Second Week

Scaling Up

We normally carry out chromatography for analytical purposes (to separate and identify or
measure the components of a mixture) or for preparative purposes (to purify a significant
quantity of a component of a mixture). Analytical chromatoenaphy is usually performed with quantity of a component of a mixture). Analytucal chromatography is usually performed with thin columns that provide good separation. For preparative chromatography, we use fatter
columns that can handle more lood (Figure 22-8). important in the pharmaceutical industry, which can afford the hiph cost of separatine compounds such as aptical isomers of drugs (Box 23-1).

If you have developed a procedure to separate 2 mg of a mixture on a column with a
ameter of 1.0 cm what size column should you use to separate 20 mg of the mixture? The
diameter of 1.0 cm , what size column should you use to separate 20 mg of the mixture? The
2n-3 A Plumbers View of Chromatograpty.

FIC URE 22-10 Recelition of Giviveinn peake et equal ana and amplitude Dinthed limee thaw
Tididual peots, and solid Enes are the sum of wo peaks. Owerlipping ares is shoded
aqual to half of the peak beipht and (2) the width w at the baseline between tangents drawn
the steepest parts of the peak. From Equation 4-3 for a Gaussinn peak, it is possible to show
hat $w_{1 / 2}-235 \mathrm{o}$ and $w-4 \mathrm{o}$.
In chromatography, the resolution of two peaks from each other is defined as
Resolution: \quad Resolution $=\frac{\Delta t_{t}}{w_{\mathrm{tv}}}=\frac{\Delta V_{\mathrm{t}}}{w_{\mathrm{zv}}}=\frac{0.589 \Delta t_{\mathrm{t}}}{w_{12 \mathrm{av}}}$
here $\Delta y_{\text {, or }} \Delta V_{\pi}$ is the sparation between peaks (in units of ume or volume) and $w_{m \text { in }}$ is the verage width of the two peaks in corresponding units. (Peak width is measured at the base, shown in Figure 22-9.) Alternatively, the last expression in Equation $22-23$ uses w_{123}, the idth at half-height of Gaussian peaks. The width at half-height is usually used because if is easiest to measure. Figure 22 -10 shows the overlap of two peaks with different degrees of resolation. For quantitative analysis, a resolution >1.5 is highly desirable.
EXAMPLE Measufing Resolution
A peak with a retention time of 407 s has a width at half-height of 7.6 s . A nexghboring peak is eluted 17 s later with $w_{122}-9.4 \mathrm{~s}$. Find the resolution for these two components.
Solution

$$
\text { Resolution }-\frac{0.589 \Delta t_{t}}{w_{1 / 2 \mathrm{a}}}-\frac{0.589(17 \mathrm{~s})}{\frac{1}{2}(7.6 \mathrm{~s}+9.4 \mathrm{~s})}-1.18
$$

Test Yourse/f What difference in retention times is required for an adequate resolution of 1.5? (Answer: 21.68)

Diffusion

band of solute broadens as it moves through a chromatography column (Figure 22-1) deally, an infinitely narrow band applied to the inlet of the column emerges with a Gasssian
thep at the oulet. in less ideal dircumstances, tue band becones mymmetic.
One main cause of band spreading is diffusion, which is the net transport of a solute from a region of high concentration to a region of low concentration caused by the random
$22-4$ Efficiency of Separation

Solute	Solvent	Diffushon coefficient ($\mathrm{m}^{2} / 5$)
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$	23×10^{-9}
Sucrose	$\mathrm{H}_{2} \mathrm{O}$	0.52×10^{-9}
Glycine	$\mathrm{H}_{2} \mathrm{O}$	1.1×10^{-9}
$\mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{H}_{2} \mathrm{O}$	1.6×10^{-9}
Ribonuclease (FM 13 700)	$\mathrm{H}_{2} \mathrm{O}(293 \mathrm{~K})$	0.12×10^{-9}
Serum albumin (FM 66000)	$\mathrm{H}_{2} \mathrm{O}(293 \mathrm{~K})$	0.059×10^{-7}
I_{2}	Hexase	40×10^{-9}
CCl_{4}	Heptane	3.2×10^{-9}
N_{2}	CCL_{4}	3.4×10^{-9}
$\mathrm{CS}_{2}(\mathrm{~g})$	Air (293 K)	1.0×10^{-5}
O_{2} (g)	Air (273 K)	1.8×10^{-5}
H^{+}	$\mathrm{H}_{2} \mathrm{O}$	9.3×10^{-9}
OH	$\mathrm{H}_{2} \mathrm{O}$	5.3×10^{-9}
Li^{+}	$\mathrm{H}_{2} \mathrm{O}$	1.0×10^{-9}
$\mathrm{Na}{ }^{\text {+ }}$	$\mathrm{H}_{2} \mathrm{O}$	1.3×10^{-7}
K^{+}	$\mathrm{H}_{2} \mathrm{O}$	20×10^{-9}
Cl	$\mathrm{H}_{2} \mathrm{O}$	20×10^{-9}
1	$\mathrm{H}_{2} \mathrm{O}$	20×10^{-9}

Table 22-1 shows that diffusion in liquids is 10° times slower than diffusion in gases. Macromolecules such as ribonuclease and albumin diffuse 10 to 100 times slower than small molecules.
If solute begins its journey through a column in an infinitely sharp layer with m moles per
unit cross-sectional area of the column and spreads by diffution as it travels, then the Gaussian profile of the band is described by
Broadening of chromatography wher c is coacentration $\left(\mathrm{mol} / \mathrm{m}^{3}\right), t$ is time, and x is the distance along the column from the ays $x-0$ in this equation. Comparison of Equations $22-25$ and 4.3 shows that the standard deviation of the band is
standard deviation of hand: $\quad \sigma-\sqrt{2 D t}$
Plate Height: A Measure of Column Efficienc
Equation $22-26$ tells us that the standard deviation for diffusive band spreading is $\sqrt{2 D t}$. If solute has traveled a distance x at the linear flow rate $u_{\mathrm{N}}(\mathrm{m} / \mathrm{s})$, then the time it has been on the column is $t=I / M_{\mathrm{z}}$. Therefore

$$
\begin{gathered}
\sigma^{2}=2 D \mathrm{t}=2 D \frac{x}{u_{x}}-\underbrace{\left(\frac{2 D}{u_{x}}\right) \mathrm{I}}_{\text {Mas lnigfu }-l t}=H \mathrm{Hx} \\
H-a^{2} / x
\end{gathered}
$$

(22-27)
Plate height, $l l$, is the constant of proportionality between the variance, σ^{2}, of the band and the distance it has uraveled, x. The name came from the theory of distillation in which separation could be performed in discrete stages called plates. Plate height is also called the height equivalent to a theoretical plate. It is approximately the length of column required for one equilibration of solute between mobile and stationary phases. We explore this concept later in Box 22-2. The smaller the plate height, the narrower the bandwidth
The ability of a column to separate components of a mixture is improved by decreasing plate height. An efficient column has more theoretical plates than an inefficient column.

22-4 Efficiency of Separation

FIGURE 22-13 The fur of molecule FIGURE 22-13 The furs of molecule
diffusing accoss a plane of unit anes is
 to the diflusion coseflidient: $f=-D(d / d$ d $)$.

Banowidth $=\sqrt{\text { r }}$.f elution lime increases by a facoor of 4 , ${ }^{3}$
$u_{2}=$ linear flow rare (distrance/time) $u_{s}=$ volume flow rate (volume/time)

As a teenaget, A.I. R. Martin, coimentior of panition chromatograpty, built disselarion columns in discrete sectians from coffee cans. We dorit know what he was dissting) when dromatography, he adopted terms from distataion theory.

Different solutes passing through the same column have different plate heights because they have different diffusion coefficients. Plate heights are -0.1 to 1 mm in gas chromatography.
Plate height is the length j^{2} / x, where o is the stundard deviation of the Gaussian hand in
2n-9and x is the dist moe traweled For soluto emerging from a column of bogth I the gure $22-9$ and x is the distanoe traveled For solute emerging from a column of length L -

$$
N-\frac{L}{H}-\frac{L x}{\sigma^{2}}-\frac{L^{2}}{\sigma^{2}}-\frac{16 L^{2}}{w^{2}}
$$

hecause $-L$ and $\sigma-w / 4$. In this expression, w has units of length and the number of plates is dimeasionless. If we express L and w (or σ) in units of time instead of length, N is still dimensionless. We obtain a useful expression for N by writing
oase a peak with a retention facor greas 5 when you measure plare height for a colurn.
$N=\frac{1 G_{t}^{2}}{w^{2}}=\frac{t_{5}^{2}}{v^{2}}$
22-28a)
where t, is the reteation time of the peak and w is the width at the base in Figure $22-9$ in units of time. If we use the width at half-height, also called the half-width, instead of the width at the base, we gel

Chalenge if N is canstant, show that the wioth of a ctromatographic peak increases proportion in retention time. That is, suporie peaks in a chromazogran stould

$$
N-\frac{5.55 t_{x}^{2}}{w_{i / 2}^{2}}
$$

