
Notice that the voltage across the 9-k and 18-k resistors is the same,
and V, as expected.
(b) Power supplied by the source is

(c) Power absorbed by the 12-k resistor is

Power absorbed by the 6-k resistor is

Power absorbed by the 9-k resistor is

or

Notice that the power supplied (5.4 W) equals the power absorbed
W). This is one way of checking results.(1.2 � 0.6 � 3.6 � 5.4

p � voi1 � 180(20) mW � 3.6 W

p �
vo

2

R
�

(180)2

9,000
� 3.6 W

�

p � i 2
2 R � (10 � 10�3)2 (6,000) � 0.6 W

�

p � iv � i2 (i2 R) � i 
2
2 R � (10 � 10�3)2 (12,000) � 1.2 W

�

po � voio � 180(30) mW � 5.4 W

vo � 9,000i1 � 18,000i2 � 180
��
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(a)

30 mA 9 kΩvo

+

−
12 kΩ

6 kΩ

(b)

30 mA 9 kΩvo

+

−
18 kΩ

i1

io i2

Figure 2.44
For Example 2.13: (a) original circuit,
(b) its equivalent circuit.

Practice Problem 2.13

30 mA3 kΩ 5 kΩ 20 kΩ

1 kΩ

v1

+

−
v2

+

−

Figure 2.45
For Practice Prob. 2.13.

For the circuit shown in Fig. 2.45, find: (a) and (b) the power
dissipated in the 3-k and 20-k resistors, and (c) the power supplied
by the current source.

��
v2,v1

Answer: (a) 45 V, 60 V, (b) 675 mW, 180 mW, (c) 1.8 W.

Wye-Delta Transformations
Situations often arise in circuit analysis when the resistors are neither in
parallel nor in series. For example, consider the bridge circuit in Fig. 2.46.
How do we combine resistors through when the resistors are neither
in series nor in parallel? Many circuits of the type shown in Fig. 2.46
can be simplified by using three-terminal equivalent networks. These are

R6R1

2.7vs
+
−

R1

R4

R2

R5

R3

R6

Figure 2.46
The bridge network.
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the wye (Y) or tee (T) network shown in Fig. 2.47 and the delta ( ) or
pi ( ) network shown in Fig. 2.48. These networks occur by themselves
or as part of a larger network. They are used in three-phase networks,
electrical filters, and matching networks. Our main interest here is in how
to identify them when they occur as part of a network and how to apply
wye-delta transformation in the analysis of that network.

ß
¢
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1 3

2 4

R3

R2R1

(a)

1 3

2 4

R3

R2R1

(b)

Figure 2.47
Two forms of the same network: (a) Y, (b) T.

Delta to Wye Conversion

Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose a wye
network on the existing delta network and find the equivalent resistances
in the wye network. To obtain the equivalent resistances in the wye net-
work, we compare the two networks and make sure that the resistance
between each pair of nodes in the (or ) network is the same as the
resistance between the same pair of nodes in the Y (or T) network. For
terminals 1 and 2 in Figs. 2.47 and 2.48, for example,

(2.46)

Setting (Y) gives

(2.47a)

Similarly,

(2.47b)

(2.47c)

Subtracting Eq. (2.47c) from Eq. (2.47a), we get

(2.48)

Adding Eqs. (2.47b) and (2.48) gives

(2.49)R1 �
Rb Rc

Ra � Rb � Rc

R1 � R2 �
Rc (Rb � Ra)

Ra � Rb � Rc

R34 � R2 � R3 �
Ra (Rb � Rc)

Ra � Rb � Rc

R13 � R1 � R2 �
Rc (Ra � Rb)

Ra � Rb � Rc

R12 � R1 � R3 �
Rb (Ra � Rc)

Ra � Rb � Rc

� R12 (¢)R12

R12 
(¢) � Rb 7  (Ra � Rc)

R12 (Y) � R1 � R3

ß¢

Figure 2.48
Two forms of the same network: (a) ,
(b) .ß

¢

1 3

2 4

Rc

(a)

1 3

2 4

(b)

RaRb

Rc

RaRb
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Each resistor in the Y network is the product of the resistors in the two
adjacent branches, divided by the sum of the three resistors.¢¢

and subtracting Eq. (2.48) from Eq. (2.47b) yields

(2.50)

Subtracting Eq. (2.49) from Eq. (2.47a), we obtain

(2.51)

We do not need to memorize Eqs. (2.49) to (2.51). To transform a net-
work to Y, we create an extra node n as shown in Fig. 2.49 and follow
this conversion rule:

¢

R3 �
Ra Rb

Ra � Rb � Rc

R2 �
Rc Ra

Ra � Rb � Rc

54 Chapter 2 Basic Laws

Figure 2.49
Superposition of Y and networks as an
aid in transforming one to the other.

¢

R3

RaRb

R1 R2

Rc

b

n

a

c

One can follow this rule and obtain Eqs. (2.49) to (2.51) from Fig. 2.49.

Wye to Delta Conversion

To obtain the conversion formulas for transforming a wye network to
an equivalent delta network, we note from Eqs. (2.49) to (2.51) that

(2.52)

Dividing Eq. (2.52) by each of Eqs. (2.49) to (2.51) leads to the fol-
lowing equations:

(2.53)

(2.54)

(2.55)

From Eqs. (2.53) to (2.55) and Fig. 2.49, the conversion rule for Y to
is as follows:¢

Rc �
R1 R2 � R2 R3 � R3 R1

R3

Rb �
R1 R2 � R2 R3 � R3 R1

R2

Ra �
R1 R2 � R2 R3 � R3 R1

R1

 �
Ra Rb Rc

Ra � Rb � Rc

 R1 R2 � R2 R3 � R3 R1 �
Ra Rb Rc (Ra � Rb � Rc)

(Ra � Rb � Rc)
2

Each resistor in the network is the sum of all possible products of Y
resistors taken two at a time, divided by the opposite Y resistor.

¢
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The Y and networks are said to be balanced when

(2.56)

Under these conditions, conversion formulas become

(2.57)

One may wonder why is less than Well, we notice that the Y-
connection is like a “series” connection while the -connection is like
a “parallel” connection.

Note that in making the transformation, we do not take anything
out of the circuit or put in anything new. We are merely substituting
different but mathematically equivalent three-terminal network patterns
to create a circuit in which resistors are either in series or in parallel,
allowing us to calculate if necessary.Req

¢
R¢.RY

RY �
R¢

3
  or  R¢ � 3RY

R1 � R2 � R3 � RY,  Ra � Rb � Rc � R¢

¢

Example 2.14Convert the network in Fig. 2.50(a) to an equivalent Y network.¢

Figure 2.50
For Example 2.14: (a) original network, (b) Y equivalent network.¢

c

ba

10 Ω 15 Ω

(a)

Rb Ra

Rc

25 Ω

c

ba

5 Ω

3 Ω

7.5 Ω
R2R1

R3

(b)

Solution:
Using Eqs. (2.49) to (2.51), we obtain

The equivalent Y network is shown in Fig. 2.50(b).

 R3 �
Ra Rb

Ra � Rb � Rc
�

15 � 10

50
� 3 �

 R2 �
Rc Ra

Ra � Rb � Rc
�

25 � 15

50
� 7.5 �

 R1 �
Rb Rc

Ra � Rb � Rc
�

10 � 25

15 � 10 � 25
�

250

50
� 5 �
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Transform the wye network in Fig. 2.51 to a delta network.

Answer: Ra � 140 �, Rb � 70 �, Rc � 35 �.

Practice Problem 2.14

Figure 2.51
For Practice Prob. 2.14.

20 Ω

R2

ba

c

10 Ω

R1

R3 40 Ω

Obtain the equivalent resistance for the circuit in Fig. 2.52 and use
it to find current i.

Solution:

1. Define. The problem is clearly defined. Please note, this part
normally will deservedly take much more time.

2. Present. Clearly, when we remove the voltage source, we end
up with a purely resistive circuit. Since it is composed of deltas
and wyes, we have a more complex process of combining the
elements together. We can use wye-delta transformations as one
approach to find a solution. It is useful to locate the wyes (there
are two of them, one at n and the other at c) and the deltas
(there are three: can, abn, cnb).

3. Alternative. There are different approaches that can be used to
solve this problem. Since the focus of Sec. 2.7 is the wye-delta
transformation, this should be the technique to use. Another
approach would be to solve for the equivalent resistance by
injecting one amp into the circuit and finding the voltage
between a and b; we will learn about this approach in Chap. 4.

The approach we can apply here as a check would be to use
a wye-delta transformation as the first solution to the problem.
Later we can check the solution by starting with a delta-wye
transformation.

4. Attempt. In this circuit, there are two Y networks and three 
networks. Transforming just one of these will simplify the circuit.
If we convert the Y network comprising the 5- 10- and
20- resistors, we may select

Thus from Eqs. (2.53) to (2.55) we have

 Rc �
R1 

R2 � R2 R3 � R3 R1

R3
�

350

5
� 70 �

 Rb �
R1 R2 � R2 R3 � R3 R1

R2
�

350

20
� 17.5 �

 �
350

10
� 35 �

 Ra �
R1 R2 � R2 R3 � R3 R1

R1
�

10 � 20 � 20 � 5 � 5 � 10

10

R1 � 10 �,  R2 � 20 �,  R3 � 5 �

�
�,�,

¢

RabExample 2.15

a a
i

bb

c n120 V
5 Ω

30 Ω

12.5 Ω

15 Ω

10 Ω

20 Ω

+
−

Figure 2.52
For Example 2.15.
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With the Y converted to the equivalent circuit (with the
voltage source removed for now) is shown in Fig. 2.53(a).
Combining the three pairs of resistors in parallel, we obtain

so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we
find

Then

We observe that we have successfully solved the problem.
Now we must evaluate the solution.

5. Evaluate. Now we must determine if the answer is correct and
then evaluate the final solution.

It is relatively easy to check the answer; we do this by
solving the problem starting with a delta-wye transformation. Let
us transform the delta, can, into a wye.

Let and This will lead
to (let d represent the middle of the wye):

 Rnd �
Ra Rc

27.5
�

5 � 10

27.5
� 1.8182 �

 Rcd �
Ra Rn

27.5
�

5 � 12.5

27.5
� 2.273 �

 Rad �
Rc Rn

Ra � Rc � Rn
�

10 � 12.5

5 � 10 � 12.5
� 4.545 �

Rn � 12.5 �.Ra � 5 �,Rc � 10 �,

i �
vs

Rab
�

120

9.632
� 12.458 A

Rab � (7.292 � 10.5) � 21 �
17.792 � 21

17.792 � 21
� 9.632 �

 15 � 35 �
15 � 35

15 � 35
� 10.5 �

 12.5 � 17.5 �
12.5 � 17.5

12.5 � 17.5
� 7.292 �

 70 � 30 �
70 � 30

70 � 30
� 21 �

¢,
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a

b

30 Ω70 Ω

17.5 Ω

35 Ω

12.5 Ω

15 Ω

(a)

a

b

21 Ω

(b)

7.292 Ω

10.5 Ω

a

b

c n

d

30 Ω

4.545 Ω

20 Ω

1.8182 Ω2.273 Ω

15 Ω

(c)

Figure 2.53
Equivalent circuits to Fig. 2.52, with the voltage source removed.
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This now leads to the circuit shown in Figure 2.53(c). Looking
at the resistance between d and b, we have two series
combination in parallel, giving us

This is in series with the resistor, both of which are in
parallel with the resistor. This then gives us the equivalent
resistance of the circuit.

This now leads to

We note that using two variations on the wye-delta transformation
leads to the same results. This represents a very good check.

6. Satisfactory? Since we have found the desired answer by
determining the equivalent resistance of the circuit first and the
answer checks, then we clearly have a satisfactory solution. This
represents what can be presented to the individual assigning the
problem.

i �
vs

Rab
�

120

9.631
� 12.46 A

Rab �
(9.642 � 4.545)30

9.642 � 4.545 � 30
�

425.6

44.19
� 9.631 �

30-�
4.545-�

Rdb �
(2.273 � 15)(1.8182 � 20)

2.273 � 15 � 1.8182 � 20
�

376.9

39.09
� 9.642 �
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For the bridge network in Fig. 2.54, find and i.

Answer: 6 A.40 �,

RabPractice Problem 2.15

24 Ω

240 V

i

30 Ω

10 Ω

50 Ω

13 Ω

20 Ω
+
−

b

a

Figure 2.54
For Practice Prob. 2.15.

So far, we have assumed that connect-
ing wires are perfect conductors (i.e.,
conductors of zero resistance). In real
physical systems, however, the resist-
ance of the connecting wire may be
appreciably large, and the modeling
of the system must include that
resistance.

Applications
Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, light bulbs, electric heaters, stoves, ovens, and loudspeakers. In
this section, we will consider two real-life problems that apply the con-
cepts developed in this chapter: electrical lighting systems and design
of dc meters.

2.8.1 Lighting Systems

Lighting systems, such as in a house or on a Christmas tree, often con-
sist of N lamps connected either in parallel or in series, as shown in
Fig. 2.55. Each lamp is modeled as a resistor. Assuming that all the lamps
are identical and is the power-line voltage, the voltage across each
lamp is for the parallel connection and for the series connec-
tion. The series connection is easy to manufacture but is seldom used
in practice, for at least two reasons. First, it is less reliable; when a lamp
fails, all the lamps go out. Second, it is harder to maintain; when a lamp
is bad, one must test all the lamps one by one to detect the faulty one.

Vo�NVo

Vo

2.8
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