This leads to a new equation for loop 1. Simplifying leads to

$$(4+2-8)i_1 + (-2+8)i_2 = 0$$

or

$$-2i_1 + 6i_2 = 0 \quad \text{or} \quad i_1 = 3i_2$$
$$-2i_1 + 11i_2 = -10$$

Substituting the first equation into the second gives

 $-6i_2 + 11i_2 = -10$ or $i_2 = -10/5 = -2$ A

Using the Thevenin equivalent is quite easy since we have only one loop, as shown in Fig. 4.35(d).

$$-4i + 9i + 10 = 0$$
 or $i = -10/5 = -2$ A

6. **Satisfactory?** Clearly we have found the value of the equivalent circuit as required by the problem statement. Checking does validate that solution (we compared the answer we obtained by using the equivalent circuit with one obtained by using the load with the original circuit). We can present all this as a solution to the problem.

Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: $V_{\rm Th} = 0 \text{ V}, R_{\rm Th} = -7.5 \Omega.$

4.6 Norton's Theorem

In 1926, about 43 years after Thevenin published his theorem, E. L. Norton, an American engineer at Bell Telephone Laboratories, proposed a similar theorem.

Norton's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N , where I_N is the short-circuit current through the terminals and R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).

The proof of Norton's theorem will be given in the next section. For now, we are mainly concerned with how to get R_N and I_N . We find R_N in the same way we find R_{Th} . In fact, from what we know about source transformation, the Thevenin and Norton resistances are equal; that is,

$$R_N = R_{\rm Th} \tag{4.9}$$

To find the Norton current I_N , we determine the short-circuit current flowing from terminal *a* to *b* in both circuits in Fig. 4.37. It is evident

Practice Problem 4.10

Figure 4.36 For Practice Prob. 4.10.

Chapter 4 Circuit Theorems

Finding Norton current I_N .

The Thevenin and Norton equivalent circuits are related by a source transformation.

that the short-circuit current in Fig. 4.37(b) is I_N . This must be the same short-circuit current from terminal *a* to *b* in Fig. 4.37(a), since the two circuits are equivalent. Thus,

$$I_N = i_{sc} \tag{4.10}$$

shown in Fig. 4.38. Dependent and independent sources are treated the same way as in Thevenin's theorem.

Observe the close relationship between Norton's and Thevenin's theorems: $R_N = R_{\text{Th}}$ as in Eq. (4.9), and

$$I_N = \frac{V_{\rm Th}}{R_{\rm Th}}$$
(4.11)

This is essentially source transformation. For this reason, source transformation is often called Thevenin-Norton transformation.

Since V_{Th} , I_N , and R_{Th} are related according to Eq. (4.11), to determine the Thevenin or Norton equivalent circuit requires that we find:

- The open-circuit voltage v_{oc} across terminals a and b.
- The short-circuit current i_{sc} at terminals a and b.
- The equivalent or input resistance R_{in} at terminals *a* and *b* when all independent sources are turned off.

We can calculate any two of the three using the method that takes the least effort and use them to get the third using Ohm's law. Example 4.11 will illustrate this. Also, since

$$V_{\rm Th} = v_{oc} \tag{4.12a}$$

$$I_N = i_{sc} \tag{4.12b}$$

$$R_{\rm Th} = \frac{v_{oc}}{i_{sc}} = R_N \tag{4.12c}$$

the open-circuit and short-circuit tests are sufficient to find any Thevenin or Norton equivalent, of a circuit which contains at least one independent source.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at terminals *a-b*.

Solution:

We find R_N in the same way we find R_{Th} in the Thevenin equivalent circuit. Set the independent sources equal to zero. This leads to the circuit in Fig. 4.40(a), from which we find R_N . Thus,

$$R_N = 5 \parallel (8 + 4 + 8) = 5 \parallel 20 = \frac{20 \times 5}{25} = 4 \Omega$$

To find I_N , we short-circuit terminals *a* and *b*, as shown in Fig. 4.40(b). We ignore the 5- Ω resistor because it has been short-circuited. Applying mesh analysis, we obtain

$$i_1 = 2 \text{ A}, \qquad 20i_2 - 4i_1 - 12 = 0$$

From these equations, we obtain

$$i_2 = 1 \text{ A} = i_{sc} = I_N$$

Example 4.11

Figure 4.40 For Example 4.11; finding: (a) R_N , (b) $I_N = i_{sc}$, (c) $V_{Th} = v_{oc}$.

Alternatively, we may determine I_N from $V_{\text{Th}}/R_{\text{Th}}$. We obtain V_{Th} as the open-circuit voltage across terminals *a* and *b* in Fig. 4.40(c). Using mesh analysis, we obtain

$$i_3 = 2 \text{ A}$$
$$25i_4 - 4i_3 - 12 = 0 \implies i_4 = 0.8 \text{ A}$$

and

$$v_{oc} = V_{Th} = 5i_4 = 4 V$$

Hence,

$$I_N = \frac{V_{\rm Th}}{R_{\rm Th}} = \frac{4}{4} = 1 \,\mathrm{A}$$

as obtained previously. This also serves to confirm Eq. (4.12c) that $R_{\rm Th} = v_{oc}/i_{sc} = 4/1 = 4 \ \Omega$. Thus, the Norton equivalent circuit is as shown in Fig. 4.41.

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at terminals *a-b*.

Answer: $R_N = 3 \Omega$, $I_N = 4.5 A$.

Figure 4.42 For Practice Prob. 4.11.

Figure 4.43 For Example 4.12.

Using Norton's theorem, find R_N and I_N of the circuit in Fig. 4.43 at terminals *a-b*.

Solution:

To find R_N , we set the independent voltage source equal to zero and connect a voltage source of $v_o = 1$ V (or any unspecified voltage v_o) to the terminals. We obtain the circuit in Fig. 4.44(a). We ignore the 4- Ω resistor because it is short-circuited. Also due to the short circuit, the 5- Ω resistor, the voltage source, and the dependent current source are all in parallel. Hence, $i_x = 0$. At node a, $i_o = \frac{lv}{5\Omega} = 0.2$ A, and

$$R_N = \frac{v_o}{i_o} = \frac{1}{0.2} = 5 \ \Omega$$

To find I_N , we short-circuit terminals *a* and *b* and find the current i_{sc} , as indicated in Fig. 4.44(b). Note from this figure that the 4- Ω resistor, the 10-V voltage source, the 5- Ω resistor, and the dependent current source are all in parallel. Hence,

$$i_x = \frac{10}{4} = 2.5 \text{ A}$$

At node *a*, KCL gives

$$i_{sc} = \frac{10}{5} + 2i_x = 2 + 2(2.5) = 7$$
 A

Thus,

$$I_N = 7 \text{ A}$$

Figure 4.44 For Example 4.12: (a) finding R_N , (b) finding I_N .

For Practice Prob. 4.12.

4.7 ^TDerivations of Thevenin's and Norton's Theorems

In this section, we will prove Thevenin's and Norton's theorems using the superposition principle.

Consider the linear circuit in Fig. 4.46(a). It is assumed that the circuit contains resistors and dependent and independent sources. We have access to the circuit via terminals a and b, through which current from an external source is applied. Our objective is to ensure that the voltage-current relation at terminals a and b is identical to that of the Thevenin equivalent in Fig. 4.46(b). For the sake of simplicity, suppose the linear circuit in Fig. 4.46(a) contains two independent voltage sources v_{s1} and v_{s2} and two independent current sources i_{s1} and i_{s2} . We may obtain any circuit variable, such as the terminal voltage v, by applying superposition. That is, we consider the contribution due to each independent source including the external source i. By superposition, the terminal voltage v is

$$v = A_0 i + A_1 v_{s1} + A_2 v_{s2} + A_3 i_{s1} + A_4 i_{s2}$$
(4.13)

where A_0 , A_1 , A_2 , A_3 , and A_4 are constants. Each term on the right-hand side of Eq. (4.13) is the contribution of the related independent source; that is, A_0i is the contribution to v due to the external current source i, A_1v_{s1} is the contribution due to the voltage source v_{s1} , and so on. We may collect terms for the internal independent sources together as B_0 , so that Eq. (4.13) becomes

$$v = A_0 i + B_0 \tag{4.14}$$

where $B_0 = A_1v_{s1} + A_2v_{s2} + A_3i_{s1} + A_4i_{s2}$. We now want to evaluate the values of constants A_0 and B_0 . When the terminals *a* and *b* are open-circuited, i = 0 and $v = B_0$. Thus, B_0 is the open-circuit voltage v_{oc} , which is the same as V_{Th} , so

$$B_0 = V_{\rm Th} \tag{4.15}$$

When all the internal sources are turned off, $B_0 = 0$. The circuit can then be replaced by an equivalent resistance R_{eq} , which is the same as R_{Th} , and Eq. (4.14) becomes

$$v = A_0 i = R_{\text{Th}} i \implies A_0 = R_{\text{Th}}$$
 (4.16)

Substituting the values of A_0 and B_0 in Eq. (4.14) gives

$$v = R_{\rm Th}i + V_{\rm Th} \tag{4.17}$$

which expresses the voltage-current relation at terminals a and b of the circuit in Fig. 4.46(b). Thus, the two circuits in Fig. 4.46(a) and 4.46(b) are equivalent.

When the same linear circuit is driven by a voltage source v as shown in Fig. 4.47(a), the current flowing into the circuit can be obtained by superposition as

$$i = C_0 v + D_0 (4.18)$$

where $C_0 v$ is the contribution to *i* due to the external voltage source *v* and D_0 contains the contributions to *i* due to all internal independent sources. When the terminals *a*-*b* are short-circuited, v = 0 so that

Derivation of Thevenin equivalent: (a) a current-driven circuit, (b) its Thevenin equivalent.

Derivation of Norton equivalent: (a) a voltage-driven circuit, (b) its Norton equivalent.

 $i = D_0 = -i_{sc}$, where i_{sc} is the short-circuit current flowing out of terminal *a*, which is the same as the Norton current I_N , i.e.,

$$D_0 = -I_N \tag{4.19}$$

When all the internal independent sources are turned off, $D_0 = 0$ and the circuit can be replaced by an equivalent resistance R_{eq} (or an equivalent conductance $G_{eq} = 1/R_{eq}$), which is the same as R_{Th} or R_N . Thus Eq. (4.19) becomes

$$i = \frac{v}{R_{\rm Th}} - I_N \tag{4.20}$$

This expresses the voltage-current relation at terminals a-b of the circuit in Fig. 4.47(b), confirming that the two circuits in Fig. 4.47(a) and 4.47(b) are equivalent.

4.8 Maximum Power Transfer

In many practical situations, a circuit is designed to provide power to a load. There are applications in areas such as communications where it is desirable to maximize the power delivered to a load. We now address the problem of delivering the maximum power to a load when given a system with known internal losses. It should be noted that this will result in significant internal losses greater than or equal to the power delivered to the load.

The Thevenin equivalent is useful in finding the maximum power a linear circuit can deliver to a load. We assume that we can adjust the load resistance R_L . If the entire circuit is replaced by its Thevenin equivalent except for the load, as shown in Fig. 4.48, the power delivered to the load is

$$p = i^2 R_L = \left(\frac{V_{\rm Th}}{R_{\rm Th} + R_L}\right)^2 R_L \tag{4.21}$$

For a given circuit, V_{Th} and R_{Th} are fixed. By varying the load resistance R_L , the power delivered to the load varies as sketched in Fig. 4.49. We notice from Fig. 4.49 that the power is small for small or large values of R_L but maximum for some value of R_L between 0 and ∞ . We now want to show that this maximum power occurs when R_L is equal to R_{Th} . This is known as the *maximum power theorem*.

Maximum power is transferred to the load when the load resistance equals the Thevenin resistance as seen from the load ($R_L = R_{Th}$).

To prove the maximum power transfer theorem, we differentiate p in Eq. (4.21) with respect to R_L and set the result equal to zero. We obtain

$$\frac{dp}{dR_L} = V_{\rm Th}^2 \left[\frac{(R_{\rm Th} + R_L)^2 - 2R_L(R_{\rm Th} + R_L)}{(R_{\rm Th} + R_L)^4} \right]$$
$$= V_{\rm Th}^2 \left[\frac{(R_{\rm Th} + R_L - 2R_L)}{(R_{\rm Th} + R_L)^3} \right] = 0$$

Figure 4.48 The circuit used for maximum power transfer.

Power delivered to the load as a function of R_L .

This implies that

$$0 = (R_{\rm Th} + R_L - 2R_L) = (R_{\rm Th} - R_L)$$
(4.22)

which yields

$$R_L = R_{\rm Th} \tag{4.23}$$

showing that the maximum power transfer takes place when the load resistance R_L equals the Thevenin resistance R_{Th} . We can readily confirm that Eq. (4.23) gives the maximum power by showing that $d^2p/dR_L^2 < 0$.

The maximum power transferred is obtained by substituting Eq. (4.23) into Eq. (4.21), for

$$p_{\rm max} = \frac{V_{\rm Th}^2}{4R_{\rm Th}} \tag{4.24}$$

Equation (4.24) applies only when $R_L = R_{\text{Th}}$. When $R_L \neq R_{\text{Th}}$, we compute the power delivered to the load using Eq. (4.21).

Find the value of R_L for maximum power transfer in the circuit of Fig. 4.50. Find the maximum power.

 2Ω

h

(A) 2 A

 3Ω

 $\sqrt{\sqrt{2}}$

 $\geq 12 \Omega$

Example 4.13

The source and load are said to be

matched when $R_{l} = R_{Th}$.

12 V

6Ω

Solution:

We need to find the Thevenin resistance R_{Th} and the Thevenin voltage V_{Th} across the terminals *a-b*. To get R_{Th} , we use the circuit in Fig. 4.51(a) and obtain

For Example 4.13: (a) finding R_{Th} , (b) finding V_{Th} .

To get $V_{\rm Th}$, we consider the circuit in Fig. 4.51(b). Applying mesh analysis gives

$$-12 + 18i_1 - 12i_2 = 0, \qquad i_2 = -2 \text{ A}$$

Solving for i_1 , we get $i_1 = -2/3$. Applying KVL around the outer loop to get $V_{\rm Th}$ across terminals *a-b*, we obtain

$$-12 + 6i_1 + 3i_2 + 2(0) + V_{\text{Th}} = 0 \implies V_{\text{Th}} = 22 \text{ V}$$

For maximum power transfer,

$$R_L = R_{\rm Th} = 9 \,\Omega$$

and the maximum power is

$$p_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_I} = \frac{22^2}{4 \times 9} = 13.44 \text{ W}$$

2Ω 4Ω $\Lambda \Lambda \Lambda$ \sim v_r 1Ω

Determine the value of R_L that will draw the maximum power from the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 4.222Ω , 2.901 W.

Verifying Circuit Theorems with PSpice 4.9

In this section, we learn how to use PSpice to verify the theorems covered in this chapter. Specifically, we will consider using DC Sweep analysis to find the Thevenin or Norton equivalent at any pair of nodes in a circuit and the maximum power transfer to a load. The reader is advised to read Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open terminals using *PSpice*, we use the schematic editor to draw the circuit and insert an independent probing current source, say, Ip, at the terminals. The probing current source must have a part name ISRC. We then perform a DC Sweep on Ip, as discussed in Section D.3. Typically, we may let the current through Ip vary from 0 to 1 A in 0.1-A increments. After saving and simulating the circuit, we use Probe to display a plot of the voltage across Ip versus the current through Ip. The zero intercept of the plot gives us the Thevenin equivalent voltage, while the slope of the plot is equal to the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we insert a probing independent voltage source (with a part name VSRC), say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp vary from 0 to 1 V in 0.1-V increments. A plot of the current through Vp versus the voltage across Vp is obtained using the Probe menu after simulation. The zero intercept is equal to the Norton current, while the slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice involves performing a DC parametric Sweep on the component value of R_L in Fig. 4.48 and plotting the power delivered to the load as a function of R_{L} . According to Fig. 4.49, the maximum power occurs

Figure 4.52 For Practice Prob. 4.13.