## First Week

22-2 What is Chromatography?

In 1003 in warssw, the botanist m Twetr
inveried $2 d$ dopption thromanography to separte plant pigments, using a trydrocarton
solvent and inulin powider (a cabobtydrite) 55 gationary phase the separaion of colored bands led to the name ctromarograpty, from the Greek ctromatos (color") and grophein (to whiter)-"colot whing " Trwerl fiter found wat $\mathrm{CaCO}_{5}$ or sucrose could also be used as ationaty phaser ${ }^{2}$
Chromutography lay dormant una Tswerts nethods were applied, begirning in 1931, to R. Kuth in Heidelberg, P. Karrer in Zurich, and Z Zechmeiser in Hungar ${ }^{7}$ Dufing the 1930 s, acsoption crramatograptry became an srablished tooll in bioctemistry.

Chromutography operates on the sane principle as extraction, but one phase is held in place while the other moves past it ${ }^{\text {ts }}$ Figure $22-5$ shows a solution containing solutes A and B placed on lop of a column packed with solid particles and niled with solvent. When the out ke is opened, solutes A and B flow down into the column. Fresh solvent is then applied to the top of the column and the mixture is washed down the column by contimuous solvent flow. I solute A is more strongly adsorted than solute B on the solid particles, then solute A spends han solute B and emerges at the bottom after solute B . We have just separated a mixture into than solute B and emerges at the botion after solute B. We have just separated a mixture into The mile phase (the saphy.
The mobile phase (the solvent moving through the column) in chronutography is either a liquid or a gas. The stationary phase (the one that stays in place inside the column) is mos surface of solid particles packed in the column. Alternatively, as in Figure 22-5, the solid particles themselves may be the stationary phase. In any case, the partitioning of solutes between mobile and stationary phases gives rise to separation.
Fluid entering the column is called elvent. Fluid emerging from the end of the column is called cluate:
duent in $\rightarrow$ COLUMN $\rightarrow$ eluate ou

The process of passing liquid or gas through a chromatography column is called elution.


FIC URE 22.5 The ises betind ctromatographr colite A , with a grester affinity than colite B for the stationsry phsse, nemairs on the column longet: Psnelf if a meornterution of the sepsustion of pignents re different pigmerts. The lower stionary phsse is $\mathrm{Co}(\mathrm{OH})_{2}$ and the upper tationary phsse is $\mathrm{CaCO}_{3}$


Columns are either packed or open tubular. A packed column is filled with particles of Columas are etber packed or open tubular. A packed column is falled with particles of stationary phase, as in Figure 22-5. An opea

Types of Chromatography
Chromatography is divided into categories on the basis of the mechanism of interaction of the solute with the stationary phase, as shown in Fisure 22-6.
Adsorption chromatography, A solid stationary phase and a liquid or gaseous mobile phase are used. Solute is adsorted on the surface of the solid particles. The more stroagly a solute is adsorbed, the slower it travels through the column.
Partition chromatography. A liquid stationary phase is bonded to a solid surface, which is typically the inside of the silica $\left(\mathrm{SiO}_{2}\right)$ chromatography column in gas chromatograp flowias gas in gas chromatography,
lon exchange chromatography. Anioos such as - $\mathrm{SO}_{3}^{-}$or cations such as - $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ gre covaleatly attached to the stationary solid phase, usually a revin. Solute ions of he opposite charge are atracted to the stationary phase. The mobile phase is a liquid.
Molecular exclusion chromatography. Also called size exclusion, gel filtration, or gel permeation chromatography, this technique separates molecules by size, with the larger solutes passing through most quickly. In the ideal case of molecular exclusion, there is no attractive intersction between the stationary phase and the solute. Rather, the liquid or gaseous mobile phase passes through a porous gel. The pores are small enough to exclude large solute molecules but not small ones. Large molecules stream past withou entering the pores. Small molecules take longer to pass through the column because they enter
Afinity chromatography. This most selective kind of chromatography employs specific interactions betwoen one kind of solute molecule and a second molecule that is covalently attached (immobilized) to the stationary phase. For example, the
immobilized molecule might be an antibody to a particular protein. When a mixture containing a thousand proteins is passed through the column, oaly the one protein that reacts with the antibody binds to the colurnn. After all other solutes have been washed from the column, the desired protein is dislodged by changing the pH or ionic streagth.

This form of dromatograply was invented by Tswett in 1903

For mheir pioneeting work on liquid-Iquid
parition ctromatograply in 1941, a Nobel Prite in 1952.
B. A- Adams and E. $L$. Homes develcped th
B. A. Adams and E. L. Holmes develcped the
farst sinthetic ion-ecthange resins in 1935. first syncteticion-echange resins in 1935.
Resins are relatively harc, amorphous organic solids. Gels are relasvely soft.

The Chromatogram
tued fom a ciromatograpry colunir are observed win dectors described in later chapters. A chromatogram is a graph showing the detector response as a function of elution

ime. Figure 22.7 shows what might be observed when a mixture of octane, nooane, and an unknown are separated by gas chromutograplyy, which is described in Chapter 23 . The retention time, $t_{l}$, for each component is the time that elapses between injection of the mixture onto
the column and the arrival of that component at the detector. Retention volume, $V_{v}$ is the olume of mobile phase required to elute a particular solute from the column.
Mobile phase or an unretained solute travels through the column in the minimum possible time, $t_{\text {m }}$ The adjusted retention time, $t_{r}^{\prime}$, for a retained solute is the additional time required to travel the length of the column, beyond that required by solvent:
Adjasted retention time: $\quad t_{;}-t_{z}-t_{m}$
(22-14)
In gas chromatography, $f_{\mathrm{m}}$ is usually taken as the time noeded for $\mathrm{CH}_{4}$ to travel through the column (Figure 22-7)
For two components 1 and 2, the relative retention. $\alpha$ (also called separation factor) is the ratio of their adjusted retention times:

Relative retention: $\quad \alpha=\frac{t_{i 2}^{\prime}}{l_{1}}$
(22-15)
where $t_{2}^{\prime}>t_{1}^{\prime}, 50, \alpha>1$. The greater the relative retention, the greater the separation between wo components. Relative retention is fairly independent of flow rate and can therefore b used to help identify peaks when the flow rate changes
For componeat 2 eluted after component I, the unadjusted relative retention, $\gamma$ is the ratio of their unadjusted retention times:

Unadfusted relative retention: $\quad y-\frac{t_{12}}{t_{11}}$
(22-16)
The unadjusted relative retention is the inverse of the ratio of the speeds at which the two components travel.
For each peak in the chromatogram, the retention factor, $k$, is the time required to clute hat peak minus the time $t_{\text {m }}$ required for mobile phase to pass through the column, expressed in multiples of $t_{\mathrm{m}}$.

Retention factor:

$$
\begin{equation*}
k=\frac{t_{4}-I_{m}}{t_{\mathrm{m}}} \tag{22-17}
\end{equation*}
$$

The longer a component is retained by the column, the greater is the retention factor It takes volume $V$ to push solvent foom the beeinning of the column to the end of the column. If takes an additional volume $3 V_{\mathrm{m}}$ to elute a solute, then the retention factor for that solute is 3

FICURE 22-7 Schernatic gas chromatogram
showing messurement of retention times.

Relation Between Retention Time and the Partition Coefficient
The retention factor in Equation 22-17 is equivalent to

$$
k=\frac{\text { time solute spends in stationary phase }}{\text { time solute spends in mobile phase }}
$$

et's see why this is true. If the solute spends all its time in the mobile phase and none in the staionary phase, it would be cluted in time $f_{m}$. Puting $t_{r}=f_{m}$ into Equation $22-17$ gives $k=0$. because solute spends no time in the stationary phase. Suppose that solute spends equal time in the stationary and mobile phases. The retention time would then be $t_{\mathrm{r}}=2 t_{\mathrm{m}}$ and $\mathrm{k}=$ $\left(2 t_{\mathrm{m}}-t_{\mathrm{m}}\right)_{\mathrm{m}}-1$. If solute spends three times as much time in the stationary plasse as in the mbile phase, $t_{\mathrm{t}}-4 t_{\mathrm{m}}$ and $k-\left(4 t_{\mathrm{m}}-t_{m}\right) t_{\mathrm{m}}-3$.
If solute spends three times as much time in the stationary phase as in the mobile phase, there will be three times as many moles of solute in the stationary phase as in the mobile phase at any time. The quotieat in Equation 22 -18a is equivalent to
$\frac{\text { Time solute spends in stationary phase }}{\text { Time solute spends in mobile phase }}-\frac{\text { moles of solute in stationary phase }}{\text { moles of solute in nobile plase }}$
$\hbar-\frac{c_{s} V_{n}}{c_{m} V_{m}}$
here $c_{x}$ is the concentration of solute in the stationary phase, $V$, is the volume of the stationary phase, $c_{\mathrm{m}}$ is the concentration of solute in the mobile phase, and $V_{\mathrm{m}}$ is the volume of the mobile phase.
The quoctient $c_{1} / c_{\mathrm{m}}$ is the ratio of concentrations of solute in the stationary and mobile phases. If the column is rua slowly enough to be at equilibrium, the quxient $c_{1} / c_{m}$ is the partition coefficient, $K$, introduced in connectioa with solvent extraction. Therefore, we cast Equation $22-18$ b in the form


$$
-K \overline{V_{\mathrm{m}}}-\overline{I_{\mathrm{m}}}-\frac{\overline{m_{\mathrm{m}}}}{r_{\mathrm{m}}}
$$

physca bass of chromamgophy
The greater the ratio of partaion coefficiens between mobile and stationay phases,
the greater tie separaion between two components of a mature.
 wobele phases. Because $t_{t}^{\prime} \propto \mathbb{K} \propto K$, relative retention can also be expressed as
Relative retention: $\quad \alpha=\frac{t_{r 2}^{r}}{t_{r 1}^{r}}-\frac{k_{2}}{k_{1}}-\frac{K_{2}}{K_{1}} \quad$ (22-20)

That is, the relative retention of two solutes is proportional to the ratio of their partition coefficients. This relation is the physical basis of chromatography

546
Retention volume, $V_{\mathrm{r}}$ is the volume of mobile phase required to elate a particular solute
from the column:
Retention volume:

$$
V_{\mathrm{r}}-t_{\mathrm{r}}-u_{\mathrm{v}}
$$

where $u_{\mathrm{v}}$ is the volume thow rate (wolume per unit time) of the moble phase. The reteation volume of a particular solute is constant over a range of flow rates.
volume is proporticnal to time, so any ratio of times an be wrimen as the corresponding rato of volumes. if $\mathrm{V}_{\mathrm{m}}$ is the elution volume for urreetained solune,

$$
k=\frac{t_{t}-t_{m}}{t_{m}}=\frac{v_{t}-v_{m}}{v_{m}}
$$

