

Figure 4.13
For Example 4.5.

Find I in the circuit of Fig. 4.14 using the superposition principle.

Figure 4.14
For Practice Prob. 4.5.

Answer: 375 mA .

4.4 Source Transformation

We have noticed that series-parallel combination and wye-delta transformation help simplify circuits. Source transformation is another tool for simplifying circuits. Basic to these tools is the concept of equivalence. We recall that an equivalent circuit is one whose $v-i$ characteristics are identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equations can be obtained by mere inspection of a circuit when the sources are all independent current (or all independent voltage) sources. It is therefore expedient in circuit analysis to be able to substitute a voltage source in series with a resistor for a current source in parallel with a
resistor, or vice versa, as shown in Fig. 4.15. Either substitution is known as a source transformation.

Figure 4.15
Transformation of independent sources.

> A source transformation is the process of replacing a voltage source v_{s} in series with a resistor R by a current source i_{s} in parallel with a resistor R, or vice versa.

The two circuits in Fig. 4.15 are equivalent-provided they have the same voltage-current relation at terminals $a-b$. It is easy to show that they are indeed equivalent. If the sources are turned off, the equivalent resistance at terminals $a-b$ in both circuits is R. Also, when terminals $a-b$ are short-circuited, the short-circuit current flowing from a to b is $i_{s c}=v_{s} / R$ in the circuit on the left-hand side and $i_{s c}=i_{s}$ for the circuit on the right-hand side. Thus, $v_{s} / R=i_{s}$ in order for the two circuits to be equivalent. Hence, source transformation requires that

$$
\begin{equation*}
v_{s}=i_{s} R \quad \text { or } \quad i_{s}=\frac{v_{s}}{R} \tag{4.5}
\end{equation*}
$$

Source transformation also applies to dependent sources, provided we carefully handle the dependent variable. As shown in Fig. 4.16, a dependent voltage source in series with a resistor can be transformed to a dependent current source in parallel with the resistor or vice versa where we make sure that Eq. (4.5) is satisfied.

Figure 4.16
Transformation of dependent sources.
Like the wye-delta transformation we studied in Chapter 2, a source transformation does not affect the remaining part of the circuit. When applicable, source transformation is a powerful tool that allows circuit manipulations to ease circuit analysis. However, we should keep the following points in mind when dealing with source transformation.

1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current source is directed toward the positive terminal of the voltage source.
2. Note from Eq. (4.5) that source transformation is not possible when $R=0$, which is the case with an ideal voltage source. However, for a practical, nonideal voltage source, $R \neq 0$. Similarly, an ideal current source with $R=\infty$ cannot be replaced by a finite voltage source. More will be said on ideal and nonideal sources in Section 4.10.1.

Use source transformation to find v_{o} in the circuit of Fig. 4.17.

Example 4.6

Solution:

We first transform the current and voltage sources to obtain the circuit in Fig. 4.18(a). Combining the $4-\Omega$ and $2-\Omega$ resistors in series and transforming the $12-\mathrm{V}$ voltage source gives us Fig. 4.18(b). We now combine the $3-\Omega$ and $6-\Omega$ resistors in parallel to get $2-\Omega$. We also combine the $2-\mathrm{A}$ and $4-\mathrm{A}$ current sources to get a $2-\mathrm{A}$ source. Thus, by repeatedly applying source transformations, we obtain the circuit in

Figure 4.17
For Example 4.6. Fig. 4.18(c).

(a)

Figure 4.18
For Example 4.6.
We use current division in Fig. 4.18(c) to get

$$
i=\frac{2}{2+8}(2)=0.4 \mathrm{~A}
$$

and

$$
v_{o}=8 i=8(0.4)=3.2 \mathrm{~V}
$$

Alternatively, since the $8-\Omega$ and $2-\Omega$ resistors in Fig. 4.18(c) are in parallel, they have the same voltage v_{o} across them. Hence,

$$
v_{o}=(8 \| 2)(2 \mathrm{~A})=\frac{8 \times 2}{10}(2)=3.2 \mathrm{~V}
$$

Find i_{o} in the circuit of Fig. 4.19 using source transformation.

Figure 4.19

For Practice Prob. 4.6.
Answer: 1.78 A .

Example 4.7

Figure 4.20
For Example 4.7.

Find v_{x} in Fig. 4.20 using source transformation.

Solution:

The circuit in Fig. 4.20 involves a voltage-controlled dependent current source. We transform this dependent current source as well as the $6-\mathrm{V}$ independent voltage source as shown in Fig. 4.21(a). The 18-V voltage source is not transformed because it is not connected in series with any resistor. The two $2-\Omega$ resistors in parallel combine to give a $1-\Omega$ resistor, which is in parallel with the 3-A current source. The current source is transformed to a voltage source as shown in Fig. 4.21(b). Notice that the terminals for v_{x} are intact. Applying KVL around the loop in Fig. 4.21(b) gives

$$
\begin{equation*}
-3+5 i+v_{x}+18=0 \tag{4.7.1}
\end{equation*}
$$

Figure 4.21
For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.

Applying KVL to the loop containing only the 3-V voltage source, the $1-\Omega$ resistor, and v_{x} yields

$$
\begin{equation*}
-3+1 i+v_{x}=0 \quad \Rightarrow \quad v_{x}=3-i \tag{4.7.2}
\end{equation*}
$$

Substituting this into Eq. (4.7.1), we obtain

$$
15+5 i+3-i=0 \quad \Rightarrow \quad i=-4.5 \mathrm{~A}
$$

Alternatively, we may apply KVL to the loop containing v_{x}, the $4-\Omega$ resistor, the voltage-controlled dependent voltage source, and the $18-\mathrm{V}$ voltage source in Fig. 4.21(b). We obtain

$$
-v_{x}+4 i+v_{x}+18=0 \quad \Rightarrow \quad i=-4.5 \mathrm{~A}
$$

Thus, $v_{x}=3-i=7.5 \mathrm{~V}$.

Practice Problem 4.7 Use source transformation to find i_{x} in the circuit shown in Fig. 4.22.

Figure 4.22
For Practice Prob. 4.7.

4.5 Thevenin's Theorem

It often occurs in practice that a particular element in a circuit is variable (usually called the load) while other elements are fixed. As a typical example, a household outlet terminal may be connected to different appliances constituting a variable load. Each time the variable element is changed, the entire circuit has to be analyzed all over again. To avoid this problem, Thevenin's theorem provides a technique by which the fixed part of the circuit is replaced by an equivalent circuit.

According to Thevenin's theorem, the linear circuit in Fig. 4.23(a) can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be a single resistor or another circuit.) The circuit to the left of the terminals $a-b$ in Fig. 4.23(b) is known as the Thevenin equivalent circuit; it was developed in 1883 by M. Leon Thevenin (1857-1926), a French telegraph engineer.

Thevenin's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source $V_{\text {Th }}$ in series with a resistor R_{Th}, where V_{Th} is the open-circuit voltage at the terminals and $R_{\text {Th }}$ is the input or equivalent resistance at the terminals when the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our major concern right now is how to find the Thevenin equivalent voltage V_{Th} and resistance R_{Th}. To do so, suppose the two circuits in Fig. 4.23 are equivalent. Two circuits are said to be equivalent if they have the same voltage-current relation at their terminals. Let us find out what will make the two circuits in Fig. 4.23 equivalent. If the terminals $a-b$ are made open-circuited (by removing the load), no current flows, so that the open-circuit voltage across the terminals $a-b$ in Fig. 4.23(a) must be equal to the voltage source V_{Th} in Fig. 4.23(b), since the two circuits are equivalent. Thus V_{Th} is the open-circuit voltage across the terminals as shown in Fig. 4.24(a); that is,

$$
\begin{equation*}
V_{\mathrm{Th}}=v_{o c} \tag{4.6}
\end{equation*}
$$

Figure 4.24
Finding V_{Th} and R_{Th}.
Again, with the load disconnected and terminals $a-b$ opencircuited, we turn off all independent sources. The input resistance (or equivalent resistance) of the dead circuit at the terminals $a-b$ in Fig. 4.23(a) must be equal to R_{Th} in Fig. 4.23(b) because the two circuits are equivalent. Thus, R_{Th} is the input resistance at the terminals when the independent sources are turned off, as shown in Fig. 4.24(b); that is,

$$
\begin{equation*}
R_{\mathrm{Th}}=R_{\mathrm{in}} \tag{4.7}
\end{equation*}
$$

Figure 4.23

Replacing a linear two-terminal circuit by its Thevenin equivalent: (a) original circuit, (b) the Thevenin equivalent circuit.

(a)

$$
R_{\mathrm{Th}}=\frac{v_{o}}{i_{o}}
$$

(b)

Figure 4.25
Finding R_{Th} when circuit has dependent sources.

Later we will see that an alternative way
of finding $R_{\text {Th }}$ is $R_{\text {Th }}=v_{\text {oc }} / I_{s c}$.

Figure 4.26
A circuit with a load: (a) original circuit, (b) Thevenin equivalent.

To apply this idea in finding the Thevenin resistance R_{Th}, we need to consider two cases.

CASE 1 If the network has no dependent sources, we turn off all independent sources. R_{Th} is the input resistance of the network looking between terminals a and b, as shown in Fig. 4.24(b).

CASE 2 If the network has dependent sources, we turn off all independent sources. As with superposition, dependent sources are not to be turned off because they are controlled by circuit variables. We apply a voltage source v_{o} at terminals a and b and determine the resulting current i_{o}. Then $R_{\mathrm{Th}}=v_{o} / i_{o}$, as shown in Fig. 4.25(a). Alternatively, we may insert a current source i_{o} at terminals $a-b$ as shown in Fig. 4.25 (b) and find the terminal voltage v_{o}. Again $R_{\mathrm{Th}}=v_{o} / i_{o}$. Either of the two approaches will give the same result. In either approach we may assume any value of v_{o} and i_{o}. For example, we may use $v_{o}=1 \mathrm{~V}$ or $i_{o}=1 \mathrm{~A}$, or even use unspecified values of v_{o} or i_{o}.

It often occurs that R_{Th} takes a negative value. In this case, the negative resistance ($v=-i R$) implies that the circuit is supplying power. This is possible in a circuit with dependent sources; Example 4.10 will illustrate this.

Thevenin's theorem is very important in circuit analysis. It helps simplify a circuit. A large circuit may be replaced by a single independent voltage source and a single resistor. This replacement technique is a powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be replaced by the Thevenin equivalent, exclusive of the load. The equivalent network behaves the same way externally as the original circuit. Consider a linear circuit terminated by a load R_{L}, as shown in Fig. 4.26(a). The current I_{L} through the load and the voltage V_{L} across the load are easily determined once the Thevenin equivalent of the circuit at the load's terminals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b), we obtain

$$
\begin{gather*}
I_{L}=\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}+R_{L}} \tag{4.8a}\\
V_{L}=R_{L} I_{L}=\frac{R_{L}}{R_{\mathrm{Th}}+R_{L}} V_{\mathrm{Th}} \tag{4.8b}
\end{gather*}
$$

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple voltage divider, yielding V_{L} by mere inspection.

Example 4.8

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to the left of the terminals $a-b$. Then find the current through $R_{L}=6,16$, and 36Ω.

Solution:

We find $R_{\text {Th }}$ by turning off the $32-\mathrm{V}$ voltage source (replacing it with a short circuit) and the 2 -A current source (replacing it with an
Figure 4.27
For Example 4.8.
open circuit). The circuit becomes what is shown in Fig. 4.28(a). Thus,

$$
R_{\mathrm{Th}}=4 \| 12+1=\frac{4 \times 12}{16}+1=4 \Omega
$$

(a)

(b)

Figure 4.28
For Example 4.8: (a) finding R_{Th}, (b) finding V_{Th}.

To find V_{Th}, consider the circuit in Fig. 4.28(b). Applying mesh analysis to the two loops, we obtain

$$
-32+4 i_{1}+12\left(i_{1}-i_{2}\right)=0, \quad i_{2}=-2 \mathrm{~A}
$$

Solving for i_{1}, we get $i_{1}=0.5 \mathrm{~A}$. Thus,

$$
V_{\mathrm{Th}}=12\left(i_{1}-i_{2}\right)=12(0.5+2.0)=30 \mathrm{~V}
$$

Alternatively, it is even easier to use nodal analysis. We ignore the $1-\Omega$ resistor since no current flows through it. At the top node, KCL gives

$$
\frac{32-V_{\mathrm{Th}}}{4}+2=\frac{V_{\mathrm{Th}}}{12}
$$

or

$$
96-3 V_{\mathrm{Th}}+24=V_{\mathrm{Th}} \quad \Rightarrow \quad V_{\mathrm{Th}}=30 \mathrm{~V}
$$

as obtained before. We could also use source transformation to find V_{Th}.
The Thevenin equivalent circuit is shown in Fig. 4.29. The current through R_{L} is

$$
I_{L}=\frac{V_{\mathrm{Th}}}{R_{\mathrm{Th}}+R_{L}}=\frac{30}{4+R_{L}}
$$

When $R_{L}=6$,

$$
I_{L}=\frac{30}{10}=3 \mathrm{~A}
$$

When $R_{L}=16$,

$$
I_{L}=\frac{30}{20}=1.5 \mathrm{~A}
$$

When $R_{L}=36$,

$$
I_{L}=\frac{30}{40}=0.75 \mathrm{~A}
$$

Figure 4.29
The Thevenin equivalent circuit for Example 4.8.

Practice Problem 4.8

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit of Fig. 4.30. Then find I.

Answer: $V_{\mathrm{Th}}=6 \mathrm{~V}, R_{\mathrm{Th}}=3 \Omega, I=1.5 \mathrm{~A}$.

Figure 4.30
For Practice Prob. 4.8.

Example 4.9

Figure 4.31
For Example 4.9.

Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals $a-b$.

Solution:

This circuit contains a dependent source, unlike the circuit in the previous example. To find R_{Th}, we set the independent source equal to zero but leave the dependent source alone. Because of the presence of the dependent source, however, we excite the network with a voltage source v_{o} connected to the terminals as indicated in Fig. 4.32(a). We may set $v_{o}=1 \mathrm{~V}$ to ease calculation, since the circuit is linear. Our goal is to find the current i_{o} through the terminals, and then obtain $R_{\mathrm{Th}}=1 / i_{o}$. (Alternatively, we may insert a 1-A current source, find the corresponding voltage v_{o}, and obtain $R_{\mathrm{Th}}=v_{o} / 1$.)

Figure 4.32
Finding R_{Th} and V_{Th} for Example 4.9.
Applying mesh analysis to loop 1 in the circuit of Fig. 4.32(a) results in

$$
-2 v_{x}+2\left(i_{1}-i_{2}\right)=0 \quad \text { or } \quad v_{x}=i_{1}-i_{2}
$$

But $-4 i_{2}=v_{x}=i_{1}-i_{2}$; hence,

$$
\begin{equation*}
i_{1}=-3 i_{2} \tag{4.9.1}
\end{equation*}
$$

For loops 2 and 3, applying KVL produces

$$
\begin{gather*}
4 i_{2}+2\left(i_{2}-i_{1}\right)+6\left(i_{2}-i_{3}\right)=0 \tag{4.9.2}\\
6\left(i_{3}-i_{2}\right)+2 i_{3}+1=0 \tag{4.9.3}
\end{gather*}
$$

Solving these equations gives

$$
i_{3}=-\frac{1}{6} \mathrm{~A}
$$

But $i_{o}=-i_{3}=1 / 6 \mathrm{~A}$. Hence,

$$
R_{\mathrm{Th}}=\frac{1 \mathrm{~V}}{i_{o}}=6 \Omega
$$

To get V_{Th}, we find $v_{o c}$ in the circuit of Fig. 4.32(b). Applying mesh analysis, we get

$$
\begin{gather*}
i_{1}=5 \tag{4.9.4}\\
-2 v_{x}+2\left(i_{3}-i_{2}\right)=0 \quad \Rightarrow \quad v_{x}=i_{3}-i_{2} \tag{4.9.5}\\
4\left(i_{2}-i_{1}\right)+2\left(i_{2}-i_{3}\right)+6 i_{2}=0
\end{gather*}
$$

or

$$
\begin{equation*}
12 i_{2}-4 i_{1}-2 i_{3}=0 \tag{4.9.6}
\end{equation*}
$$

But $4\left(i_{1}-i_{2}\right)=v_{x}$. Solving these equations leads to $i_{2}=10 / 3$. Hence,

$$
V_{\mathrm{Th}}=v_{o c}=6 i_{2}=20 \mathrm{~V}
$$

The Thevenin equivalent is as shown in Fig. 4.33.

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the

Practice Problem 4.9

 left of the terminals.Answer: $V_{\mathrm{Th}}=5.333 \mathrm{~V}, R_{\mathrm{Th}}=444.4 \mathrm{~m} \Omega$.

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a) at terminals $a-b$.

Solution:

1. Define. The problem is clearly defined; we are to determine the Thevenin equivalent of the circuit shown in Fig. 4.35(a).
2. Present. The circuit contains a $2-\Omega$ resistor in parallel with a $4-\Omega$ resistor. These are, in turn, in parallel with a dependent current source. It is important to note that there are no independent sources.
3. Alternative. The first thing to consider is that, since we have no independent sources in this circuit, we must excite the circuit externally. In addition, when you have no independent sources you will not have a value for V_{Th}; you will only have to find R_{Th}.

Figure 4.35
For Example 4.10.

The simplest approach is to excite the circuit with either a $1-\mathrm{V}$ voltage source or a $1-\mathrm{A}$ current source. Since we will end up with an equivalent resistance (either positive or negative), I prefer to use the current source and nodal analysis which will yield a voltage at the output terminals equal to the resistance (with 1 A flowing in, v_{o} is equal to 1 times the equivalent resistance).

As an alternative, the circuit could also be excited by a $1-\mathrm{V}$ voltage source and mesh analysis could be used to find the equivalent resistance.
4. Attempt. We start by writing the nodal equation at a in Fig. 4.35(b) assuming $i_{o}=1 \mathrm{~A}$.

$$
\begin{equation*}
2 i_{x}+\left(v_{o}-0\right) / 4+\left(v_{o}-0\right) / 2+(-1)=0 \tag{4.10.1}
\end{equation*}
$$

Since we have two unknowns and only one equation, we will need a constraint equation.

$$
\begin{equation*}
i_{x}=\left(0-v_{o}\right) / 2=-v_{o} / 2 \tag{4.10.2}
\end{equation*}
$$

Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

$$
\begin{aligned}
& 2\left(-v_{o} / 2\right)+\left(v_{o}-0\right) / 4+\left(v_{o}-0\right) / 2+(-1)=0 \\
& \quad=\left(-1+\frac{1}{4}+\frac{1}{2}\right) v_{o}-1 \quad \text { or } \quad v_{o}=-4 \mathrm{~V}
\end{aligned}
$$

Since $v_{o}=1 \times R_{\mathrm{Th}}$, then $R_{\mathrm{Th}}=v_{o} / 1=-\mathbf{4} \boldsymbol{\Omega}$.
The negative value of the resistance tells us that, according to the passive sign convention, the circuit in Fig. 4.35(a) is supplying power. Of course, the resistors in Fig. 4.35(a) cannot supply power (they absorb power); it is the dependent source that supplies the power. This is an example of how a dependent source and resistors could be used to simulate negative resistance.
5. Evaluate. First of all, we note that the answer has a negative value. We know this is not possible in a passive circuit, but in this circuit we do have an active device (the dependent current source). Thus, the equivalent circuit is essentially an active circuit that can supply power.

Now we must evaluate the solution. The best way to do this is to perform a check, using a different approach, and see if we obtain the same solution. Let us try connecting a $9-\Omega$ resistor in series with a $10-\mathrm{V}$ voltage source across the output terminals of the original circuit and then the Thevenin equivalent. To make the circuit easier to solve, we can take and change the parallel current source and $4-\Omega$ resistor to a series voltage source and $4-\Omega$ resistor by using source transformation. This, with the new load, gives us the circuit shown in Fig. 4.35(c).

We can now write two mesh equations.

$$
\begin{gathered}
8 i_{x}+4 i_{1}+2\left(i_{1}-i_{2}\right)=0 \\
2\left(i_{2}-i_{1}\right)+9 i_{2}+10=0
\end{gathered}
$$

Note, we only have two equations but have 3 unknowns, so we need a constraint equation. We can use

$$
i_{x}=i_{2}-i_{1}
$$

This leads to a new equation for loop 1. Simplifying leads to

$$
(4+2-8) i_{1}+(-2+8) i_{2}=0
$$

or

$$
\begin{gathered}
-2 i_{1}+6 i_{2}=0 \quad \text { or } \quad i_{1}=3 i_{2} \\
-2 i_{1}+11 i_{2}=-10
\end{gathered}
$$

Substituting the first equation into the second gives

$$
-6 i_{2}+11 i_{2}=-10 \quad \text { or } \quad i_{2}=-10 / 5=-2 \mathbf{A}
$$

Using the Thevenin equivalent is quite easy since we have only one loop, as shown in Fig. 4.35(d).

$$
-4 i+9 i+10=0 \quad \text { or } \quad i=-10 / 5=-\mathbf{2} \mathbf{A}
$$

6. Satisfactory? Clearly we have found the value of the equivalent circuit as required by the problem statement. Checking does validate that solution (we compared the answer we obtained by using the equivalent circuit with one obtained by using the load with the original circuit). We can present all this as a solution to the problem.

Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: $V_{\mathrm{Th}}=0 \mathrm{~V}, R_{\mathrm{Th}}=-7.5 \Omega$.

4.6 Norton's Theorem

In 1926, about 43 years after Thevenin published his theorem, E. L. Norton, an American engineer at Bell Telephone Laboratories, proposed a similar theorem.

Norton's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_{N} in parallel with a resistor R_{N}, where $/_{N}$ is the short-circuit current through the terminals and R_{N} is the input or equivalent resistance at the terminals when the independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).
The proof of Norton's theorem will be given in the next section. For now, we are mainly concerned with how to get R_{N} and I_{N}. We find R_{N} in the same way we find R_{Th}. In fact, from what we know about source transformation, the Thevenin and Norton resistances are equal; that is,

$$
\begin{equation*}
R_{N}=R_{\mathrm{Th}} \tag{4.9}
\end{equation*}
$$

To find the Norton current I_{N}, we determine the short-circuit current flowing from terminal a to b in both circuits in Fig. 4.37. It is evident

Practice Problem 4.10

Figure 4.36

For Practice Prob. 4.10.

(a)

(b)

Figure 4.37
(a) Original circuit, (b) Norton equivalent circuit.

