
Chapter 4

Mathematical Expectation

4.1 Mean of a Random Variable

In Chapter 1, we discussed the sample mean, which is the arithmetic mean of the
data. Now consider the following. If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the values of X are 0, 1, and 2. Suppose
that the experiment yields no heads, one head, and two heads a total of 4, 7, and 5
times, respectively. The average number of heads per toss of the two coins is then

(0)(4) + (1)(7) + (2)(5)

16
= 1.06.

This is an average value of the data and yet it is not a possible outcome of {0, 1, 2}.
Hence, an average is not necessarily a possible outcome for the experiment. For
instance, a salesman’s average monthly income is not likely to be equal to any of
his monthly paychecks.

Let us now restructure our computation for the average number of heads so as
to have the following equivalent form:

(0)

(
4

16

)
+ (1)

(
7

16

)
+ (2)

(
5

16

)
= 1.06.

The numbers 4/16, 7/16, and 5/16 are the fractions of the total tosses resulting in 0,
1, and 2 heads, respectively. These fractions are also the relative frequencies for the
different values of X in our experiment. In fact, then, we can calculate the mean,
or average, of a set of data by knowing the distinct values that occur and their
relative frequencies, without any knowledge of the total number of observations in
our set of data. Therefore, if 4/16, or 1/4, of the tosses result in no heads, 7/16 of
the tosses result in one head, and 5/16 of the tosses result in two heads, the mean
number of heads per toss would be 1.06 no matter whether the total number of
tosses were 16, 1000, or even 10,000.

This method of relative frequencies is used to calculate the average number of
heads per toss of two coins that we might expect in the long run. We shall refer
to this average value as the mean of the random variable X or the mean of
the probability distribution of X and write it as μx or simply as μ when it is
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112 Chapter 4 Mathematical Expectation

clear to which random variable we refer. It is also common among statisticians to
refer to this mean as the mathematical expectation, or the expected value of the
random variable X, and denote it as E(X).

Assuming that 1 fair coin was tossed twice, we find that the sample space for
our experiment is

S = {HH,HT, TH, TT}.
Since the 4 sample points are all equally likely, it follows that

P (X = 0) = P (TT ) =
1

4
, P (X = 1) = P (TH) + P (HT ) =

1

2
,

and

P (X = 2) = P (HH) =
1

4
,

where a typical element, say TH, indicates that the first toss resulted in a tail
followed by a head on the second toss. Now, these probabilities are just the relative
frequencies for the given events in the long run. Therefore,

μ = E(X) = (0)

(
1

4

)
+ (1)

(
1

2

)
+ (2)

(
1

4

)
= 1.

This result means that a person who tosses 2 coins over and over again will, on the
average, get 1 head per toss.

The method described above for calculating the expected number of heads
per toss of 2 coins suggests that the mean, or expected value, of any discrete
random variable may be obtained by multiplying each of the values x1, x2, . . . , xn

of the random variable X by its corresponding probability f(x1), f(x2), . . . , f(xn)
and summing the products. This is true, however, only if the random variable is
discrete. In the case of continuous random variables, the definition of an expected
value is essentially the same with summations replaced by integrations.

Definition 4.1: Let X be a random variable with probability distribution f(x). The mean, or
expected value, of X is

μ = E(X) =
∑
x

xf(x)

if X is discrete, and

μ = E(X) =

∫ ∞

−∞
xf(x) dx

if X is continuous.

The reader should note that the way to calculate the expected value, or mean,
shown here is different from the way to calculate the sample mean described in
Chapter 1, where the sample mean is obtained by using data. In mathematical
expectation, the expected value is calculated by using the probability distribution.
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However, the mean is usually understood as a “center” value of the underlying
distribution if we use the expected value, as in Definition 4.1.

Example 4.1: A lot containing 7 components is sampled by a quality inspector; the lot contains
4 good components and 3 defective components. A sample of 3 is taken by the
inspector. Find the expected value of the number of good components in this
sample.

Solution : Let X represent the number of good components in the sample. The probability
distribution of X is

f(x) =

(
4
x

)(
3

3−x

)(
7
3

) , x = 0, 1, 2, 3.

Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) =
4/35. Therefore,

μ = E(X) = (0)

(
1

35

)
+ (1)

(
12

35

)
+ (2)

(
18

35

)
+ (3)

(
4

35

)
=

12

7
= 1.7.

Thus, if a sample of size 3 is selected at random over and over again from a lot
of 4 good components and 3 defective components, it will contain, on average, 1.7
good components.

Example 4.2: A salesperson for a medical device company has two appointments on a given day.
At the first appointment, he believes that he has a 70% chance to make the deal,
from which he can earn $1000 commission if successful. On the other hand, he
thinks he only has a 40% chance to make the deal at the second appointment,
from which, if successful, he can make $1500. What is his expected commission
based on his own probability belief? Assume that the appointment results are
independent of each other.

Solution : First, we know that the salesperson, for the two appointments, can have 4 possible
commission totals: $0, $1000, $1500, and $2500. We then need to calculate their
associated probabilities. By independence, we obtain

f($0) = (1− 0.7)(1− 0.4) = 0.18, f($2500) = (0.7)(0.4) = 0.28,

f($1000) = (0.7)(1− 0.4) = 0.42, and f($1500) = (1− 0.7)(0.4) = 0.12.

Therefore, the expected commission for the salesperson is

E(X) = ($0)(0.18) + ($1000)(0.42) + ($1500)(0.12) + ($2500)(0.28)

= $1300.

Examples 4.1 and 4.2 are designed to allow the reader to gain some insight
into what we mean by the expected value of a random variable. In both cases the
random variables are discrete. We follow with an example involving a continuous
random variable, where an engineer is interested in the mean life of a certain
type of electronic device. This is an illustration of a time to failure problem that
occurs often in practice. The expected value of the life of a device is an important
parameter for its evaluation.
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Example 4.3: Let X be the random variable that denotes the life in hours of a certain electronic
device. The probability density function is

f(x) =

{
20,000
x3 , x > 100,

0, elsewhere.

Find the expected life of this type of device.
Solution : Using Definition 4.1, we have

μ = E(X) =

∫ ∞

100

x
20, 000

x3
dx =

∫ ∞

100

20, 000

x2
dx = 200.

Therefore, we can expect this type of device to last, on average, 200 hours.
Now let us consider a new random variable g(X), which depends on X; that

is, each value of g(X) is determined by the value of X. For instance, g(X) might
be X2 or 3X − 1, and whenever X assumes the value 2, g(X) assumes the value
g(2). In particular, if X is a discrete random variable with probability distribution
f(x), for x = −1, 0, 1, 2, and g(X) = X2, then

P [g(X) = 0] = P (X = 0) = f(0),

P [g(X) = 1] = P (X = −1) + P (X = 1) = f(−1) + f(1),

P [g(X) = 4] = P (X = 2) = f(2),

and so the probability distribution of g(X) may be written

g(x) 0 1 4
P [g(X) = g(x)] f(0) f(−1) + f(1) f(2)

By the definition of the expected value of a random variable, we obtain

μg(X) = E[g(x)] = 0f(0) + 1[f(−1) + f(1)] + 4f(2)

= (−1)2f(−1) + (0)2f(0) + (1)2f(1) + (2)2f(2) =
∑
x

g(x)f(x).

This result is generalized in Theorem 4.1 for both discrete and continuous random
variables.

Theorem 4.1: Let X be a random variable with probability distribution f(x). The expected
value of the random variable g(X) is

μg(X) = E[g(X)] =
∑
x

g(x)f(x)

if X is discrete, and

μg(X) = E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx

if X is continuous.
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Example 4.4: Suppose that the number of cars X that pass through a car wash between 4:00
P.M. and 5:00 P.M. on any sunny Friday has the following probability distribution:

x 4 5 6 7 8 9

P (X = x) 1
12

1
12

1
4

1
4

1
6

1
6

Let g(X) = 2X−1 represent the amount of money, in dollars, paid to the attendant
by the manager. Find the attendant’s expected earnings for this particular time
period.

Solution : By Theorem 4.1, the attendant can expect to receive

E[g(X)] = E(2X − 1) =

9∑
x=4

(2x− 1)f(x)

= (7)

(
1

12

)
+ (9)

(
1

12

)
+ (11)

(
1

4

)
+ (13)

(
1

4

)
+ (15)

(
1

6

)
+ (17)

(
1

6

)
= $12.67.

Example 4.5: Let X be a random variable with density function

f(x) =

{
x2

3 , −1 < x < 2,

0, elsewhere.

Find the expected value of g(X) = 4X + 3.
Solution : By Theorem 4.1, we have

E(4X + 3) =

∫ 2

−1

(4x+ 3)x2

3
dx =

1

3

∫ 2

−1

(4x3 + 3x2) dx = 8.

We shall now extend our concept of mathematical expectation to the case of
two random variables X and Y with joint probability distribution f(x, y).

Definition 4.2: Let X and Y be random variables with joint probability distribution f(x, y). The
mean, or expected value, of the random variable g(X,Y ) is

μg(X,Y ) = E[g(X,Y )] =
∑
x

∑
y

g(x, y)f(x, y)

if X and Y are discrete, and

μg(X,Y ) = E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy

if X and Y are continuous.

Generalization of Definition 4.2 for the calculation of mathematical expectations
of functions of several random variables is straightforward.
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Example 4.6: Let X and Y be the random variables with joint probability distribution indicated
in Table 3.1 on page 96. Find the expected value of g(X,Y ) = XY . The table is
reprinted here for convenience.

x Row
f(x, y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

Column Totals 5
14

15
28

3
28 1

Solution : By Definition 4.2, we write

E(XY ) =

2∑
x=0

2∑
y=0

xyf(x, y)

= (0)(0)f(0, 0) + (0)(1)f(0, 1)

+ (1)(0)f(1, 0) + (1)(1)f(1, 1) + (2)(0)f(2, 0)

= f(1, 1) =
3

14
.

Example 4.7: Find E(Y/X) for the density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere.

Solution : We have

E

(
Y

X

)
=

∫ 1

0

∫ 2

0

y(1 + 3y2)

4
dxdy =

∫ 1

0

y + 3y3

2
dy =

5

8
.

Note that if g(X,Y ) = X in Definition 4.2, we have

E(X) =

⎧⎨⎩
∑
x

∑
y
xf(x, y) =

∑
x
xg(x) (discrete case),∫∞

−∞
∫∞
−∞ xf(x, y) dy dx =

∫∞
−∞ xg(x) dx (continuous case),

where g(x) is the marginal distribution of X. Therefore, in calculating E(X) over
a two-dimensional space, one may use either the joint probability distribution of
X and Y or the marginal distribution of X. Similarly, we define

E(Y ) =

⎧⎨⎩
∑
y

∑
x
yf(x, y) =

∑
y
yh(y) (discrete case),∫∞

−∞
∫∞
−∞ yf(x, y) dxdy =

∫∞
−∞ yh(y) dy (continuous case),

where h(y) is the marginal distribution of the random variable Y .
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Exercises

4.1 The probability distribution of X, the number of
imperfections per 10 meters of a synthetic fabric in con-
tinuous rolls of uniform width, is given in Exercise 3.13
on page 92 as

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Find the average number of imperfections per 10 me-
ters of this fabric.

4.2 The probability distribution of the discrete ran-
dom variable X is

f(x) =

(
3

x

)(
1

4

)x (
3

4

)3−x

, x = 0, 1, 2, 3.

Find the mean of X.

4.3 Find the mean of the random variable T repre-
senting the total of the three coins in Exercise 3.25 on
page 93.

4.4 A coin is biased such that a head is three times
as likely to occur as a tail. Find the expected number
of tails when this coin is tossed twice.

4.5 In a gambling game, a woman is paid $3 if she
draws a jack or a queen and $5 if she draws a king or
an ace from an ordinary deck of 52 playing cards. If
she draws any other card, she loses. How much should
she pay to play if the game is fair?

4.6 An attendant at a car wash is paid according to
the number of cars that pass through. Suppose the
probabilities are 1/12, 1/12, 1/4, 1/4, 1/6, and 1/6,
respectively, that the attendant receives $7, $9, $11,
$13, $15, or $17 between 4:00 P.M. and 5:00 P.M. on
any sunny Friday. Find the attendant’s expected earn-
ings for this particular period.

4.7 By investing in a particular stock, a person can
make a profit in one year of $4000 with probability 0.3
or take a loss of $1000 with probability 0.7. What is
this person’s expected gain?

4.8 Suppose that an antique jewelry dealer is inter-
ested in purchasing a gold necklace for which the prob-
abilities are 0.22, 0.36, 0.28, and 0.14, respectively, that
she will be able to sell it for a profit of $250, sell it for
a profit of $150, break even, or sell it for a loss of $150.
What is her expected profit?

4.9 A private pilot wishes to insure his airplane for
$200,000. The insurance company estimates that a to-
tal loss will occur with probability 0.002, a 50% loss
with probability 0.01, and a 25% loss with probability

0.1. Ignoring all other partial losses, what premium
should the insurance company charge each year to re-
alize an average profit of $500?

4.10 Two tire-quality experts examine stacks of tires
and assign a quality rating to each tire on a 3-point
scale. Let X denote the rating given by expert A and
Y denote the rating given by B. The following table
gives the joint distribution for X and Y .

y
f(x, y) 1 2 3

1 0.10 0.05 0.02
x 2 0.10 0.35 0.05

3 0.03 0.10 0.20

Find μX and μY .

4.11 The density function of coded measurements of
the pitch diameter of threads of a fitting is

f(x) =

{
4

π(1+x2)
, 0 < x < 1,

0, elsewhere.

Find the expected value of X.

4.12 If a dealer’s profit, in units of $5000, on a new
automobile can be looked upon as a random variable
X having the density function

f(x) =

{
2(1− x), 0 < x < 1,

0, elsewhere,

find the average profit per automobile.

4.13 The density function of the continuous random
variable X, the total number of hours, in units of 100
hours, that a family runs a vacuum cleaner over a pe-
riod of one year, is given in Exercise 3.7 on page 92
as

f(x) =

⎧⎨⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Find the average number of hours per year that families
run their vacuum cleaners.

4.14 Find the proportion X of individuals who can be
expected to respond to a certain mail-order solicitation
if X has the density function

f(x) =

{
2(x+2)

5
, 0 < x < 1,

0, elsewhere.
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4.15 Assume that two random variables (X,Y ) are
uniformly distributed on a circle with radius a. Then
the joint probability density function is

f(x, y) =

{
1

πa2 , x2 + y2 ≤ a2,

0, otherwise.

Find μX , the expected value of X.

4.16 Suppose that you are inspecting a lot of 1000
light bulbs, among which 20 are defectives. You choose
two light bulbs randomly from the lot without replace-
ment. Let

X1 =

{
1, if the 1st light bulb is defective,

0, otherwise,

X2 =

{
1, if the 2nd light bulb is defective,

0, otherwise.

Find the probability that at least one light bulb chosen
is defective. [Hint: Compute P (X1 +X2 = 1).]

4.17 Let X be a random variable with the following
probability distribution:

x −3 6 9
f(x) 1/6 1/2 1/3

Find μg(X), where g(X) = (2X + 1)2.

4.18 Find the expected value of the random variable
g(X) = X2, where X has the probability distribution
of Exercise 4.2.

4.19 A large industrial firm purchases several new
word processors at the end of each year, the exact num-
ber depending on the frequency of repairs in the previ-
ous year. Suppose that the number of word processors,
X, purchased each year has the following probability
distribution:

x 0 1 2 3
f(x) 1/10 3/10 2/5 1/5

If the cost of the desired model is $1200 per unit and
at the end of the year a refund of 50X2 dollars will be
issued, how much can this firm expect to spend on new
word processors during this year?

4.20 A continuous random variable X has the density
function

f(x) =

{
e−x, x > 0,

0, elsewhere.

Find the expected value of g(X) = e2X/3.

4.21 What is the dealer’s average profit per auto-
mobile if the profit on each automobile is given by
g(X) = X2, where X is a random variable having the
density function of Exercise 4.12?

4.22 The hospitalization period, in days, for patients
following treatment for a certain type of kidney disor-
der is a random variable Y = X + 4, where X has the
density function

f(x) =

{
32

(x+4)3
, x > 0,

0, elsewhere.

Find the average number of days that a person is hos-
pitalized following treatment for this disorder.

4.23 Suppose that X and Y have the following joint
probability function:

x
f(x, y) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

(a) Find the expected value of g(X,Y ) = XY 2.

(b) Find μX and μY .

4.24 Referring to the random variables whose joint
probability distribution is given in Exercise 3.39 on
page 105,

(a) find E(X2Y − 2XY );

(b) find μX − μY .

4.25 Referring to the random variables whose joint
probability distribution is given in Exercise 3.51 on
page 106, find the mean for the total number of jacks
and kings when 3 cards are drawn without replacement
from the 12 face cards of an ordinary deck of 52 playing
cards.

4.26 Let X and Y be random variables with joint
density function

f(x, y) =

{
4xy, 0 < x, y < 1,

0, elsewhere.

Find the expected value of Z =
√
X2 + Y 2.

4.27 In Exercise 3.27 on page 93, a density function
is given for the time to failure of an important compo-
nent of a DVD player. Find the mean number of hours
to failure of the component and thus the DVD player.

4.28 Consider the information in Exercise 3.28 on
page 93. The problem deals with the weight in ounces
of the product in a cereal box, with

f(x) =

{
2
5
, 23.75 ≤ x ≤ 26.25,

0, elsewhere.
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(a) Plot the density function.

(b) Compute the expected value, or mean weight, in
ounces.

(c) Are you surprised at your answer in (b)? Explain
why or why not.

4.29 Exercise 3.29 on page 93 dealt with an impor-
tant particle size distribution characterized by

f(x) =

{
3x−4, x > 1,

0, elsewhere.

(a) Plot the density function.

(b) Give the mean particle size.

4.30 In Exercise 3.31 on page 94, the distribution of
times before a major repair of a washing machine was
given as

f(y) =

{
1
4
e−y/4, y ≥ 0,

0, elsewhere.

What is the population mean of the times to repair?

4.31 Consider Exercise 3.32 on page 94.

(a) What is the mean proportion of the budget allo-
cated to environmental and pollution control?

(b) What is the probability that a company selected
at random will have allocated to environmental
and pollution control a proportion that exceeds the
population mean given in (a)?

4.32 In Exercise 3.13 on page 92, the distribution of
the number of imperfections per 10 meters of synthetic
fabric is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

(a) Plot the probability function.

(b) Find the expected number of imperfections,
E(X) = μ.

(c) Find E(X2).

4.2 Variance and Covariance of Random Variables

The mean, or expected value, of a random variable X is of special importance in
statistics because it describes where the probability distribution is centered. By
itself, however, the mean does not give an adequate description of the shape of the
distribution. We also need to characterize the variability in the distribution. In
Figure 4.1, we have the histograms of two discrete probability distributions that
have the same mean, μ = 2, but differ considerably in variability, or the dispersion
of their observations about the mean.

1 2 3 0 1 2 3 4
x

(a) (b)

x

Figure 4.1: Distributions with equal means and unequal dispersions.

The most important measure of variability of a random variable X is obtained
by applying Theorem 4.1 with g(X) = (X − μ)2. The quantity is referred to as
the variance of the random variable X or the variance of the probability
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distribution of X and is denoted by Var(X) or the symbol σ2
X , or simply by σ2

when it is clear to which random variable we refer.

Definition 4.3: Let X be a random variable with probability distribution f(x) and mean μ. The
variance of X is

σ2 = E[(X − μ)2] =
∑
x

(x− μ)2f(x), if X is discrete, and

σ2 = E[(X − μ)2] =

∫ ∞

−∞
(x− μ)2f(x) dx, if X is continuous.

The positive square root of the variance, σ, is called the standard deviation of
X.

The quantity x−μ in Definition 4.3 is called the deviation of an observation
from its mean. Since the deviations are squared and then averaged, σ2 will be much
smaller for a set of x values that are close to μ than it will be for a set of values
that vary considerably from μ.

Example 4.8: Let the random variable X represent the number of automobiles that are used for
official business purposes on any given workday. The probability distribution for
company A [Figure 4.1(a)] is

x 1 2 3
f(x) 0.3 0.4 0.3

and that for company B [Figure 4.1(b)] is

x 0 1 2 3 4
f(x) 0.2 0.1 0.3 0.3 0.1

Show that the variance of the probability distribution for company B is greater
than that for company A.

Solution : For company A, we find that

μA = E(X) = (1)(0.3) + (2)(0.4) + (3)(0.3) = 2.0,

and then

σ2
A =

3∑
x=1

(x− 2)2 = (1− 2)2(0.3) + (2− 2)2(0.4) + (3− 2)2(0.3) = 0.6.

For company B, we have

μB = E(X) = (0)(0.2) + (1)(0.1) + (2)(0.3) + (3)(0.3) + (4)(0.1) = 2.0,

and then

σ2
B =

4∑
x=0

(x− 2)2f(x)

= (0− 2)2(0.2) + (1− 2)2(0.1) + (2− 2)2(0.3)

+ (3− 2)2(0.3) + (4− 2)2(0.1) = 1.6.
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Clearly, the variance of the number of automobiles that are used for official business
purposes is greater for company B than for company A.

An alternative and preferred formula for finding σ2, which often simplifies the
calculations, is stated in the following theorem.

Theorem 4.2: The variance of a random variable X is

σ2 = E(X2)− μ2.

Proof : For the discrete case, we can write

σ2 =
∑
x

(x− μ)2f(x) =
∑
x

(x2 − 2μx+ μ2)f(x)

=
∑
x

x2f(x)− 2μ
∑
x

xf(x) + μ2
∑
x

f(x).

Since μ =
∑
x
xf(x) by definition, and

∑
x
f(x) = 1 for any discrete probability

distribution, it follows that

σ2 =
∑
x

x2f(x)− μ2 = E(X2)− μ2.

For the continuous case the proof is step by step the same, with summations
replaced by integrations.

Example 4.9: Let the random variable X represent the number of defective parts for a machine
when 3 parts are sampled from a production line and tested. The following is the
probability distribution of X.

x 0 1 2 3
f(x) 0.51 0.38 0.10 0.01

Using Theorem 4.2, calculate σ2.
Solution : First, we compute

μ = (0)(0.51) + (1)(0.38) + (2)(0.10) + (3)(0.01) = 0.61.

Now,

E(X2) = (0)(0.51) + (1)(0.38) + (4)(0.10) + (9)(0.01) = 0.87.

Therefore,

σ2 = 0.87− (0.61)2 = 0.4979.

Example 4.10: The weekly demand for a drinking-water product, in thousands of liters, from
a local chain of efficiency stores is a continuous random variable X having the
probability density

f(x) =

{
2(x− 1), 1 < x < 2,

0, elsewhere.

Find the mean and variance of X.



122 Chapter 4 Mathematical Expectation

Solution : Calculating E(X) and E(X2, we have

μ = E(X) = 2

∫ 2

1

x(x− 1) dx =
5

3

and

E(X2) = 2

∫ 2

1

x2(x− 1) dx =
17

6
.

Therefore,

σ2 =
17

6
−
(
5

3

)2

=
1

18
.

At this point, the variance or standard deviation has meaning only when we
compare two or more distributions that have the same units of measurement.
Therefore, we could compare the variances of the distributions of contents, mea-
sured in liters, of bottles of orange juice from two companies, and the larger value
would indicate the company whose product was more variable or less uniform. It
would not be meaningful to compare the variance of a distribution of heights to
the variance of a distribution of aptitude scores. In Section 4.4, we show how the
standard deviation can be used to describe a single distribution of observations.

We shall now extend our concept of the variance of a random variable X to
include random variables related to X. For the random variable g(X), the variance
is denoted by σ2

g(X) and is calculated by means of the following theorem.

Theorem 4.3: Let X be a random variable with probability distribution f(x). The variance of
the random variable g(X) is

σ2
g(X) = E{[g(X)− μg(X)]

2} =
∑
x

[g(x)− μg(X)]
2f(x)

if X is discrete, and

σ2
g(X) = E{[g(X)− μg(X)]

2} =

∫ ∞

−∞
[g(x)− μg(X)]

2f(x) dx

if X is continuous.

Proof : Since g(X) is itself a random variable with mean μg(X) as defined in Theorem 4.1,
it follows from Definition 4.3 that

σ2
g(X) = E{[g(X)− μg(X)]}.

Now, applying Theorem 4.1 again to the random variable [g(X)−μg(X)]
2 completes

the proof.

Example 4.11: Calculate the variance of g(X) = 2X + 3, where X is a random variable with
probability distribution

x 0 1 2 3

f(x) 1
4

1
8

1
2

1
8
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Solution : First, we find the mean of the random variable 2X+3. According to Theorem 4.1,

μ2X+3 = E(2X + 3) =
3∑

x=0

(2x+ 3)f(x) = 6.

Now, using Theorem 4.3, we have

σ2
2X+3 = E{[(2X + 3)− μ2x+3]

2} = E[(2X + 3− 6)2]

= E(4X2 − 12X + 9) =
3∑

x=0

(4x2 − 12x+ 9)f(x) = 4.

Example 4.12: Let X be a random variable having the density function given in Example 4.5 on
page 115. Find the variance of the random variable g(X) = 4X + 3.

Solution : In Example 4.5, we found that μ4X+3 = 8. Now, using Theorem 4.3,

σ2
4X+3 = E{[(4X + 3)− 8]2} = E[(4X − 5)2]

=

∫ 2

−1

(4x− 5)2
x2

3
dx =

1

3

∫ 2

−1

(16x4 − 40x3 + 25x2) dx =
51

5
.

If g(X,Y ) = (X−μX)(Y −μY ), where μX = E(X) and μY = E(Y ), Definition
4.2 yields an expected value called the covariance of X and Y , which we denote
by σXY or Cov(X,Y ).

Definition 4.4: Let X and Y be random variables with joint probability distribution f(x, y). The
covariance of X and Y is

σXY = E[(X − μX)(Y − μY )] =
∑
x

∑
y

(x− μX)(y − μy)f(x, y)

if X and Y are discrete, and

σXY = E[(X − μX)(Y − μY )] =

∫ ∞

−∞

∫ ∞

−∞
(x− μX)(y − μy)f(x, y) dx dy

if X and Y are continuous.

The covariance between two random variables is a measure of the nature of the
association between the two. If large values of X often result in large values of Y
or small values of X result in small values of Y , positive X−μX will often result in
positive Y −μY and negative X−μX will often result in negative Y −μY . Thus, the
product (X − μX)(Y − μY ) will tend to be positive. On the other hand, if large X
values often result in small Y values, the product (X−μX)(Y −μY ) will tend to be
negative. The sign of the covariance indicates whether the relationship between two
dependent random variables is positive or negative. WhenX and Y are statistically
independent, it can be shown that the covariance is zero (see Corollary 4.5). The
converse, however, is not generally true. Two variables may have zero covariance
and still not be statistically independent. Note that the covariance only describes
the linear relationship between two random variables. Therefore, if a covariance
between X and Y is zero, X and Y may have a nonlinear relationship, which means
that they are not necessarily independent.
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The alternative and preferred formula for σXY is stated by Theorem 4.4.

Theorem 4.4: The covariance of two random variables X and Y with means μX and μY , respec-
tively, is given by

σXY = E(XY )− μXμY .

Proof : For the discrete case, we can write

σXY =
∑
x

∑
y

(x− μX)(y − μY )f(x, y)

=
∑
x

∑
y

xyf(x, y)− μX

∑
x

∑
y

yf(x, y)

− μY

∑
x

∑
y

xf(x, y) + μXμY

∑
x

∑
y

f(x, y).

Since

μX =
∑
x

xf(x, y), μY =
∑
y

yf(x, y), and
∑
x

∑
y

f(x, y) = 1

for any joint discrete distribution, it follows that

σXY = E(XY )− μXμY − μY μX + μXμY = E(XY )− μXμY .

For the continuous case, the proof is identical with summations replaced by inte-
grals.

Example 4.13: Example 3.14 on page 95 describes a situation involving the number of blue refills
X and the number of red refills Y . Two refills for a ballpoint pen are selected at
random from a certain box, and the following is the joint probability distribution:

x
f(x, y) 0 1 2 h(y)

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

g(x) 5
14

15
28

3
28 1

Find the covariance of X and Y .
Solution : From Example 4.6, we see that E(XY ) = 3/14. Now

μX =
2∑

x=0

xg(x) = (0)

(
5

14

)
+ (1)

(
15

28

)
+ (2)

(
3

28

)
=

3

4
,

and

μY =
2∑

y=0

yh(y) = (0)

(
15

28

)
+ (1)

(
3

7

)
+ (2)

(
1

28

)
=

1

2
.
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Therefore,

σXY = E(XY )− μXμY =
3

14
−
(
3

4

)(
1

2

)
= − 9

56
.

Example 4.14: The fraction X of male runners and the fraction Y of female runners who compete
in marathon races are described by the joint density function

f(x, y) =

{
8xy, 0 ≤ y ≤ x ≤ 1,

0, elsewhere.

Find the covariance of X and Y .
Solution : We first compute the marginal density functions. They are

g(x) =

{
4x3, 0 ≤ x ≤ 1,

0, elsewhere,

and

h(y) =

{
4y(1− y2), 0 ≤ y ≤ 1,

0, elsewhere.

From these marginal density functions, we compute

μX = E(X) =

∫ 1

0

4x4 dx =
4

5
and μY =

∫ 1

0

4y2(1− y2) dy =
8

15
.

From the joint density function given above, we have

E(XY ) =

∫ 1

0

∫ 1

y

8x2y2 dx dy =
4

9
.

Then

σXY = E(XY )− μXμY =
4

9
−
(
4

5

)(
8

15

)
=

4

225
.

Although the covariance between two random variables does provide informa-
tion regarding the nature of the relationship, the magnitude of σXY does not indi-
cate anything regarding the strength of the relationship, since σXY is not scale-free.
Its magnitude will depend on the units used to measure both X and Y . There is a
scale-free version of the covariance called the correlation coefficient that is used
widely in statistics.

Definition 4.5: Let X and Y be random variables with covariance σXY and standard deviations
σX and σY , respectively. The correlation coefficient of X and Y is

ρXY =
σXY

σXσY

.

It should be clear to the reader that ρXY is free of the units of X and Y . The
correlation coefficient satisfies the inequality −1 ≤ ρXY ≤ 1. It assumes a value of
zero when σXY = 0. Where there is an exact linear dependency, say Y ≡ a+ bX,
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ρXY = 1 if b > 0 and ρXY = −1 if b < 0. (See Exercise 4.48.) The correlation
coefficient is the subject of more discussion in Chapter 12, where we deal with
linear regression.

Example 4.15: Find the correlation coefficient between X and Y in Example 4.13.
Solution : Since

E(X2) = (02)

(
5

14

)
+ (12)

(
15

28

)
+ (22)

(
3

28

)
=

27

28

and

E(Y 2) = (02)

(
15

28

)
+ (12)

(
3

7

)
+ (22)

(
1

28

)
=

4

7
,

we obtain

σ2
X =

27

28
−
(
3

4

)2

=
45

112
and σ2

Y =
4

7
−
(
1

2

)2

=
9

28
.

Therefore, the correlation coefficient between X and Y is

ρXY =
σXY

σXσY
=

−9/56√
(45/112)(9/28)

= − 1√
5
.

Example 4.16: Find the correlation coefficient of X and Y in Example 4.14.
Solution : Because

E(X2) =

∫ 1

0

4x5 dx =
2

3
and E(Y 2) =

∫ 1

0

4y3(1− y2) dy = 1− 2

3
=

1

3
,

we conclude that

σ2
X =

2

3
−
(
4

5

)2

=
2

75
and σ2

Y =
1

3
−
(

8

15

)2

=
11

225
.

Hence,

ρXY =
4/225√

(2/75)(11/225)
=

4√
66

.

Note that although the covariance in Example 4.15 is larger in magnitude (dis-
regarding the sign) than that in Example 4.16, the relationship of the magnitudes
of the correlation coefficients in these two examples is just the reverse. This is
evidence that we cannot look at the magnitude of the covariance to decide on how
strong the relationship is.
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Exercises

4.33 Use Definition 4.3 on page 120 to find the vari-
ance of the random variable X of Exercise 4.7 on page
117.

4.34 Let X be a random variable with the following
probability distribution:

x −2 3 5
f(x) 0.3 0.2 0.5

Find the standard deviation of X.

4.35 The random variable X, representing the num-
ber of errors per 100 lines of software code, has the
following probability distribution:

x 2 3 4 5 6
f(x) 0.01 0.25 0.4 0.3 0.04

Using Theorem 4.2 on page 121, find the variance of
X.

4.36 Suppose that the probabilities are 0.4, 0.3, 0.2,
and 0.1, respectively, that 0, 1, 2, or 3 power failures
will strike a certain subdivision in any given year. Find
the mean and variance of the random variable X repre-
senting the number of power failures striking this sub-
division.

4.37 A dealer’s profit, in units of $5000, on a new
automobile is a random variable X having the density
function given in Exercise 4.12 on page 117. Find the
variance of X.

4.38 The proportion of people who respond to a cer-
tain mail-order solicitation is a random variable X hav-
ing the density function given in Exercise 4.14 on page
117. Find the variance of X.

4.39 The total number of hours, in units of 100 hours,
that a family runs a vacuum cleaner over a period of
one year is a random variable X having the density
function given in Exercise 4.13 on page 117. Find the
variance of X.

4.40 Referring to Exercise 4.14 on page 117, find
σ2
g(X) for the function g(X) = 3X2 + 4.

4.41 Find the standard deviation of the random vari-
able g(X) = (2X + 1)2 in Exercise 4.17 on page 118.

4.42 Using the results of Exercise 4.21 on page 118,
find the variance of g(X) = X2, where X is a random
variable having the density function given in Exercise
4.12 on page 117.

4.43 The length of time, in minutes, for an airplane
to obtain clearance for takeoff at a certain airport is a

random variable Y = 3X− 2, where X has the density
function

f(x) =

{
1
4
e−x/4, x > 0

0, elsewhere.

Find the mean and variance of the random variable Y .

4.44 Find the covariance of the random variables X
and Y of Exercise 3.39 on page 105.

4.45 Find the covariance of the random variables X
and Y of Exercise 3.49 on page 106.

4.46 Find the covariance of the random variables X
and Y of Exercise 3.44 on page 105.

4.47 For the random variables X and Y whose joint
density function is given in Exercise 3.40 on page 105,
find the covariance.

4.48 Given a random variable X, with standard de-
viation σX , and a random variable Y = a + bX, show
that if b < 0, the correlation coefficient ρXY = −1, and
if b > 0, ρXY = 1.

4.49 Consider the situation in Exercise 4.32 on page
119. The distribution of the number of imperfections
per 10 meters of synthetic failure is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Find the variance and standard deviation of the num-
ber of imperfections.

4.50 For a laboratory assignment, if the equipment is
working, the density function of the observed outcome
X is

f(x) =

{
2(1− x), 0 < x < 1,

0, otherwise.

Find the variance and standard deviation of X.

4.51 For the random variables X and Y in Exercise
3.39 on page 105, determine the correlation coefficient
between X and Y .

4.52 Random variables X and Y follow a joint distri-
bution

f(x, y) =

{
2, 0 < x ≤ y < 1,

0, otherwise.

Determine the correlation coefficient between X and
Y .
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4.3 Means and Variances of Linear Combinations of
Random Variables

We now develop some useful properties that will simplify the calculations of means
and variances of random variables that appear in later chapters. These properties
will permit us to deal with expectations in terms of other parameters that are
either known or easily computed. All the results that we present here are valid
for both discrete and continuous random variables. Proofs are given only for the
continuous case. We begin with a theorem and two corollaries that should be,
intuitively, reasonable to the reader.

Theorem 4.5: If a and b are constants, then

E(aX + b) = aE(X) + b.

Proof : By the definition of expected value,

E(aX + b) =

∫ ∞

−∞
(ax+ b)f(x) dx = a

∫ ∞

−∞
xf(x) dx+ b

∫ ∞

−∞
f(x) dx.

The first integral on the right is E(X) and the second integral equals 1. Therefore,
we have

E(aX + b) = aE(X) + b.

Corollary 4.1: Setting a = 0, we see that E(b) = b.

Corollary 4.2: Setting b = 0, we see that E(aX) = aE(X).

Example 4.17: Applying Theorem 4.5 to the discrete random variable f(X) = 2X − 1, rework
Example 4.4 on page 115.

Solution : According to Theorem 4.5, we can write

E(2X − 1) = 2E(X)− 1.

Now

μ = E(X) =

9∑
x=4

xf(x)

= (4)

(
1

12

)
+ (5)

(
1

12

)
+ (6)

(
1

4

)
+ (7)

(
1

4

)
+ (8)

(
1

6

)
+ (9)

(
1

6

)
=

41

6
.

Therefore,

μ2X−1 = (2)

(
41

6

)
− 1 = $12.67,

as before.
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Example 4.18: Applying Theorem 4.5 to the continuous random variable g(X) = 4X + 3, rework
Example 4.5 on page 115.

Solution : For Example 4.5, we may use Theorem 4.5 to write

E(4X + 3) = 4E(X) + 3.

Now

E(X) =

∫ 2

−1

x

(
x2

3

)
dx =

∫ 2

−1

x3

3
dx =

5

4
.

Therefore,

E(4X + 3) = (4)

(
5

4

)
+ 3 = 8,

as before.

Theorem 4.6: The expected value of the sum or difference of two or more functions of a random
variable X is the sum or difference of the expected values of the functions. That
is,

E[g(X)± h(X)] = E[g(X)]± E[h(X)].

Proof : By definition,

E[g(X)± h(X)] =

∫ ∞

−∞
[g(x)± h(x)]f(x) dx

=

∫ ∞

−∞
g(x)f(x) dx±

∫ ∞

−∞
h(x)f(x) dx

= E[g(X)]± E[h(X)].

Example 4.19: Let X be a random variable with probability distribution as follows:
x 0 1 2 3

f(x) 1
3

1
2 0 1

6

Find the expected value of Y = (X − 1)2.
Solution : Applying Theorem 4.6 to the function Y = (X − 1)2, we can write

E[(X − 1)2] = E(X2 − 2X + 1) = E(X2)− 2E(X) + E(1).

From Corollary 4.1, E(1) = 1, and by direct computation,

E(X) = (0)

(
1

3

)
+ (1)

(
1

2

)
+ (2)(0) + (3)

(
1

6

)
= 1 and

E(X2) = (0)

(
1

3

)
+ (1)

(
1

2

)
+ (4)(0) + (9)

(
1

6

)
= 2.

Hence,

E[(X − 1)2] = 2− (2)(1) + 1 = 1.
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Example 4.20: The weekly demand for a certain drink, in thousands of liters, at a chain of con-
venience stores is a continuous random variable g(X) = X2 +X − 2, where X has
the density function

f(x) =

{
2(x− 1), 1 < x < 2,

0, elsewhere.

Find the expected value of the weekly demand for the drink.
Solution : By Theorem 4.6, we write

E(X2 +X − 2) = E(X2) + E(X)− E(2).

From Corollary 4.1, E(2) = 2, and by direct integration,

E(X) =

∫ 2

1

2x(x− 1) dx =
5

3
and E(X2) =

∫ 2

1

2x2(x− 1) dx =
17

6
.

Now

E(X2 +X − 2) =
17

6
+

5

3
− 2 =

5

2
,

so the average weekly demand for the drink from this chain of efficiency stores is
2500 liters.

Suppose that we have two random variables X and Y with joint probability dis-
tribution f(x, y). Two additional properties that will be very useful in succeeding
chapters involve the expected values of the sum, difference, and product of these
two random variables. First, however, let us prove a theorem on the expected
value of the sum or difference of functions of the given variables. This, of course,
is merely an extension of Theorem 4.6.

Theorem 4.7: The expected value of the sum or difference of two or more functions of the random
variables X and Y is the sum or difference of the expected values of the functions.
That is,

E[g(X,Y )± h(X,Y )] = E[g(X,Y )]± E[h(X,Y )].

Proof : By Definition 4.2,

E[g(X,Y )± h(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
[g(x, y)± h(x, y)]f(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy ±

∫ ∞

−∞

∫ ∞

−∞
h(x, y)f(x, y) dx dy

= E[g(X,Y )]± E[h(X,Y )].

Corollary 4.3: Setting g(X,Y ) = g(X) and h(X,Y ) = h(Y ), we see that

E[g(X)± h(Y )] = E[g(X)]± E[h(Y )].
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Corollary 4.4: Setting g(X,Y ) = X and h(X,Y ) = Y , we see that

E[X ± Y ] = E[X]± E[Y ].

If X represents the daily production of some item from machine A and Y the
daily production of the same kind of item from machine B, then X +Y represents
the total number of items produced daily by both machines. Corollary 4.4 states
that the average daily production for both machines is equal to the sum of the
average daily production of each machine.

Theorem 4.8: Let X and Y be two independent random variables. Then

E(XY ) = E(X)E(Y ).

Proof : By Definition 4.2,

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dx dy.

Since X and Y are independent, we may write

f(x, y) = g(x)h(y),

where g(x) and h(y) are the marginal distributions ofX and Y , respectively. Hence,

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyg(x)h(y) dx dy =

∫ ∞

−∞
xg(x) dx

∫ ∞

−∞
yh(y) dy

= E(X)E(Y ).
Theorem 4.8 can be illustrated for discrete variables by considering the exper-

iment of tossing a green die and a red die. Let the random variable X represent
the outcome on the green die and the random variable Y represent the outcome
on the red die. Then XY represents the product of the numbers that occur on the
pair of dice. In the long run, the average of the products of the numbers is equal
to the product of the average number that occurs on the green die and the average
number that occurs on the red die.

Corollary 4.5: Let X and Y be two independent random variables. Then σXY = 0.

Proof : The proof can be carried out by using Theorems 4.4 and 4.8.

Example 4.21: It is known that the ratio of gallium to arsenide does not affect the functioning
of gallium-arsenide wafers, which are the main components of microchips. Let X
denote the ratio of gallium to arsenide and Y denote the functional wafers retrieved
during a 1-hour period. X and Y are independent random variables with the joint
density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere.
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Show that E(XY ) = E(X)E(Y ), as Theorem 4.8 suggests.
Solution : By definition,

E(XY ) =

∫ 1

0

∫ 2

0

x2y(1 + 3y2)

4
dxdy =

5

6
, E(X) =

4

3
, and E(Y ) =

5

8
.

Hence,

E(X)E(Y ) =

(
4

3

)(
5

8

)
=

5

6
= E(XY ).

We conclude this section by proving one theorem and presenting several corol-
laries that are useful for calculating variances or standard deviations.

Theorem 4.9: If X and Y are random variables with joint probability distribution f(x, y) and a,
b, and c are constants, then

σ2
aX+bY+c = a2σ2

X + b2σ2
Y + 2abσXY .

Proof : By definition, σ2
aX+bY+c = E{[(aX + bY + c)− μaX+bY+c]

2}. Now

μaX+bY+c = E(aX + bY + c) = aE(X) + bE(Y ) + c = aμX + bμY + c,

by using Corollary 4.4 followed by Corollary 4.2. Therefore,

σ2
aX+bY+c = E{[a(X − μX) + b(Y − μY )]

2}
= a2E[(X − μX)

2] + b2E[(Y − μY )
2] + 2abE[(X − μX)(Y − μY )]

= a2σ2
X + b2σ2

Y + 2abσXY .

Using Theorem 4.9, we have the following corollaries.

Corollary 4.6: Setting b = 0, we see that

σ2
aX+c = a2σ2

X = a2σ2.

Corollary 4.7: Setting a = 1 and b = 0, we see that

σ2
X+c = σ2

X = σ2.

Corollary 4.8: Setting b = 0 and c = 0, we see that

σ2
aX = a2σ2

X = a2σ2.

Corollaries 4.6 and 4.7 state that the variance is unchanged if a constant is
added to or subtracted from a random variable. The addition or subtraction of
a constant simply shifts the values of X to the right or to the left but does not
change their variability. However, if a random variable is multiplied or divided by
a constant, then Corollaries 4.6 and 4.8 state that the variance is multiplied or
divided by the square of the constant.
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Corollary 4.9: If X and Y are independent random variables, then

σ2
aX+bY = a2σ2

X + b2σ2
Y .

The result stated in Corollary 4.9 is obtained from Theorem 4.9 by invoking
Corollary 4.5.

Corollary 4.10: If X and Y are independent random variables, then

σ2
aX−bY = a2σ2

X + b2σ2
Y .

Corollary 4.10 follows when b in Corollary 4.9 is replaced by −b. Generalizing
to a linear combination of n independent random variables, we have Corollary 4.11.

Corollary 4.11: If X1, X2, . . . , Xn are independent random variables, then

σ2
a1X1+a2X2+···+anXn

= a21σ
2
X1

+ a22σ
2
X2

+ · · ·+ a2nσ
2
Xn

.

Example 4.22: If X and Y are random variables with variances σ2
X = 2 and σ2

Y = 4 and covariance
σXY = −2, find the variance of the random variable Z = 3X − 4Y + 8.

Solution :
σ2
Z = σ2

3X−4Y+8 = σ2
3X−4Y (by Corollary 4.6)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 4.9)

= (9)(2) + (16)(4)− (24)(−2) = 130.

Example 4.23: Let X and Y denote the amounts of two different types of impurities in a batch
of a certain chemical product. Suppose that X and Y are independent random
variables with variances σ2

X = 2 and σ2
Y = 3. Find the variance of the random

variable Z = 3X − 2Y + 5.
Solution :

σ2
Z = σ2

3X−2Y+5 = σ2
3X−2Y (by Corollary 4.6)

= 9σ2
x + 4σ2

y (by Corollary 4.10)

= (9)(2) + (4)(3) = 30.

What If the Function Is Nonlinear?

In that which has preceded this section, we have dealt with properties of linear
functions of random variables for very important reasons. Chapters 8 through 15
will discuss and illustrate practical real-world problems in which the analyst is
constructing a linear model to describe a data set and thus to describe or explain
the behavior of a certain scientific phenomenon. Thus, it is natural that expected
values and variances of linear combinations of random variables are encountered.
However, there are situations in which properties of nonlinear functions of random
variables become important. Certainly there are many scientific phenomena that
are nonlinear, and certainly statistical modeling using nonlinear functions is very
important. In fact, in Chapter 12, we deal with the modeling of what have become
standard nonlinear models. Indeed, even a simple function of random variables,
such as Z = X/Y , occurs quite frequently in practice, and yet unlike in the case of
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the expected value of linear combinations of random variables, there is no simple
general rule. For example,

E(Z) = E(X/Y ) �= E(X)/E(Y ),

except in very special circumstances.
The material provided by Theorems 4.5 through 4.9 and the various corollaries

is extremely useful in that there are no restrictions on the form of the density or
probability functions, apart from the property of independence when it is required
as in the corollaries following Theorems 4.9. To illustrate, consider Example 4.23;
the variance of Z = 3X−2Y +5 does not require restrictions on the distributions of
the amounts X and Y of the two types of impurities. Only independence between
X and Y is required. Now, we do have at our disposal the capacity to find μg(X)

and σ2
g(X) for any function g(·) from first principles established in Theorems 4.1

and 4.3, where it is assumed that the corresponding distribution f(x) is known.
Exercises 4.40, 4.41, and 4.42, among others, illustrate the use of these theorems.
Thus, if the function g(x) is nonlinear and the density function (or probability
function in the discrete case) is known, μg(X) and σ2

g(X) can be evaluated exactly.

But, similar to the rules given for linear combinations, are there rules for nonlinear
functions that can be used when the form of the distribution of the pertinent
random variables is not known?

In general, suppose X is a random variable and Y = g(x). The general solution
for E(Y ) or Var(Y ) can be difficult to find and depends on the complexity of the
function g(·). However, there are approximations available that depend on a linear
approximation of the function g(x). For example, suppose we denote E(X) as μ
and Var(X) = σ2

X . Then a Taylor series approximation of g(x) around X = μX

gives

g(x) = g(μX) +
∂g(x)

∂x

∣∣∣∣
x=μX

(x− μX) +
∂2g(x)

∂x2

∣∣∣∣
x=μX

(x− μX)
2

2
+ · · · .

As a result, if we truncate after the linear term and take the expected value of both
sides, we obtain E[g(X)] ≈ g(μX), which is certainly intuitive and in some cases
gives a reasonable approximation. However, if we include the second-order term
of the Taylor series, then we have a second-order adjustment for this first-order
approximation as follows:

Approximation of
E[g(X)] E[g(X)] ≈ g(μX) +

∂2g(x)

∂x2

∣∣∣∣
x=μX

σ2
X

2
.

Example 4.24: Given the random variable X with mean μX and variance σ2
X , give the second-order

approximation to E(eX).

Solution : Since ∂ex

∂x = ex and ∂2ex

∂x2 = ex, we obtain E(eX) ≈ eμX (1 + σ2
X/2).

Similarly, we can develop an approximation for Var[g(x)] by taking the variance
of both sides of the first-order Taylor series expansion of g(x).

Approximation of
Var[g(X)] Var[g(X)] ≈

[
∂g(x)

∂x

]2
x=μX

σ2
X .

Example 4.25: Given the random variable X as in Example 4.24, give an approximate formula for
Var[g(x)].
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Solution : Again ∂ex

∂x = ex; thus, Var(X) ≈ e2μXσ2
X .

These approximations can be extended to nonlinear functions of more than one
random variable.

Given a set of independent random variables X1, X2, . . . , Xk with means μ1,
μ2, . . . , μk and variances σ2

1 , σ
2
2 , . . . , σ

2
k, respectively, let

Y = h(X1, X2, . . . , Xk)

be a nonlinear function; then the following are approximations for E(Y ) and
Var(Y ):

E(Y ) ≈ h(μ1, μ2, . . . , μk) +

k∑
i=1

σ2
i

2

[
∂2h(x1, x2, . . . , xk)

∂x2
i

]∣∣∣∣
xi=μi, 1≤i≤k

,

Var(Y ) ≈
k∑

i=1

[
∂h(x1, x2, . . . , xk)

∂xi

]2∣∣∣∣∣
xi=μi, 1≤i≤k

σ2
i .

Example 4.26: Consider two independent random variables X and Z with means μX and μZ and
variances σ2

X and σ2
Z , respectively. Consider a random variable

Y = X/Z.

Give approximations for E(Y ) and Var(Y ).

Solution : For E(Y ), we must use ∂y
∂x = 1

z and ∂y
∂z = − x

z2 . Thus,

∂2y

∂x2
= 0 and

∂2y

∂z2
=

2x

z3
.

As a result,

E(Y ) ≈ μX

μZ

+
μX

μ3
Z

σ2
Z =

μX

μZ

(
1 +

σ2
Z

μ2
Z

)
,

and the approximation for the variance of Y is given by

Var(Y ) ≈ 1

μ2
Z

σ2
X +

μ2
X

μ4
Z

σ2
Z =

1

μ2
Z

(
σ2

X +
μ2

X

μ2
Z

σ2
Z

)
.

4.4 Chebyshev’s Theorem

In Section 4.2 we stated that the variance of a random variable tells us something
about the variability of the observations about the mean. If a random variable
has a small variance or standard deviation, we would expect most of the values to
be grouped around the mean. Therefore, the probability that the random variable
assumes a value within a certain interval about the mean is greater than for a
similar random variable with a larger standard deviation. If we think of probability
in terms of area, we would expect a continuous distribution with a large value of
σ to indicate a greater variability, and therefore we should expect the area to
be more spread out, as in Figure 4.2(a). A distribution with a small standard
deviation should have most of its area close to μ, as in Figure 4.2(b).


