
This leads to a new equation for loop 1. Simplifying leads to

or

Substituting the first equation into the second gives

Using the Thevenin equivalent is quite easy since we have only
one loop, as shown in Fig. 4.35(d).

6. Satisfactory? Clearly we have found the value of the equivalent
circuit as required by the problem statement. Checking does
validate that solution (we compared the answer we obtained by
using the equivalent circuit with one obtained by using the load
with the original circuit). We can present all this as a solution to
the problem.

�4i � 9i � 10 � 0  or  i � �10�5 � �2 A

�6i2 � 11i2 � �10  or  i2 � �10�5 � �2 A

�2i1 � 11i2 � �10

�2i1 � 6i2 � 0  or  i1 � 3i2

(4 � 2 � 8)i1 � (�2 � 8)i2 � 0
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Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: VTh � 0 V, RTh � �7.5 �.

Practice Problem 4.10

5 Ω 15 Ω

a

b

10 Ω
4vx

+ −
+

−
vx

Figure 4.36
For Practice Prob. 4.10.

Norton’s Theorem
In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, pro-
posed a similar theorem.

4.6

Norton’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a current source IN in
parallel with a resistor RN, where IN is the short-circuit current through
the terminals and RN is the input or equivalent resistance at the termi-
nals when the independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).
The proof of Norton’s theorem will be given in the next section.

For now, we are mainly concerned with how to get and We find
in the same way we find In fact, from what we know about

source transformation, the Thevenin and Norton resistances are equal;
that is,

(4.9)

To find the Norton current we determine the short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident

IN,

RN � RTh

RTh.RN

IN.RN

Linear 
two-terminal
circuit

a

b

(a)

(b)

RN

a

b

IN

Figure 4.37
(a) Original circuit, (b) Norton equivalent
circuit.
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that the short-circuit current in Fig. 4.37(b) is This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

(4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin’s theorem.

Observe the close relationship between Norton’s and Thevenin’s
theorems: as in Eq. (4.9), and

(4.11)

This is essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

Since and are related according to Eq. (4.11), to deter-
mine the Thevenin or Norton equivalent circuit requires that we find:

• The open-circuit voltage across terminals a and b.
• The short-circuit current at terminals a and b.
• The equivalent or input resistance at terminals a and b when

all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’s law. Example 4.11
will illustrate this. Also, since

(4.12a)

(4.12b)

(4.12c)

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent, of a circuit which contains at least one inde-
pendent source.

RTh �
voc

isc
� RN

IN � isc

VTh � voc

Rin

isc

voc

RThIN,VTh,

IN �
VTh

RTh

RN � RTh

IN � isc

IN.
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Linear 
two-terminal
circuit

a

b

isc = IN

Figure 4.38
Finding Norton current IN.

Example 4.11

2 A

8 Ω

8 Ω

5 Ω
4 Ω

12 V

a

b

+
−

The Thevenin and Norton equivalent
circuits are related by a source 
transformation.

Figure 4.39
For Example 4.11.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at 
terminals a-b.

Solution:
We find in the same way we find in the Thevenin equivalent
circuit. Set the independent sources equal to zero. This leads to the
circuit in Fig. 4.40(a), from which we find Thus,

To find we short-circuit terminals a and b, as shown in Fig. 4.40(b).
We ignore the resistor because it has been short-circuited.
Applying mesh analysis, we obtain

From these equations, we obtain

i2 � 1 A � isc � IN

i1 � 2 A,  20i2 � 4i1 � 12 � 0

5-�
IN,

RN � 5 � (8 � 4 � 8) � 5 � 20 �
20 � 5

25
� 4 �

RN.

RThRN
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Alternatively, we may determine from We obtain 
as the open-circuit voltage across terminals a and b in Fig. 4.40(c).
Using mesh analysis, we obtain

and

Hence,

as obtained previously. This also serves to confirm Eq. (4.12c) that
Thus, the Norton equivalent circuit is as

shown in Fig. 4.41.
RTh � voc �isc � 4 �1 � 4 �.

IN �
VTh

RTh
�

4

4
� 1 A

voc � VTh � 5i4 � 4 V

25i4 � 4i3 � 12 � 0  1   i4 � 0.8 A

i3 � 2 A

VThVTh�RTh.IN
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2 A
5 Ω

4 Ω

12 V

a

b

+
−

isc = IN

(b)

2 A 5 Ω

4 Ω

12 V

a

b

+
−

(c)

8 Ω

5 Ω

a

b

4 Ω

(a)

RN

VTh = voc

+

−

i1

i3
i4

i2

8 Ω 8 Ω

8 Ω

8 Ω

8 Ω

Figure 4.40
For Example 4.11; finding: (a) (b) (c) VTh � voc.IN � isc,RN,

1 A 4 Ω

a

b

Figure 4.41
Norton equivalent of the circuit in Fig. 4.39.

Practice Problem 4.11

4 A15 V 6 Ω

a

b

3 Ω

+
−

3 Ω

Figure 4.42
For Practice Prob. 4.11.

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at
terminals a-b.

Answer: RN � 3 �, IN � 4.5 A.
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Example 4.12

5 Ω

2 ix

 ix

10 V4 Ω

a

b

+
−

Figure 4.43
For Example 4.12.

Practice Problem 4.12

10 A

2vx

6 Ω 2 Ω

a

b

−+
+

−
vx

5 Ω

2ix

vo = 1 V

io
4 Ω

a

b

+
−

(a)

5 Ω

2ix

isc = IN4 Ω

a

b

(b)

10 V+
−

ix ix

Figure 4.44
For Example 4.12: (a) finding (b) finding IN.RN,

Figure 4.45
For Practice Prob. 4.12.

Find the Norton equivalent circuit of the circuit in Fig. 4.45 at 
terminals a-b.

Answer: RN � 1 �, IN � 10 A.

Using Norton’s theorem, find and of the circuit in Fig. 4.43 at
terminals a-b.

Solution:
To find we set the independent voltage source equal to zero and
connect a voltage source of (or any unspecified voltage )
to the terminals. We obtain the circuit in Fig. 4.44(a). We ignore the

resistor because it is short-circuited. Also due to the short circuit,
the resistor, the voltage source, and the dependent current source
are all in parallel. Hence, At node a, and

To find we short-circuit terminals a and b and find the current
as indicated in Fig. 4.44(b). Note from this figure that the 

resistor, the 10-V voltage source, the resistor, and the dependent
current source are all in parallel. Hence,

At node a, KCL gives

Thus,

IN � 7 A

isc �
10

5
� 2ix � 2 � 2(2.5) � 7 A

ix �
10

4
� 2.5 A

5-�
4-�isc,

IN,

RN �
vo

io
�

1

0.2
� 5 �

 io � 1v
5� � 0.2 A,ix � 0.

5-�
4-�

vovo � 1 V
RN,

INRN
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Derivations of Thevenin’s and
Norton’s Theorems

In this section, we will prove Thevenin’s and Norton’s theorems using
the superposition principle.

Consider the linear circuit in Fig. 4.46(a). It is assumed that the
circuit contains resistors and dependent and independent sources. We
have access to the circuit via terminals a and b, through which current
from an external source is applied. Our objective is to ensure that the
voltage-current relation at terminals a and b is identical to that of the
Thevenin equivalent in Fig. 4.46(b). For the sake of simplicity, sup-
pose the linear circuit in Fig. 4.46(a) contains two independent voltage
sources and and two independent current sources and We
may obtain any circuit variable, such as the terminal voltage v, by
applying superposition. That is, we consider the contribution due to
each independent source including the external source i. By superpo-
sition, the terminal voltage v is

(4.13)

where and are constants. Each term on the right-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, is the contribution to v due to the external current source i,

is the contribution due to the voltage source and so on. We
may collect terms for the internal independent sources together as 
so that Eq. (4.13) becomes

(4.14)

where We now want to evalu-
ate the values of constants and When the terminals a and b are
open-circuited, and Thus, is the open-circuit voltage

which is the same as so

(4.15)

When all the internal sources are turned off, The circuit can
then be replaced by an equivalent resistance which is the same as

and Eq. (4.14) becomes

(4.16)

Substituting the values of and in Eq. (4.14) gives

(4.17)

which expresses the voltage-current relation at terminals a and b of the
circuit in Fig. 4.46(b). Thus, the two circuits in Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
shown in Fig. 4.47(a), the current flowing into the circuit can be
obtained by superposition as

(4.18)

where is the contribution to i due to the external voltage source v
and contains the contributions to i due to all internal independent
sources. When the terminals a-b are short-circuited, so thatv � 0

D0

C0 
v

i � C0 
v � D0

v � RThi � VTh

B0 A0

v � A0i � RThi  1  A0 � RTh

RTh,
Req,

B0 � 0.

B0 � VTh

VTh,voc,
B0v � B0.i � 0

B0.A0

B0 � A1vs1 � A2vs2 � A3is1 � A4is2.

v � A0i � B0

B0,
vs1,A1vs1

A0i

A4A0, A1, A2, A3,

v � A0i � A1vs1 � A2vs2 � A3is1 � A4is2

is2.is1vs2vs1

4.7
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i
Linear
circuit

a

b

(a)

i

a

b

(b)

v
+

−

v

+

−

VTh
+
−

RTh

Figure 4.46
Derivation of Thevenin equivalent: (a) a
current-driven circuit, (b) its Thevenin
equivalent.

v
Linear
circuit

a

b

(a)

v

a

b

(b)

INRN
+
−

+
−

i

i

Figure 4.47
Derivation of Norton equivalent: (a) a
voltage-driven circuit, (b) its Norton
equivalent.
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where is the short-circuit current flowing out of ter-
minal a, which is the same as the Norton current i.e.,

(4.19)

When all the internal independent sources are turned off, and
the circuit can be replaced by an equivalent resistance (or an equiv-
alent conductance ), which is the same as or Thus
Eq. (4.19) becomes

(4.20)

This expresses the voltage-current relation at terminals a-b of the cir-
cuit in Fig. 4.47(b), confirming that the two circuits in Fig. 4.47(a) and
4.47(b) are equivalent.

Maximum Power Transfer
In many practical situations, a circuit is designed to provide power to
a load. There are applications in areas such as communications where
it is desirable to maximize the power delivered to a load. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal losses greater than or equal to the
power delivered to the load.

The Thevenin equivalent is useful in finding the maximum power
a linear circuit can deliver to a load. We assume that we can adjust the
load resistance If the entire circuit is replaced by its Thevenin
equivalent except for the load, as shown in Fig. 4.48, the power deliv-
ered to the load is

(4.21)

For a given circuit, and are fixed. By varying the load resist-
ance the power delivered to the load varies as sketched in Fig. 4.49.
We notice from Fig. 4.49 that the power is small for small or large val-
ues of but maximum for some value of between 0 and We
now want to show that this maximum power occurs when is equal
to This is known as the maximum power theorem.RTh.

RL

�.RLRL

RL,
RThVTh

p � i2RL � a VTh

RTh � RL
b2 

RL

RL.

4.8

i �
v

RTh
� IN

RN.RThGeq � 1�Req

Req

D0 � 0

D0 � �IN

IN,
isci � D0 � �isc,
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RLVTh

RTh

+
−

a

b

i

Figure 4.48
The circuit used for maximum power
transfer.

p

RLRTh0

pmax

Figure 4.49
Power delivered to the load as a function
of RL.

Maximum power is transferred to the load when the load resistance
equals the Thevenin resistance as seen from the load (RL � RTh).

To prove the maximum power transfer theorem, we differentiate p
in Eq. (4.21) with respect to and set the result equal to zero. We
obtain

 � V 
2
Th c (RTh � RL � 2RL)

(RTh � RL)3 d � 0

 
dp

dRL
� V 

2
Th c (RTh � RL)2 � 2RL(RTh � RL)

(RTh � RL)4 d

RL
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This implies that

(4.22)

which yields

(4.23)

showing that the maximum power transfer takes place when the load
resistance equals the Thevenin resistance We can readily confirm
that Eq. (4.23) gives the maximum power by showing that 

The maximum power transferred is obtained by substituting
Eq. (4.23) into Eq. (4.21), for

(4.24)

Equation (4.24) applies only when When we
compute the power delivered to the load using Eq. (4.21).

RL � RTh,RL � RTh.

pmax �
V 

2
Th

4RTh

d2p �dR 
2
L 6 0.

RTh.RL

RL � RTh

0 � (RTh � RL � 2RL) � (RTh � RL)
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The source and load are said to be
matched when RL � RTh.

Example 4.13Find the value of for maximum power transfer in the circuit of 
Fig. 4.50. Find the maximum power.

RL

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω RL
+
−

a

b

Figure 4.50
For Example 4.13.

Solution:
We need to find the Thevenin resistance and the Thevenin voltage

across the terminals a-b. To get we use the circuit in Fig. 4.51(a)
and obtain

RTh � 2 � 3 � 6 � 12 � 5 �
6 � 12

18
� 9 �

RTh,VTh

RTh

6 Ω 3 Ω 2 Ω

12 Ω
RTh

12 V 2 A

6 Ω 3 Ω 2 Ω

12 Ω+
− VTh

+

−

(a) (b)

i1 i2

Figure 4.51
For Example 4.13: (a) finding (b) finding VTh.RTh,
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To get we consider the circuit in Fig. 4.51(b). Applying mesh
analysis gives

Solving for we get Applying KVL around the outer loop
to get across terminals a-b, we obtain

For maximum power transfer,

and the maximum power is

pmax �
VTh

2

4RL
�

222

4 � 9
� 13.44 W

RL � RTh � 9 �

�12 � 6i1 � 3i2 � 2(0) � VTh � 0  1   VTh � 22 V

VTh

i1 � �2�3.i1,

�12 � 18i1 � 12i2 � 0,  i2 � �2 A

VTh,
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Practice Problem 4.13

9 V

4 Ω2 Ω

RL

1 Ω

3vx

+
−

+
−

+ −vx

Figure 4.52
For Practice Prob. 4.13.

Verifying Circuit Theorems with PSpice
In this section, we learn how to use PSpice to verify the theorems cov-
ered in this chapter. Specifically, we will consider using DC Sweep analy-
sis to find the Thevenin or Norton equivalent at any pair of nodes in a
circuit and the maximum power transfer to a load. The reader is advised
to read Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit
and insert an independent probing current source, say, Ip, at the termi-
nals. The probing current source must have a part name ISRC. We then
perform a DC Sweep on Ip, as discussed in Section D.3. Typically, we
may let the current through Ip vary from 0 to 1 A in 0.1-A increments.
After saving and simulating the circuit, we use Probe to display a plot
of the voltage across Ip versus the current through Ip. The zero inter-
cept of the plot gives us the Thevenin equivalent voltage, while the
slope of the plot is equal to the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from 0 to 1 V in 0.1-V increments. A plot of the current through
Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice
involves performing a DC parametric Sweep on the component value
of in Fig. 4.48 and plotting the power delivered to the load as a
function of According to Fig. 4.49, the maximum power occursRL.

RL

4.9

Determine the value of that will draw the maximum power from
the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 2.901 W.4.222 �,

RL
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