \in \mathcal{P}$. Then, for some \mathcal{P} , X (or T_1) is better than T_1 (or X) (exercise), whereas for some \mathcal{P} , neither \overline{X} nor T_1 is better than the other. Consider a randomized rule:

$$T_2(X) = \begin{cases} \bar{X} & \text{with probability } p(X) \\ T_1(X) & \text{with probability } 1 - p(X) \end{cases}$$

The loss for $T_2(X)$ is

$$(\bar{X} - \theta)^2 p(X) + [T_1(X) - \theta]^2 [1 - p(X)]$$

and the risk of T_2 is

$$R_{T_2}(P) = E\{(\bar{X} - \theta)^2 p(X) + [T_1(X) - \theta]^2 [1 - p(X)]\}$$

In particular, if p(X) = 0.5, then

$$R_{T_2}(P) = \frac{R_{\bar{X}}(P) + R_{T_1}(P)}{2}.$$

The problem in Example 2.19 is a special case of a general problem called *estimation*. In an estimation problem, a decision rule T is called an *estimator*.

The following example describes another type of important problem called *hypothesis testing*.

Example 2.20. Let \mathcal{P} be a family of distributions, $\mathcal{P}_0 \subset \mathcal{P}$, and $\mathcal{P}_1 = \{P \in \mathcal{P} : P \notin \mathcal{P}_0\}$. A hypothesis testing problem can be formulated as that of deciding which of the following two statements is true:

$$H_0: P \in \mathcal{P}_0 \quad \text{versus} \quad H_1: P \in \mathcal{P}_1.$$
 (1)

Here, H_0 is called the *null hypothesis* and H_1 is called the *alternative hypothesis*.

The action space for this problem contains only two elements, i.e., $\mathcal{A} = \{0, 1\}$, where 0 is the action of accepting H_0 and 1 is the action of rejecting H_0 .

A decision rule is called a *test*.

Since a test T(X) is a function from \mathcal{X} to $\{0,1\}$, T(X) must have the form $I_C(X)$, where $C \in \mathcal{F}_{\mathcal{X}}$ is called the *rejection region* or *critical region* for testing H_0 versus H_1 .

0-1 loss: L(P, a) = 0 if a correct decision is made and 1 if an incorrect decision is made, i.e., L(P, j) = 0 for $P \in \mathcal{P}_j$ and L(P, j) = 1 otherwise, j = 0, 1.

Under this loss, the risk is

$$R_T(P) = \begin{cases} P(T(X) = 1) = P(X \in C) & P \in \mathcal{P}_0 \\ P(T(X) = 0) = P(X \notin C) & P \in \mathcal{P}_1. \end{cases}$$

See Figure 2.2 on page 127 for an example of a graph of $R_T(\theta)$ for some T and P in a parametric family.

The 0-1 loss implies that the loss for two types of incorrect decisions (accepting H_0 when $P \in \mathcal{P}_1$ and rejecting H_0 when $P \in \mathcal{P}_0$) are the same.

In some cases, one might assume unequal losses: L(P, j) = 0 for $P \in \mathcal{P}_j$, $L(P, 0) = c_0$ when $P \in \mathcal{P}_1$, and $L(P, 1) = c_1$ when $P \in \mathcal{P}_0$.

Admissibility

Definition 2.7. Let \Im be a class of decision rules (randomized or nonrandomized). A decision rule $T \in \Im$ is called \Im -*admissible* (or admissible when \Im contains all possible rules) if and only if there does not exist any $S \in \Im$ that is better than T (in terms of the risk).

If a decision rule T is inadmissible, then there exists a rule better than T.

Thus, T should not be used in principle.

However, an admissible decision rule is not necessarily good.

For example, in an estimation problem a silly estimator $T(X) \equiv$ a constant may be admissible.

If T_* is \Im -optimal, then it is \Im -admissible.

If T_* is \Im -optimal and T_0 is \Im -admissible, then T_0 is also \Im -optimal and is equivalent to T_* . If there are two \Im -admissible rules that are not equivalent, then there does not exist any \Im -optimal rule.