Basic Laws

There are too many people praying for mountains of difficulty to be removed, when what they really need is the courage to climb them!
—Unknown

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.b), "an ability to design and conduct experiments, as well as to analyze and interpret data." Engineers must be able to design and conduct experiments, as well as analyze and interpret data. Most students have spent many hours performing experiments in high school and in college. During this time, you have been asked to analyze the data and to interpret the data. Therefore, you should already be skilled in these two activities. My recommendation is that, in the process of performing experiments in the future, you spend more time in analyzing and interpreting the data in the context of the experiment. What does this mean?

If you are looking at a plot of voltage versus resistance or current versus resistance or power versus resistance, what do you actually see? Does the curve make sense? Does it agree with what the theory tells you? Does it differ from expectation, and, if so, why? Clearly, practice with analyzing and interpreting data will enhance this skill.

Since most, if not all, the experiments you are required to do as a student involve little or no practice in designing the experiment, how can you develop and enhance this skill?

Actually, developing this skill under this constraint is not as difficult as it seems. What you need to do is to take the experiment and analyze it. Just break it down into its simplest parts, reconstruct it trying to understand why each element is there, and finally, determine what the author of the experiment is trying to teach you. Even though it may not always seem so, every experiment you do was designed by someone who was sincerely motivated to teach you something.

2.1 Introduction

Chapter 1 introduced basic concepts such as current, voltage, and power in an electric circuit. To actually determine the values of these variables in a given circuit requires that we understand some fundamental laws that govern electric circuits. These laws, known as Ohm's law and Kirchhoff's laws, form the foundation upon which electric circuit analysis is built.

In this chapter, in addition to these laws, we shall discuss some techniques commonly applied in circuit design and analysis. These techniques include combining resistors in series or parallel, voltage division, current division, and delta-to-wye and wye-to-delta transformations. The application of these laws and techniques will be restricted to resistive circuits in this chapter. We will finally apply the laws and techniques to real-life problems of electrical lighting and the design of dc meters.

2.2 Ohm's Law

Materials in general have a characteristic behavior of resisting the flow of electric charge. This physical property, or ability to resist current, is known as resistance and is represented by the symbol R. The resistance of any material with a uniform cross-sectional area A depends on A and its length ℓ, as shown in Fig. 2.1(a). We can represent resistance (as measured in the laboratory), in mathematical form,

$$
\begin{equation*}
R=\rho \frac{\ell}{A} \tag{2.1}
\end{equation*}
$$

where ρ is known as the resistivity of the material in ohm-meters. Good conductors, such as copper and aluminum, have low resistivities, while insulators, such as mica and paper, have high resistivities. Table 2.1 presents the values of ρ for some common materials and shows which materials are used for conductors, insulators, and semiconductors.

The circuit element used to model the current-resisting behavior of a material is the resistor. For the purpose of constructing circuits, resistors are usually made from metallic alloys and carbon compounds. The circuit

TABLE 2.1

Resistivities of common materials.

Material	Resistivity $(\Omega \cdot \mathbf{m})$	Usage
Silver	1.64×10^{-8}	Conductor
Copper	1.72×10^{-8}	Conductor
Aluminum	2.8×10^{-8}	Conductor
Gold	2.45×10^{-8}	Conductor
Carbon	4×10^{-5}	Semiconductor
Germanium	47×10^{-2}	Semiconductor
Silicon	6.4×10^{2}	Semiconductor
Paper	10^{10}	Insulator
Mica	5×10^{11}	Insulator
Glass	10^{12}	Insulator
Teflon	3×10^{12}	Insulator

symbol for the resistor is shown in Fig. 2.1(b), where R stands for the resistance of the resistor. The resistor is the simplest passive element.

Georg Simon Ohm (1787-1854), a German physicist, is credited with finding the relationship between current and voltage for a resistor. This relationship is known as Ohm's law.

Ohm's law states that the voltage v across a resistor is directly proportional to the current i flowing through the resistor.

That is,

$$
\begin{equation*}
v \propto i \tag{2.2}
\end{equation*}
$$

Ohm defined the constant of proportionality for a resistor to be the resistance, R. (The resistance is a material property which can change if the internal or external conditions of the element are altered, e.g., if there are changes in the temperature.) Thus, Eq. (2.2) becomes

$$
\begin{equation*}
v=i R \tag{2.3}
\end{equation*}
$$

which is the mathematical form of Ohm's law. R in Eq. (2.3) is measured in the unit of ohms, designated Ω. Thus,

The resistance R of an element denotes its ability to resist the flow of electric current; it is measured in ohms (Ω).

We may deduce from Eq. (2.3) that

$$
\begin{equation*}
R=\frac{v}{i} \tag{2.4}
\end{equation*}
$$

so that

$$
1 \Omega=1 \mathrm{~V} / \mathrm{A}
$$

To apply Ohm's law as stated in Eq. (2.3), we must pay careful attention to the current direction and voltage polarity. The direction of current i and the polarity of voltage v must conform with the passive

Historical

Georg Simon Ohm (1787-1854), a German physicist, in 1826 experimentally determined the most basic law relating voltage and current for a resistor. Ohm's work was initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw himself into electrical research. His efforts resulted in his famous law. He was awarded the Copley Medal in 1841 by the Royal Society of London. In 1849, he was given the Professor of Physics chair by the University of Munich. To honor him, the unit of resistance was named the ohm.

Figure 2.2
(a) Short circuit $(R=0)$, (b) Open circuit ($R=\infty$).

Figure 2.3
Fixed resistors: (a) wirewound type, (b) carbon film type. Courtesy of Tech America.

(a)

(b)

Figure 2.4
Circuit symbol for: (a) a variable resistor in general, (b) a potentiometer.
sign convention, as shown in Fig. 2.1(b). This implies that current flows from a higher potential to a lower potential in order for $v=i R$. If current flows from a lower potential to a higher potential, $v=-i R$.

Since the value of R can range from zero to infinity, it is important that we consider the two extreme possible values of R. An element with $R=0$ is called a short circuit, as shown in Fig. 2.2(a). For a short circuit,

$$
\begin{equation*}
v=i R=0 \tag{2.5}
\end{equation*}
$$

showing that the voltage is zero but the current could be anything. In practice, a short circuit is usually a connecting wire assumed to be a perfect conductor. Thus,

A short circuit is a circuit element with resistance approaching zero.

Similarly, an element with $R=\infty$ is known as an open circuit, as shown in Fig. 2.2(b). For an open circuit,

$$
\begin{equation*}
i=\lim _{R \rightarrow \infty} \frac{v}{R}=0 \tag{2.6}
\end{equation*}
$$

indicating that the current is zero though the voltage could be anything. Thus,

An open circuit is a circuit element with resistance approaching infinity.

A resistor is either fixed or variable. Most resistors are of the fixed type, meaning their resistance remains constant. The two common types of fixed resistors (wirewound and composition) are shown in Fig. 2.3. The composition resistors are used when large resistance is needed. The circuit symbol in Fig. 2.1(b) is for a fixed resistor. Variable resistors have adjustable resistance. The symbol for a variable resistor is shown in Fig. 2.4(a). A common variable resistor is known as a potentiometer or pot for short, with the symbol shown in Fig. 2.4(b). The pot is a three-terminal element with a sliding contact or wiper. By sliding the wiper, the resistances between the wiper terminal and the fixed terminals vary. Like fixed resistors, variable resistors can be of either wirewound or composition type, as shown in Fig. 2.5. Although resistors like those in Figs. 2.3 and 2.5 are used in circuit designs, today most

Figure 2.5
Variable resistors: (a) composition type, (b) slider pot. Courtesy of Tech America.
circuit components including resistors are either surface mounted or integrated, as typically shown in Fig. 2.6.

It should be pointed out that not all resistors obey Ohm's law. A resistor that obeys Ohm's law is known as a linear resistor. It has a constant resistance and thus its current-voltage characteristic is as illustrated in Fig. 2.7(a): Its $i-v$ graph is a straight line passing through the origin. A nonlinear resistor does not obey Ohm's law. Its resistance varies with current and its $i-v$ characteristic is typically shown in Fig. 2.7(b). Examples of devices with nonlinear resistance are the light bulb and the diode. Although all practical resistors may exhibit nonlinear behavior under certain conditions, we will assume in this book that all elements actually designated as resistors are linear.

A useful quantity in circuit analysis is the reciprocal of resistance R, known as conductance and denoted by G :

$$
\begin{equation*}
G=\frac{1}{R}=\frac{i}{v} \tag{2.7}
\end{equation*}
$$

The conductance is a measure of how well an element will conduct electric current. The unit of conductance is the mho (ohm spelled backward) or reciprocal ohm, with symbol $\widetilde{\widetilde{c}}$, the inverted omega. Although engineers often use the mho, in this book we prefer to use the siemens (S), the SI unit of conductance:

$$
\begin{equation*}
1 \mathrm{~S}=1 \mho=1 \mathrm{~A} / \mathrm{V} \tag{2.8}
\end{equation*}
$$

Thus,

Conductance is the ability of an element to conduct electric current; it is measured in mhos (\mathbb{J}) or siemens (S).

The same resistance can be expressed in ohms or siemens. For example, 10Ω is the same as 0.1 S . From Eq. (2.7), we may write

$$
\begin{equation*}
i=G v \tag{2.9}
\end{equation*}
$$

The power dissipated by a resistor can be expressed in terms of R. Using Eqs. (1.7) and (2.3),

$$
\begin{equation*}
p=v i=i^{2} R=\frac{v^{2}}{R} \tag{2.10}
\end{equation*}
$$

The power dissipated by a resistor may also be expressed in terms of G as

$$
\begin{equation*}
p=v i=v^{2} G=\frac{i^{2}}{G} \tag{2.11}
\end{equation*}
$$

We should note two things from Eqs. (2.10) and (2.11):

1. The power dissipated in a resistor is a nonlinear function of either current or voltage.
2. Since R and G are positive quantities, the power dissipated in a resistor is always positive. Thus, a resistor always absorbs power from the circuit. This confirms the idea that a resistor is a passive element, incapable of generating energy.

Figure 2.6
Resistors in an integrated circuit board.

Figure 2.7
The $i-v$ characteristic of: (a) a linear resistor, (b) a nonlinear resistor.

Example 2.1

An electric iron draws 2 A at 120 V . Find its resistance.

Solution:

From Ohm's law,

$$
R=\frac{v}{i}=\frac{120}{2}=60 \Omega
$$

Practice Problem 2.1 The essential component of a toaster is an electrical element (a resis-

 tor) that converts electrical energy to heat energy. How much current is drawn by a toaster with resistance 15Ω at 110 V ?Answer: 7.333 A.

Example 2.2

Figure 2.8
For Example 2.2.

In the circuit shown in Fig. 2.8, calculate the current i, the conductance G, and the power p.

Solution:

The voltage across the resistor is the same as the source voltage (30 V) because the resistor and the voltage source are connected to the same pair of terminals. Hence, the current is

$$
i=\frac{v}{R}=\frac{30}{5 \times 10^{3}}=6 \mathrm{~mA}
$$

The conductance is

$$
G=\frac{1}{R}=\frac{1}{5 \times 10^{3}}=0.2 \mathrm{mS}
$$

We can calculate the power in various ways using either Eqs. (1.7), (2.10), or (2.11).

$$
p=v i=30\left(6 \times 10^{-3}\right)=180 \mathrm{~mW}
$$

or

$$
p=i^{2} R=\left(6 \times 10^{-3}\right)^{2} 5 \times 10^{3}=180 \mathrm{~mW}
$$

or

$$
p=v^{2} G=(30)^{2} 0.2 \times 10^{-3}=180 \mathrm{~mW}
$$

Practice Problem 2.2

For the circuit shown in Fig. 2.9, calculate the voltage v, the conductance G, and the power p.

Answer: $30 \mathrm{~V}, 100 \mu \mathrm{~S}, 90 \mathrm{~mW}$.

Figure 2.9
For Practice Prob. 2.2

A voltage source of $20 \sin \pi t \mathrm{~V}$ is connected across a $5-\mathrm{k} \Omega$ resistor.

Example 2.3

Find the current through the resistor and the power dissipated.

Solution:

$$
i=\frac{v}{R}=\frac{20 \sin \pi t}{5 \times 10^{3}}=4 \sin \pi t \mathrm{~mA}
$$

Hence,

$$
p=v i=80 \sin ^{2} \pi t \mathrm{~mW}
$$

A resistor absorbs an instantaneous power of $30 \cos ^{2} t \mathrm{~mW}$ when connected to a voltage source $v=15 \cos t \mathrm{~V}$. Find i and R.

Answer: $2 \cos t \mathrm{~mA}, 7.5 \mathrm{k} \Omega$.

2.3 † Nodes, Branches, and Loops

Since the elements of an electric circuit can be interconnected in several ways, we need to understand some basic concepts of network topology. To differentiate between a circuit and a network, we may regard a network as an interconnection of elements or devices, whereas a circuit is a network providing one or more closed paths. The convention, when addressing network topology, is to use the word network rather than circuit. We do this even though the word network and circuit mean the same thing when used in this context. In network topology, we study the properties relating to the placement of elements in the network and the geometric configuration of the network. Such elements include branches, nodes, and loops.

> A branch represents a single element such as a voltage source or a resistor.

In other words, a branch represents any two-terminal element. The circuit in Fig. 2.10 has five branches, namely, the $10-\mathrm{V}$ voltage source, the 2-A current source, and the three resistors.

A node is the point of connection between two or more branches.
A node is usually indicated by a dot in a circuit. If a short circuit (a connecting wire) connects two nodes, the two nodes constitute a single node. The circuit in Fig. 2.10 has three nodes a, b, and c. Notice that the three points that form node b are connected by perfectly conducting wires and therefore constitute a single point. The same is true of the four points forming node c. We demonstrate that the circuit in Fig. 2.10 has only three nodes by redrawing the circuit in Fig. 2.11. The two circuits in Figs. 2.10 and 2.11 are identical. However, for the sake of clarity, nodes b and c are spread out with perfect conductors as in Fig. 2.10.

Practice Problem 2.3

Figure $\mathbf{2 . 1 0}$
Nodes, branches, and loops.

Figure 2.11

The three-node circuit of Fig. 2.10 is redrawn.

A loop is any closed path in a circuit.
A loop is a closed path formed by starting at a node, passing through a set of nodes, and returning to the starting node without passing through any node more than once. A loop is said to be independent if it contains at least one branch which is not a part of any other independent loop. Independent loops or paths result in independent sets of equations.

It is possible to form an independent set of loops where one of the loops does not contain such a branch. In Fig. 2.11, abca with the 2Ω resistor is independent. A second loop with the 3Ω resistor and the current source is independent. The third loop could be the one with the 2Ω resistor in parallel with the 3Ω resistor. This does form an independent set of loops.

A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology:

$$
\begin{equation*}
b=l+n-1 \tag{2.12}
\end{equation*}
$$

As the next two definitions show, circuit topology is of great value to the study of voltages and currents in an electric circuit.

> Two or more elements are in series if they exclusively share a single node and consequently carry the same current.
> Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.

Elements are in series when they are chain-connected or connected sequentially, end to end. For example, two elements are in series if they share one common node and no other element is connected to that common node. Elements in parallel are connected to the same pair of terminals. Elements may be connected in a way that they are neither in series nor in parallel. In the circuit shown in Fig. 2.10, the voltage source and the $5-\Omega$ resistor are in series because the same current will flow through them. The $2-\Omega$ resistor, the $3-\Omega$ resistor, and the current source are in parallel because they are connected to the same two nodes b and c and consequently have the same voltage across them. The $5-\Omega$ and $2-\Omega$ resistors are neither in series nor in parallel with each other.

Example 2.4

Determine the number of branches and nodes in the circuit shown in Fig. 2.12. Identify which elements are in series and which are in parallel.

Solution:

Since there are four elements in the circuit, the circuit has four branches: $10 \mathrm{~V}, 5 \Omega, 6 \Omega$, and 2 A . The circuit has three nodes as identified in Fig. 2.13. The $5-\Omega$ resistor is in series with the $10-\mathrm{V}$ voltage source because the same current would flow in both. The $6-\Omega$ resistor is in parallel with the $2-\mathrm{A}$ current source because both are connected to the same nodes 2 and 3 .

Figure 2.12
For Example 2.4.

Figure 2.13
The three nodes in the circuit of Fig. 2.12.

How many branches and nodes does the circuit in Fig. 2.14 have? Iden-

Practice Problem 2.4

 tify the elements that are in series and in parallel.Answer: Five branches and three nodes are identified in Fig. 2.15. The $1-\Omega$ and $2-\Omega$ resistors are in parallel. The $4-\Omega$ resistor and $10-\mathrm{V}$ source are also in parallel.

Figure 2.14
For Practice Prob. 2.4.

Figure 2.15
Answer for Practice Prob. 2.4.

2.4 Kirchhoff's Laws

Ohm's law by itself is not sufficient to analyze circuits. However, when it is coupled with Kirchhoff's two laws, we have a sufficient, powerful set of tools for analyzing a large variety of electric circuits. Kirchhoff's laws were first introduced in 1847 by the German physicist Gustav Robert Kirchhoff (1824-1887). These laws are formally known as Kirchhoff's current law (KCL) and Kirchhoff's voltage law (KVL).

Kirchhoff's first law is based on the law of conservation of charge, which requires that the algebraic sum of charges within a system cannot change.

Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

Mathematically, KCL implies that

$$
\begin{equation*}
\sum_{n=1}^{N} i_{n}=0 \tag{2.13}
\end{equation*}
$$

where N is the number of branches connected to the node and i_{n} is the nth current entering (or leaving) the node. By this law, currents

Historical

Gustav Robert Kirchhoff (1824-1887), a German physicist, stated two basic laws in 1847 concerning the relationship between the currents and voltages in an electrical network. Kirchhoff's laws, along with Ohm's law, form the basis of circuit theory.

Born the son of a lawyer in Konigsberg, East Prussia, Kirchhoff entered the University of Konigsberg at age 18 and later became a lecturer in Berlin. His collaborative work in spectroscopy with German chemist Robert Bunsen led to the discovery of cesium in 1860 and rubidium in 1861. Kirchhoff was also credited with the Kirchhoff law of radiation. Thus Kirchhoff is famous among engineers, chemists, and physicists.

Figure 2.16
Currents at a node illustrating KCL.

Figure 2.17
Applying KCL to a closed boundary.

Two sources (or circuits in general) are said to be equivalent if they have the same $i-v$ relationship at a pair of terminals.
entering a node may be regarded as positive, while currents leaving the node may be taken as negative or vice versa.

To prove KCL, assume a set of currents $i_{k}(t), k=1,2, \ldots$, flow into a node. The algebraic sum of currents at the node is

$$
\begin{equation*}
i_{T}(t)=i_{1}(t)+i_{2}(t)+i_{3}(t)+\cdots \tag{2.14}
\end{equation*}
$$

Integrating both sides of Eq. (2.14) gives

$$
\begin{equation*}
q_{T}(t)=q_{1}(t)+q_{2}(t)+q_{3}(t)+\cdots \tag{2.15}
\end{equation*}
$$

where $q_{k}(t)=\int i_{k}(t) d t$ and $q_{T}(t)=\int i_{T}(t) d t$. But the law of conservation of electric charge requires that the algebraic sum of electric charges at the node must not change; that is, the node stores no net charge. Thus $q_{T}(t)=0 \rightarrow i_{T}(t)=0$, confirming the validity of KCL.

Consider the node in Fig. 2.16. Applying KCL gives

$$
\begin{equation*}
i_{1}+\left(-i_{2}\right)+i_{3}+i_{4}+\left(-i_{5}\right)=0 \tag{2.16}
\end{equation*}
$$

since currents i_{1}, i_{3}, and i_{4} are entering the node, while currents i_{2} and i_{5} are leaving it. By rearranging the terms, we get

$$
\begin{equation*}
i_{1}+i_{3}+i_{4}=i_{2}+i_{5} \tag{2.17}
\end{equation*}
$$

Equation (2.17) is an alternative form of KCL:
The sum of the currents entering a node is equal to the sum of the currents leaving the node.

Note that KCL also applies to a closed boundary. This may be regarded as a generalized case, because a node may be regarded as a closed surface shrunk to a point. In two dimensions, a closed boundary is the same as a closed path. As typically illustrated in the circuit of Fig. 2.17, the total current entering the closed surface is equal to the total current leaving the surface.

A simple application of KCL is combining current sources in parallel. The combined current is the algebraic sum of the current supplied by the individual sources. For example, the current sources shown in

Fig. 2.18(a) can be combined as in Fig. 2.18(b). The combined or equivalent current source can be found by applying KCL to node a.

$$
I_{T}+I_{2}=I_{1}+I_{3}
$$

or

$$
\begin{equation*}
I_{T}=I_{1}-I_{2}+I_{3} \tag{2.18}
\end{equation*}
$$

A circuit cannot contain two different currents, I_{1} and I_{2}, in series, unless $I_{1}=I_{2}$; otherwise KCL will be violated.

Kirchhoff's second law is based on the principle of conservation of energy:

Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltases around a closed path (or loop) is zero.

Expressed mathematically, KVL states that

$$
\begin{equation*}
\sum_{m=1}^{M} v_{m}=0 \tag{2.19}
\end{equation*}
$$

where M is the number of voltages in the loop (or the number of branches in the loop) and v_{m} is the m th voltage.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on each voltage is the polarity of the terminal encountered first as we travel around the loop. We can start with any branch and go around the loop either clockwise or counterclockwise. Suppose we start with the voltage source and go clockwise around the loop as shown; then voltages would be $-v_{1},+v_{2},+v_{3},-v_{4}$, and $+v_{5}$, in that order. For example, as we reach branch 3 , the positive terminal is met first; hence, we have $+v_{3}$. For branch 4, we reach the negative terminal first; hence, $-v_{4}$. Thus, KVL yields

$$
\begin{equation*}
-v_{1}+v_{2}+v_{3}-v_{4}+v_{5}=0 \tag{2.20}
\end{equation*}
$$

Rearranging terms gives

$$
\begin{equation*}
v_{2}+v_{3}+v_{5}=v_{1}+v_{4} \tag{2.21}
\end{equation*}
$$

which may be interpreted as
Sum of voltage drops = Sum of voltage rises

This is an alternative form of KVL. Notice that if we had traveled counterclockwise, the result would have been $+v_{1},-v_{5},+v_{4},-v_{3}$, and $-v_{2}$, which is the same as before except that the signs are reversed. Hence, Eqs. (2.20) and (2.21) remain the same.

When voltage sources are connected in series, KVL can be applied to obtain the total voltage. The combined voltage is the algebraic sum of the voltages of the individual sources. For example, for the voltage sources shown in Fig. 2.20(a), the combined or equivalent voltage source in Fig. 2.20(b) is obtained by applying KVL.

$$
-V_{a b}+V_{1}+V_{2}-V_{3}=0
$$

Figure 2.18
Current sources in parallel: (a) original circuit, (b) equivalent circuit.

KVL can be applied in two ways: by taking either a clockwise or a counterclockwise trip around the loop. Either way, the algebraic sum of voltases around the loop is zero.

Figure 2.19
A single-loop circuit illustrating KVL.
or

$$
\begin{equation*}
V_{a b}=V_{1}+V_{2}-V_{3} \tag{2.23}
\end{equation*}
$$

To avoid violating KVL, a circuit cannot contain two different voltages V_{1} and V_{2} in parallel unless $V_{1}=V_{2}$.

Figure 2.20
Voltage sources in series: (a) original circuit, (b) equivalent circuit.

Example 2.5

For the circuit in Fig. 2.21(a), find voltages v_{1} and v_{2}.

Figure 2.21
For Example 2.5.

Solution:

To find v_{1} and v_{2}, we apply Ohm's law and Kirchhoff's voltage law. Assume that current i flows through the loop as shown in Fig. 2.21(b). From Ohm's law,

$$
\begin{equation*}
v_{1}=2 i, \quad v_{2}=-3 i \tag{2.5.1}
\end{equation*}
$$

Applying KVL around the loop gives

$$
\begin{equation*}
-20+v_{1}-v_{2}=0 \tag{2.5.2}
\end{equation*}
$$

Substituting Eq. (2.5.1) into Eq. (2.5.2), we obtain

$$
-20+2 i+3 i=0 \quad \text { or } \quad 5 i=20 \quad \Rightarrow \quad i=4 \mathrm{~A}
$$

Substituting i in Eq. (2.5.1) finally gives

$$
v_{1}=8 \mathrm{~V}, \quad v_{2}=-12 \mathrm{~V}
$$

Find v_{1} and v_{2} in the circuit of Fig. 2.22.
Answer: $16 \mathrm{~V},-8 \mathrm{~V}$.

Determine v_{o} and i in the circuit shown in Fig. 2.23(a).

Figure 2.23
For Example 2.6.

Solution:

We apply KVL around the loop as shown in Fig. 2.23(b). The result is

$$
\begin{equation*}
-12+4 i+2 v_{o}-4+6 i=0 \tag{2.6.1}
\end{equation*}
$$

Applying Ohm's law to the $6-\Omega$ resistor gives

$$
\begin{equation*}
v_{o}=-6 i \tag{2.6.2}
\end{equation*}
$$

Substituting Eq. (2.6.2) into Eq. (2.6.1) yields

$$
-16+10 i-12 i=0 \quad \Rightarrow \quad i=-8 \mathrm{~A}
$$

and $v_{o}=48 \mathrm{~V}$.

Find v_{x} and v_{o} in the circuit of Fig. 2.24.
Practice Problem 2.6
Answer: $20 \mathrm{~V},-10 \mathrm{~V}$.

Figure 2.24
For Practice Prob. 2.6.

Example 2.7

Find current i_{o} and voltage v_{o} in the circuit shown in Fig. 2.25.

Solution:

Applying KCL to node a, we obtain

$$
3+0.5 i_{o}=i_{o} \quad \Rightarrow \quad i_{o}=6 \mathrm{~A}
$$

For the $4-\Omega$ resistor, Ohm's law gives

$$
v_{o}=4 i_{o}=24 \mathrm{~V}
$$

Figure 2.25
For Example 2.7.

Practice Problem 2.7 Find v_{o} and i_{o} in the circuit of Fig. 2.26.

Figure 2.26
For Practice Prob. 2.7.

Answer: $12 \mathrm{~V}, 6 \mathrm{~A}$.

Figure 2.27
For Example 2.8.

Solution:

We apply Ohm's law and Kirchhoff's laws. By Ohm's law,

$$
\begin{equation*}
v_{1}=8 i_{1}, \quad v_{2}=3 i_{2}, \quad v_{3}=6 i_{3} \tag{2.8.1}
\end{equation*}
$$

Since the voltage and current of each resistor are related by Ohm's law as shown, we are really looking for three things: $\left(v_{1}, v_{2}, v_{3}\right)$ or $\left(i_{1}, i_{2}, i_{3}\right)$. At node a, KCL gives

$$
\begin{equation*}
i_{1}-i_{2}-i_{3}=0 \tag{2.8.2}
\end{equation*}
$$

Applying KVL to loop 1 as in Fig. 2.27(b),

$$
-30+v_{1}+v_{2}=0
$$

We express this in terms of i_{1} and i_{2} as in Eq. (2.8.1) to obtain

$$
-30+8 i_{1}+3 i_{2}=0
$$

or

$$
\begin{equation*}
i_{1}=\frac{\left(30-3 i_{2}\right)}{8} \tag{2.8.3}
\end{equation*}
$$

Applying KVL to loop 2,

$$
\begin{equation*}
-v_{2}+v_{3}=0 \quad \Rightarrow \quad v_{3}=v_{2} \tag{2.8.4}
\end{equation*}
$$

as expected since the two resistors are in parallel. We express v_{1} and v_{2} in terms of i_{1} and i_{2} as in Eq. (2.8.1). Equation (2.8.4) becomes

$$
\begin{equation*}
6 i_{3}=3 i_{2} \quad \Rightarrow \quad i_{3}=\frac{i_{2}}{2} \tag{2.8.5}
\end{equation*}
$$

Substituting Eqs. (2.8.3) and (2.8.5) into (2.8.2) gives

$$
\frac{30-3 i_{2}}{8}-i_{2}-\frac{i_{2}}{2}=0
$$

or $i_{2}=2 \mathrm{~A}$. From the value of i_{2}, we now use Eqs. (2.8.1) to (2.8.5) to obtain

$$
i_{1}=3 \mathrm{~A}, \quad i_{3}=1 \mathrm{~A}, \quad v_{1}=24 \mathrm{~V}, \quad v_{2}=6 \mathrm{~V}, \quad v_{3}=6 \mathrm{~V}
$$

Find the currents and voltages in the circuit shown in Fig. 2.28.
Answer: $v_{1}=6 \mathrm{~V}, v_{2}=4 \mathrm{~V}, v_{3}=10 \mathrm{~V}, i_{1}=3 \mathrm{~A}, i_{2}=500 \mathrm{~mA}$, $i_{3}=1.25 \mathrm{~A}$.

2.5 Series Resistors and Voltage Division

The need to combine resistors in series or in parallel occurs so frequently that it warrants special attention. The process of combining the resistors is facilitated by combining two of them at a time. With this in mind, consider the single-loop circuit of Fig. 2.29. The two resistors

Practice Problem 2.8

Figure 2.28
For Practice Prob. 2.8.

Figure 2.29
A single-loop circuit with two resistors in series.

Figure 2.30
Equivalent circuit of the Fig. 2.29 circuit.

Resistors in series behave as a single resistor whose resistance is equal to the sum of the resistances of the individual resistors.
are in series, since the same current i flows in both of them. Applying Ohm's law to each of the resistors, we obtain

$$
\begin{equation*}
v_{1}=i R_{1}, \quad v_{2}=i R_{2} \tag{2.24}
\end{equation*}
$$

If we apply KVL to the loop (moving in the clockwise direction), we have

$$
\begin{equation*}
-v+v_{1}+v_{2}=0 \tag{2.25}
\end{equation*}
$$

Combining Eqs. (2.24) and (2.25), we get

$$
\begin{equation*}
v=v_{1}+v_{2}=i\left(R_{1}+R_{2}\right) \tag{2.26}
\end{equation*}
$$

or

$$
\begin{equation*}
i=\frac{v}{R_{1}+R_{2}} \tag{2.27}
\end{equation*}
$$

Notice that Eq. (2.26) can be written as

$$
\begin{equation*}
v=i R_{\mathrm{eq}} \tag{2.28}
\end{equation*}
$$

implying that the two resistors can be replaced by an equivalent resistor $R_{\text {eq }}$; that is,

$$
\begin{equation*}
R_{\mathrm{eq}}=R_{1}+R_{2} \tag{2.29}
\end{equation*}
$$

Thus, Fig. 2.29 can be replaced by the equivalent circuit in Fig. 2.30. The two circuits in Figs. 2.29 and 2.30 are equivalent because they exhibit the same voltage-current relationships at the terminals $a-b$. An equivalent circuit such as the one in Fig. 2.30 is useful in simplifying the analysis of a circuit. In general,

The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances.

For N resistors in series then,

$$
\begin{equation*}
R_{\mathrm{eq}}=R_{1}+R_{2}+\cdots+R_{N}=\sum_{n=1}^{N} R_{n} \tag{2.30}
\end{equation*}
$$

To determine the voltage across each resistor in Fig. 2.29, we substitute Eq. (2.26) into Eq. (2.24) and obtain

$$
\begin{equation*}
v_{1}=\frac{R_{1}}{R_{1}+R_{2}} v, \quad v_{2}=\frac{R_{2}}{R_{1}+R_{2}} v \tag{2.31}
\end{equation*}
$$

Notice that the source voltage v is divided among the resistors in direct proportion to their resistances; the larger the resistance, the larger the voltage drop. This is called the principle of voltage division, and the circuit in Fig. 2.29 is called a voltage divider. In general, if a voltage divider has N resistors $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ in series with the source voltage v, the nth resistor $\left(R_{n}\right)$ will have a voltage drop of

$$
\begin{equation*}
v_{n}=\frac{R_{n}}{R_{1}+R_{2}+\cdots+R_{N}} v \tag{2.32}
\end{equation*}
$$

2.6 Parallel Resistors

and Current Division

Consider the circuit in Fig. 2.31, where two resistors are connected in parallel and therefore have the same voltage across them. From Ohm's law,

$$
v=i_{1} R_{1}=i_{2} R_{2}
$$

or

$$
\begin{equation*}
i_{1}=\frac{v}{R_{1}}, \quad i_{2}=\frac{v}{R_{2}} \tag{2.33}
\end{equation*}
$$

Applying KCL at node a gives the total current i as

$$
\begin{equation*}
i=i_{1}+i_{2} \tag{2.34}
\end{equation*}
$$

Substituting Eq. (2.33) into Eq. (2.34), we get

$$
\begin{equation*}
i=\frac{v}{R_{1}}+\frac{v}{R_{2}}=v\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{v}{R_{\mathrm{eq}}} \tag{2.35}
\end{equation*}
$$

where $R_{\text {eq }}$ is the equivalent resistance of the resistors in parallel:

$$
\begin{equation*}
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \tag{2.36}
\end{equation*}
$$

or

$$
\frac{1}{R_{\mathrm{eq}}}=\frac{R_{1}+R_{2}}{R_{1} R_{2}}
$$

or

$$
\begin{equation*}
R_{\mathrm{eq}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \tag{2.37}
\end{equation*}
$$

Thus,

The equivalent resistance of two parallel resistors is equal to the product of their resistances divided by their sum.

It must be emphasized that this applies only to two resistors in parallel. From Eq. (2.37), if $R_{1}=R_{2}$, then $R_{\text {eq }}=R_{1} / 2$.

We can extend the result in Eq. (2.36) to the general case of a circuit with N resistors in parallel. The equivalent resistance is

$$
\begin{equation*}
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}} \tag{2.38}
\end{equation*}
$$

Note that $R_{\text {eq }}$ is always smaller than the resistance of the smallest resistor in the parallel combination. If $R_{1}=R_{2}=\cdots=R_{N}=R$, then

$$
\begin{equation*}
R_{\mathrm{eq}}=\frac{R}{N} \tag{2.39}
\end{equation*}
$$

Figure 2.31
Two resistors in parallel.

Conductances in parallel behave as a single conductance whose value is equal to the sum of the individual conductances.

Figure 2.32
Equivalent circuit to Fig. 2.31.

Figure 2.33
(a) A shorted circuit, (b) an open circuit.

For example, if four $100-\Omega$ resistors are connected in parallel, their equivalent resistance is 25Ω.

It is often more convenient to use conductance rather than resistance when dealing with resistors in parallel. From Eq. (2.38), the equivalent conductance for N resistors in parallel is

$$
\begin{equation*}
G_{\mathrm{eq}}=G_{1}+G_{2}+G_{3}+\cdots+G_{N} \tag{2.40}
\end{equation*}
$$

where $G_{\text {eq }}=1 / R_{\text {eq }}, G_{1}=1 / R_{1}, G_{2}=1 / R_{2}, G_{3}=1 / R_{3}, \ldots, G_{N}=1 / R_{N}$. Equation (2.40) states:

The equivalent conductance of resistors connected in parallel is the sum of their individual conductances.

This means that we may replace the circuit in Fig. 2.31 with that in Fig. 2.32. Notice the similarity between Eqs. (2.30) and (2.40). The equivalent conductance of parallel resistors is obtained the same way as the equivalent resistance of series resistors. In the same manner, the equivalent conductance of resistors in series is obtained just the same way as the resistance of resistors in parallel. Thus the equivalent conductance $G_{\text {eq }}$ of N resistors in series (such as shown in Fig. 2.29) is

$$
\begin{equation*}
\frac{1}{G_{\mathrm{eq}}}=\frac{1}{G_{1}}+\frac{1}{G_{2}}+\frac{1}{G_{3}}+\cdots+\frac{1}{G_{N}} \tag{2.41}
\end{equation*}
$$

Given the total current i entering node a in Fig. 2.31, how do we obtain current i_{1} and i_{2} ? We know that the equivalent resistor has the same voltage, or

$$
\begin{equation*}
v=i R_{\mathrm{eq}}=\frac{i R_{1} R_{2}}{R_{1}+R_{2}} \tag{2.42}
\end{equation*}
$$

Combining Eqs. (2.33) and (2.42) results in

$$
\begin{equation*}
i_{1}=\frac{R_{2} i}{R_{1}+R_{2}}, \quad i_{2}=\frac{R_{1} i}{R_{1}+R_{2}} \tag{2.43}
\end{equation*}
$$

which shows that the total current i is shared by the resistors in inverse proportion to their resistances. This is known as the principle of current division, and the circuit in Fig. 2.31 is known as a current divider. Notice that the larger current flows through the smaller resistance.

As an extreme case, suppose one of the resistors in Fig. 2.31 is zero, say $R_{2}=0$; that is, R_{2} is a short circuit, as shown in Fig. 2.33(a). From Eq. (2.43), $R_{2}=0$ implies that $i_{1}=0, i_{2}=i$. This means that the entire current i bypasses R_{1} and flows through the short circuit $R_{2}=0$, the path of least resistance. Thus when a circuit
is short circuited, as shown in Fig. 2.33(a), two things should be kept in mind:

1. The equivalent resistance $R_{\mathrm{eq}}=0$. [See what happens when $R_{2}=0$ in Eq. (2.37).]
2. The entire current flows through the short circuit.

As another extreme case, suppose $R_{2}=\infty$, that is, R_{2} is an open circuit, as shown in Fig. 2.33(b). The current still flows through the path of least resistance, R_{1}. By taking the limit of Eq. (2.37) as $R_{2} \rightarrow \infty$, we obtain $R_{\mathrm{eq}}=R_{1}$ in this case.

If we divide both the numerator and denominator by $R_{1} R_{2}$, Eq. (2.43) becomes

$$
\begin{align*}
& i_{1}=\frac{G_{1}}{G_{1}+G_{2}} i \tag{2.44a}\\
& i_{2}=\frac{G_{2}}{G_{1}+G_{2}} i \tag{2.44b}
\end{align*}
$$

Thus, in general, if a current divider has N conductors ($G_{1}, G_{2}, \ldots, G_{N}$) in parallel with the source current i, the nth conductor $\left(G_{n}\right)$ will have current

$$
\begin{equation*}
i_{n}=\frac{G_{n}}{G_{1}+G_{2}+\cdots+G_{N}} i \tag{2.45}
\end{equation*}
$$

In general, it is often convenient and possible to combine resistors in series and parallel and reduce a resistive network to a single equivalent resistance $R_{\text {eq. }}$. Such an equivalent resistance is the resistance between the designated terminals of the network and must exhibit the same $i-v$ characteristics as the original network at the terminals.

Find $R_{\text {eq }}$ for the circuit shown in Fig. 2.34.

Example 2.9

Solution:

To get $R_{\text {eq }}$, we combine resistors in series and in parallel. The $6-\Omega$ and $3-\Omega$ resistors are in parallel, so their equivalent resistance is

$$
6 \Omega \| 3 \Omega=\frac{6 \times 3}{6+3}=2 \Omega
$$

(The symbol $\|$ is used to indicate a parallel combination.) Also, the $1-\Omega$ and $5-\Omega$ resistors are in series; hence their equivalent resistance is

$$
1 \Omega+5 \Omega=6 \Omega
$$

Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In Fig. 2.35(a), we notice that the two $2-\Omega$ resistors are in series, so the equivalent resistance is

$$
2 \Omega+2 \Omega=4 \Omega
$$

Figure 2.35
Equivalent circuits for Example 2.9.

This $4-\Omega$ resistor is now in parallel with the $6-\Omega$ resistor in Fig. 2.35(a); their equivalent resistance is

$$
4 \Omega \| 6 \Omega=\frac{4 \times 6}{4+6}=2.4 \Omega
$$

The circuit in Fig. 2.35(a) is now replaced with that in Fig. 2.35(b). In Fig. 2.35(b), the three resistors are in series. Hence, the equivalent resistance for the circuit is

$$
R_{\mathrm{eq}}=4 \Omega+2.4 \Omega+8 \Omega=14.4 \Omega
$$

Practice Problem 2.9

By combining the resistors in Fig. 2.36, find $R_{\text {eq }}$.
Answer: 10Ω.

Figure 2.36
For Practice Prob. 2.9.

Example 2.10

Calculate the equivalent resistance $R_{a b}$ in the circuit in Fig. 2.37.

Figure 2.37
For Example 2.10.

Solution:

The $3-\Omega$ and $6-\Omega$ resistors are in parallel because they are connected to the same two nodes c and b. Their combined resistance is

$$
\begin{equation*}
3 \Omega \| 6 \Omega=\frac{3 \times 6}{3+6}=2 \Omega \tag{2.10.1}
\end{equation*}
$$

Similarly, the $12-\Omega$ and $4-\Omega$ resistors are in parallel since they are connected to the same two nodes d and b. Hence

$$
\begin{equation*}
12 \Omega \| 4 \Omega=\frac{12 \times 4}{12+4}=3 \Omega \tag{2.10.2}
\end{equation*}
$$

Also the $1-\Omega$ and $5-\Omega$ resistors are in series; hence, their equivalent resistance is

$$
\begin{equation*}
1 \Omega+5 \Omega=6 \Omega \tag{2.10.3}
\end{equation*}
$$

With these three combinations, we can replace the circuit in Fig. 2.37 with that in Fig. 2.38(a). In Fig. 2.38(a), $3-\Omega$ in parallel with $6-\Omega$ gives $2-\Omega$, as calculated in Eq. (2.10.1). This $2-\Omega$ equivalent resistance is now in series with the $1-\Omega$ resistance to give a combined resistance of $1 \Omega+2 \Omega=3 \Omega$. Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In Fig. 2.38(b), we combine the $2-\Omega$ and $3-\Omega$ resistors in parallel to get

$$
2 \Omega \| 3 \Omega=\frac{2 \times 3}{2+3}=1.2 \Omega
$$

This $1.2-\Omega$ resistor is in series with the $10-\Omega$ resistor, so that

$$
R_{a b}=10+1.2=11.2 \Omega
$$

Figure 2.38
Equivalent circuits for Example 2.10.

Find $R_{a b}$ for the circuit in Fig. 2.39.
Answer: 19Ω.

Find the equivalent conductance $G_{\text {eq }}$ for the circuit in Fig. 2.40(a).

Solution:

The 8 -S and 12-S resistors are in parallel, so their conductance is

$$
8 S+12 S=20 S
$$

This 20-S resistor is now in series with 5 S as shown in Fig. 2.40(b) so that the combined conductance is

$$
\frac{20 \times 5}{20+5}=4 \mathrm{~S}
$$

This is in parallel with the 6 -S resistor. Hence,

$$
G_{\mathrm{eq}}=6+4=10 \mathrm{~S}
$$

We should note that the circuit in Fig. 2.40(a) is the same as that in Fig. 2.40(c). While the resistors in Fig. 2.40(a) are expressed in

Figure 2.39
For Practice Prob. 2.10.

Figure 2.40
For Example 2.11: (a) original circuit, (b) its equivalent circuit, (c) same circuit as in (a) but resistors are expressed in ohms.
siemens, those in Fig. 2.40(c) are expressed in ohms. To show that the circuits are the same, we find $R_{\text {eq }}$ for the circuit in Fig. 2.40(c).

$$
R_{\mathrm{eq}}=\frac{1}{6}\left\|\left(\frac{1}{5}+\frac{1}{8} \| \frac{1}{12}\right)=\frac{1}{6}\right\|\left(\frac{1}{5}+\frac{1}{20}\right)=\frac{1}{6} \| \frac{1}{4}
$$

$$
\begin{aligned}
=\frac{\frac{1}{6} \times \frac{1}{4}}{\frac{1}{6}+\frac{1}{4}}= & \frac{1}{10} \Omega \\
& G_{\mathrm{eq}}=\frac{1}{R_{\mathrm{eq}}}=10 \mathrm{~S}
\end{aligned}
$$

This is the same as we obtained previously.

Practice Problem 2.11

Figure 2.41
For Practice Prob. 2.11.

Calculate $G_{\text {eq }}$ in the circuit of Fig. 2.41.
Answer: 4 S .

Find i_{o} and v_{o} in the circuit shown in Fig. 2.42(a). Calculate the power dissipated in the $3-\Omega$ resistor.

Solution:

The $6-\Omega$ and $3-\Omega$ resistors are in parallel, so their combined resistance is

$$
6 \Omega \| 3 \Omega=\frac{6 \times 3}{6+3}=2 \Omega
$$

Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that v_{o} is not affected by the combination of the resistors because the resistors are in parallel and therefore have the same voltage v_{o}. From Fig. 2.42(b), we can obtain v_{o} in two ways. One way is to apply Ohm's law to get

$$
i=\frac{12}{4+2}=2 \mathrm{~A}
$$

and hence, $v_{o}=2 i=2 \times 2=4 \mathrm{~V}$. Another way is to apply voltage division, since the 12 V in Fig. 2.42(b) is divided between the $4-\Omega$ and $2-\Omega$ resistors. Hence,

$$
v_{o}=\frac{2}{2+4}(12 \mathrm{~V})=4 \mathrm{~V}
$$

Similarly, i_{o} can be obtained in two ways. One approach is to apply Ohm's law to the $3-\Omega$ resistor in Fig. 2.42(a) now that we know v_{o}; thus,

$$
v_{o}=3 i_{o}=4 \quad \Rightarrow \quad i_{o}=\frac{4}{3} \mathrm{~A}
$$

Another approach is to apply current division to the circuit in Fig. 2.42(a) now that we know i, by writing

$$
i_{o}=\frac{6}{6+3} i=\frac{2}{3}(2 \mathrm{~A})=\frac{4}{3} \mathrm{~A}
$$

The power dissipated in the $3-\Omega$ resistor is

$$
p_{o}=v_{o} i_{o}=4\left(\frac{4}{3}\right)=5.333 \mathrm{~W}
$$

Figure 2.42
For Example 2.12: (a) original circuit, (b) its equivalent circuit.

Find v_{1} and v_{2} in the circuit shown in Fig. 2.43. Also calculate i_{1} and i_{2} and the power dissipated in the $12-\Omega$ and $40-\Omega$ resistors.

Answer: $v_{1}=10 \mathrm{~V}, i_{1}=833.3 \mathrm{~mA}, p_{1}=8.333 \mathrm{~W}, v_{2}=20 \mathrm{~V}, i_{2}=$ $500 \mathrm{~mA}, p_{2}=10 \mathrm{~W}$.

For the circuit shown in Fig. 2.44(a), determine: (a) the voltage v_{o}, Practice Problem 2.12

Figure 2.43
For Practice Prob. 2.12.
(b) the power supplied by the current source, (c) the power absorbed by each resistor.

Solution:

(a) The $6-\mathrm{k} \Omega$ and $12-\mathrm{k} \Omega$ resistors are in series so that their combined value is $6+12=18 \mathrm{k} \Omega$. Thus the circuit in Fig. 2.44(a) reduces to that shown in Fig. 2.44(b). We now apply the current division technique to find i_{1} and i_{2}.

$$
\begin{aligned}
& i_{1}=\frac{18,000}{9,000+18,000}(30 \mathrm{~mA})=20 \mathrm{~mA} \\
& i_{2}=\frac{9,000}{9,000+18,000}(30 \mathrm{~mA})=10 \mathrm{~mA}
\end{aligned}
$$

(a)

(b)

Figure 2.44
For Example 2.13: (a) original circuit, (b) its equivalent circuit.

Notice that the voltage across the $9-\mathrm{k} \Omega$ and $18-\mathrm{k} \Omega$ resistors is the same, and $v_{o}=9,000 i_{1}=18,000 i_{2}=180 \mathrm{~V}$, as expected.
(b) Power supplied by the source is

$$
p_{o}=v_{o} i_{o}=180(30) \mathrm{mW}=5.4 \mathrm{~W}
$$

(c) Power absorbed by the $12-\mathrm{k} \Omega$ resistor is

$$
p=i v=i_{2}\left(i_{2} R\right)=i_{2}^{2} R=\left(10 \times 10^{-3}\right)^{2}(12,000)=1.2 \mathrm{~W}
$$

Power absorbed by the $6-\mathrm{k} \Omega$ resistor is

$$
p=i_{2}^{2} R=\left(10 \times 10^{-3}\right)^{2}(6,000)=0.6 \mathrm{~W}
$$

Power absorbed by the $9-\mathrm{k} \Omega$ resistor is

$$
p=\frac{v_{o}^{2}}{R}=\frac{(180)^{2}}{9,000}=3.6 \mathrm{~W}
$$

or

$$
p=v_{o} i_{1}=180(20) \mathrm{mW}=3.6 \mathrm{~W}
$$

Notice that the power supplied (5.4 W) equals the power absorbed $(1.2+0.6+3.6=5.4 \mathrm{~W})$. This is one way of checking results.

Practice Problem 2.13 For the circuit shown in Fig. 2.45, find: (a) v_{1} and v_{2}, (b) the power dissipated in the $3-\mathrm{k} \Omega$ and $20-\mathrm{k} \Omega$ resistors, and (c) the power supplied by the current source.

Figure 2.45
For Practice Prob. 2.13.

Answer: (a) $45 \mathrm{~V}, 60 \mathrm{~V}$, (b) $675 \mathrm{~mW}, 180 \mathrm{~mW}$, (c) 1.8 W .

Figure 2.46
The bridge network.

$2.7 \quad \dagger$ Wye-Delta Transformations

Situations often arise in circuit analysis when the resistors are neither in parallel nor in series. For example, consider the bridge circuit in Fig. 2.46. How do we combine resistors R_{1} through R_{6} when the resistors are neither in series nor in parallel? Many circuits of the type shown in Fig. 2.46 can be simplified by using three-terminal equivalent networks. These are

