
The Prototype Pattern

Toni Sellarès
Universitat de Girona

The Prototype Pattern specify the kind of objects to create
using a prototypical instance, and create new objects by
copying this prototype.

Prototype Pattern: Motivation
Use the Prototype Pattern when a client needs to create a set of
objects that are alike or differ from each other only in terms of their
state and creating an instance of a such object (e.g., using the “new”
keyword) is either expensive or complicated.

The Prototype Pattern allows you to make new instances by copying
existing instances.

– In Java this typically means using the clone() method or de-serialization
when you need deep copies

Key aspect of this pattern:

– Client code can make new instances without knowing which specific class
is being instantiated.

The Prototype Pattern specify the kind of objects to create using a
prototypical instance, and create new objects by copying this prototype.

Participants

Prototype: declares an interface
for cloning itself.

ConcretePrototype:
implements an operation for
cloning itself.

Client: creates a new object by
asking a prototype to clone itself
and then making required
modifications.

Prototype Pattern: Definition

To implement the pattern, declare an abstract base class that specifies
a pure virtual clone() method.

Any class that needs a "polymorphic constructor" capability derives
itself from the abstract base class, and implements the clone()
operation.

Clone can be implemented either as a deep copy or a shallow copy:

• In a deep copy, all objects are duplicated,
• In a shallow copy, only the top-level objects are duplicated and the lower
levels contain references.

Prototype Pattern: Implementation

/**

* Test driver for the pattern.

*/

public class Test {

public static void main(String arg[]) {

Client client = new Client();

Prototype copy = client.operation();

}

}

/**

* Declares an interface for cloning itself.

*/

public interface Prototype {

Prototype copy();

}

Prototype Pattern: Structural Code

/**

* Implements an operation for cloning itself.

*/

public class ConcretePrototype1 implements Prototype {

private String state1 = "Blueprint";

private Prototype state2;

public Prototype copy(){

ConcretePrototype1 duplicate = new ConcretePrototype1();

duplicate.setState1(new String(state1));

if(state2 != null){

duplicate.setState2(state2.copy());

}

return duplicate;

}

void setState1(String state) {

state1 = state;

}

void setState2(Prototype state){

state2 = state;

}

}

/**

* Creates a new object by asking a prototype to clone itself.

*/

public class Client {

public Prototype operation() {

Prototype prototype = new ConcretePrototype1();

Prototype copy = prototype.copy();

return copy;

}

}

public class RunPrototypePattern {

public static void main(String[] arguments) {

System.out.println("Creating first address.");

Address address1 = new Address("8445 Silverado Trail", "Rutherford",

"CA", "91734");

System.out.println("First address created.");

System.out.println(" Hash code = " + address1.hashCode());

System.out.println(address1);

System.out.println();

System.out.println("Creating second address using the clone() method.");

Address address2 = (Address) address1.copy();

System.out.println("Second address created.");

System.out.println(" Hash code = " + address2.hashCode());

System.out.println(address2);

System.out.println();

}

}

This example will create an Address object, which it will then duplicate
by calling the object's clone method.

Prototype Pattern: Example

interface Copyable {

public Object copy();

}

class Address implements Copyable {

private String type;

private String street;

private String city;

private String state;

private String zipCode;

public static final String EOL_STRING = System

.getProperty("line.separator");

public static final String COMMA = ",";

public static final String HOME = "home";

public static final String WORK = "work";

public Address(String initType, String initStreet, String initCity,

String initState, String initZip) {

type = initType;

street = initStreet;

city = initCity;

state = initState;

zipCode = initZip;

}

public Address(String initStreet, String initCity, String initState,

String initZip) {

this(WORK, initStreet, initCity, initState, initZip);

}

public Address(String initType) {

type = initType;

}

public Address() {

}

public String getType() {

return type;

}

public String getStreet() {

return street;

}

public String getCity() {

return city;

}

public String getState() {

return state;

}

public String getZipCode() {

return zipCode;

}

public void setType(String newType) {

type = newType;

}

public void setStreet(String newStreet) {

street = newStreet;

}

public void setCity(String newCity) {

city = newCity;

}

public void setState(String newState) {

state = newState;

}

public void setZipCode(String newZip) {

zipCode = newZip;

}

public Object copy() {

return new Address(street, city, state, zipCode);

}

public String toString() {

return "\t" + street + COMMA + " " + EOL_STRING + "\t" + city + COMMA

+ " " + state + " " + zipCode;

}

}

Benefits, Uses and Drawbacks
• Benefits:

– Hides the complexities of making new instances from the client,
– Provides the option for the client to generate objects whose type is not known,
– In some circumstances, copying an object can be more efficient than creating

a new object.

• Uses:

– Prototype should be considered when a system must create new objects of
many types in a complex class hierarchy.

• Drawbacks:

– A drawback to using the Prototype is that making a copy of an object can
sometimes be complicated.

Abstract Factory ans Protype Patterns may work together.

