CHAPTER 5

FRICTION

5.] Friction

ect to external forces, arc in contact

WHEN two bodies, s_ﬁbj
with each other, then, in general, each exerts a force on the
other (Fig. 5°1)- These forces of constraint arc called mutual
estion and reaction. According to Newton’s third law, if a
body B exerts a force R on another body 4, then the force
exerted by Aon B will be —R. Either of these forces may be
called action. Then the other force will be reaction. R is
generally inclined at a certain angle to the common normal

at a point of contact.
d parts of R along

y the resolve
the tangent plane,

If N and F be respectivel
the common normal (away from B) and in
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then N is czlle

Jriction foree or m
The normal reaction prevents the pen
?trat‘ch "

-~

B and the friction force has the tenden
uCY oF .

d the normal recetipg of B
A e Cn 4

erely the friction bety,
J g ~ivween L‘:-Cm_

-

2ad p

sliding of one body zlong the other.

In case the friction force F betwveen 690 B

with each other is zero, the contact is sajg tocbcodlcs e,

. IIrrer

body can have only a2 smooth contact with every a0k
oth

ther by

it is said to be a smooth body.
If the friction force between two bodies j
n °°nraq ~
8 ‘-Q

zero, bodies are said to be rough.
In nature no perfectly smooth body exists

, o bog,

ugn 1t r::a‘.&

~

1s capable of exerting some friction force, altho

quite smzll 2s in the case of glass, steel etc.

Friction 1s of two types; static friction and )

kwnetic or shiding) friction.
If a particle of IS 1 1iibri '
; FA. ducle 2‘ mass m 1s 1n equilibrium on 2 hon'zont_»
Plane U4, (Fig. 5°2) the wejo} s 1 1
L x (Fig <) the weight of the particle is balances ;
tae (normazl) reaction of the plane and in the absen N
- ~ r L ¢ - m Oi‘&: j
orce zlonz the horizontal icti !
i e -plam: no friction Comas
= s tilted, with the particle on jt
py 2 position Od,, inclined ar ap angle of magm', .
vitnl t ot T iy :
vith fﬂc originzl position, Iriction comes into pla n‘a.d’.:;
1 ";u I B p }' =
bt it Ema‘. RS at rest, the friction foree
-~ - m 1
» 8 Sin %y, of the weight down the
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at such 2 stage is called 7:.:-

. ’m = g -
motion has actuzlly started, tha ﬁ'ic;i ;?Jd’én_“m- When the
(or kmetiz or sliding) friction. Oree is calleg drnamic
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but 3
: SRTRT ne
point of sliding along the otl cither body is on d
> er, 16

case is non-limiting.
: nc O s 1eS 1
3) O f the bodies is on the point of slid
~ oy . slidia g
(c))thcr.b The friction in this case is /4 ing along the
4 ne bod e C s limiting,
@ force i . 1Shdbs along the other. The fricti
o. c. n :a:iu?:x a case which opposcs ) l:lcuon
kinetic friction. ' TOtlar: 1a: thio

(2) Friction force is acting
>

The friction in this

5.2 Laws of Friction

Friction foree, which as scen above, i
force- It bchaves according to somec d:: ﬁ:ita self-adjusting
~an be verificd cxperimentally.  Laws: of boctllaws which
friction are stated below : oth  types  of
) The direction of friction is opposite to the direction i o
the body moves (in case of kinetic f'rictio:)wn o
move (in case of static friction). or tends to
(2) The magnitude of friction 15, up to a cert s ety
to the force tending to produce motion. nt, equal
3) Only a cer tain amount of friction can be called into play
and in each particular case it cannot cxceed a certain limit. ’
As stated carlicr, the maximum amount of
friction which can be called into play is called limiting

friction. :

(4) The magnitude of the limiting friction ( jor given surfaces)
bears a constant ratio & to the normal pressure between the
surfaces. '

This constant # depends on the nature of the
cient of friction.

surfaces and 18 called the ¢o€
(5) The amount of friction /s independent of the areas and shape

of the surfaces in contact provided the normal pressurt
. remains unaltered. '

(6) When a motion takes pla
motion. It 18 independent
to the normal reaction, but is S
friction.

If F is the magnitude of
reaction, and # the coeffictent O
with Law (4),

E_u or F=¢ R

ce, the friction still opposes the
of the velocity and 15 propartz'onal
lightly less than the Izjmi'ting

friction, R that of normal
f friction then, in accordance

&
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e
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It may be remembered that this law holds only in Case
of the limiting friction and not in case of non-limiting frictioq,

In case of kinetic friction

where #"is a constant and 1s called the coefficient of kinas,
Jriction,
In case of the same substances #' is slightly less than g,

Values of & in case of some substances are given below :

Substances Approximate Value of 1
Wood on wood 0-25t0 0-5
Wood on stone 0-4
Wood on metals 0-2t0 06

Metals on metals 0-15 to 0:25

Leather on metals 0-56.
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Fig. 5.7
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slipping of the whee] at the poing of ¢

force not only prevents slippin “ontacy,
} g but Tb
the wheel roll. Thus the tractlvcuf 2CURE fory gy i
from friction. °€ Of the g;nu%\
e
5.6 Equilibrium of a Particle o,
Inclined Plane R°Ugh
(1) Condition for limiting equilibriyp,
Let a particle of mass m be in limiting €quilipy;
a plaue of inclination &« under its weight only 5 ., ®
in Fig. 5'7. Let # be the coefficient of friction ands N
magnitude of the angle of friction, so that 4 t
F=p R,

and K=tan ).
Resolving along and perpendicular to the plane,
mgsina=F=p R,
and mg cos a=2R.
Dividing the first equation by the second,
tan « =A=tan A.
@ =].

Hence, if a particle be in limiting equilibrium on an inclined
Plane under ils own weight, the inclination of the Dlane equals the
magnitude of the angle of friction.

(2) To find the least force to drag a particle on a rough
horizontal plane ‘

(1) Let m be the mass of the particle, P the magnitude _
of the force necessary to drag the particle up the plane
and making an angle of measure § with the plane
(Fig. 5'8). The friction is limiting and acts down
the plane. Therefore, resolving the forces along and
perpendicular to the plane, we have

Pcosf=# R+mg sin «,
Psin § +R=mg cos .,
Elimirating the unknown reaction R between these
tWo equations, we get
Pcos@=# (mg cos a—Psin 6) +mg sin &
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o+ 5in 0) =178 (# cos & -sin «),
M COS'd.-i—sin o

=Mg ==
P § Cos O+ sin @’
easure of the aungle of friction
tan A COS o sin &
=mg ~_ o
i £ cos O-+tan A sin 6
s sin & COS ,\+095 o« sin A
cos § cos A -sin 0 sin A
sin (et
=mg ————(—"‘\—)
cos (6—A)

hen-the denominator of the fraction

1.e., when

Pis least W
R.H.S. 15 greatest,
=cos 0

ndition is satisfied

sin (x+A)-

is to be dragged down
this case # R acts up the
g along and perpcndiCular

When this €
p=mg

: Eliminat!
- (g cos «—Psin)
or P(cos B +# sin 0)

7 L cos & —sin &

Psmﬂ
S 7 osin @+ €08 0
g u—Sin &

4 m tan A CO
S @an A sinn 9 +cos 0

=mg ¥ cos &—m§g sin &,

Lt

—_—
=

¢ ¢—cos A sin &

sin \ €0s & C2 £
) cos 0

=mg A sin §+C08

iy sin (A—%)
> cos ()t-'e). .
A-.::e, and then

—0 .—.:0, 1.€.,

Pisleast when A

E
‘ P=mgsin (A—)-
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P is positive when @ < A, Whey, s
A,, lan o

which is not possible in case Of‘:quﬂibrium of the tani\

Therefore, when > )\, the particle will i, ] iirt,'cle i\
. 5 e (]
the planc and the question of finding , force tofd Ve d%o
r y

does not arisc.
(3) To find the force necessary Just to su l
" particle on an inclined plane Ofinc“,{),pf’rta .

Let # be the cocflficient of friction and ) th
€ ap e A
of

friction.
If @ > ), the friction will not be sufficien; :
0

sliding. In such a case an external forq: will be nc}i?vtny
3

to prevent motion.  Let P be the magnityde
force which makes an angle 9 with the plane 2 & wxq‘_‘“
Fig. 5°10. owy 5

Resolving along and perpendicular to the planc i

P cos Q-+ R=mgsin a,
Fig. 5.10 and  Psin §-+R=mg cos .
Eliminating 2 between these cquations,
P (cos 0—# sin @) =mg (sin @ —p cos ),

Pem Sin &€ — & cos e
& COS 6—-,“- sin 0

we get

sin @ —tan A COsa
C0S §—tan A sin §

I

sin (z— )
"8 cos (0F ) -
£ will be minimum when cos(@+A)=1 or g+r=
or §= —A. This shows that p acts along a direction CE an
not along CD as shown in Fig.5'10. When g= —A;

5.7 Equilipp:
Hqufhb”um of a Partjcle on a Rough
OFizonta| plane 20
To find he y.... . ,
A particle 4 hL_ feast force Which will set into motion
Tet b rest on g Tough horizonta] plane.
Fig. 5.11 make ap anglce 1?(: Magnitude of the desired force and let
Ol measyre g with the Plane (ses Fig. 5:11)-¢
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);u'ticlc is on the point of moving, we have
b

men . icul:
Wwh JJong and pet pendicular to the plane,

ing
by fﬁo}u P cos o= Ie)
lngzp sin 0+R.

and
g R, we have

p cos0=FH (ng—P sin 0)

_psin 0) =mg K

. _natin
” 1111‘1
Ehn

0S ot
p(c n
P=mg == o
cos Q-4 sm @
tan \
=mg . A s
cos 0 --sin 0 tan A
the angle of friction,
- sin A
=mg =550 cos A+sin 6 sin A
e sin A
=18 o5 (0—A)

—)\=0 or 0=A, and then

where )\ 1s

. pisleast when 6
S P=mgsin A.

5.8 Examples
Use of the laws of

ofworked examples.
. A body weighing 40 Ib. is resting on a rough

d can just be moved by a force of 10 1b.
y. Tind the coefficient of friction.

s on the body along and perpendicular

friction is further illustrated by mecans

Fxample 1.
porizontal plane an
wt. acting horizontall

Sol. Resolving the force
to the plane, we have
40 g=R,
and 10g=# R.
Eliminating R, we have
p=%=025.
E:?;‘lgli <12 1 Th(j‘ least force which will move a weight up
plane is of magnitude P. Show that the least

force, acri
1 . .
— g parallel to the plane, which will move the weight

PV ¥,

V"hc: =
Chis .
the coefficient of friction.
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Sol. Let« be the inclination of the Plane,

As in Art, 56 (2) (1), the leas Vitlue of b,

at an angle a with the plane, is lu-,“
ll(h .
ﬁ

e, Peng sin(&--1), where 1"*““1"

Uy,

Let 2 be the magnitude of the legg, for
acting parallel to the plane (Fig. 5:12),
motion, Then

"C
sely ttlz:vvlvldl
P emg sin e p0 R
and R=mg cos a.
Thus P'=mg sin &--1 ;g cos
= ang (Sin &-f-f cos o),
=g (sine~-tan A cos )

SIM &, cos A-}-cOs asin A
CcOs A B

e sin (a+)\!

COs A\

== mg

et (by (1),
=P sec A
=PV T T
=PVIT4pT



principle of Virtual Work

: We are now in- a position to state and prove an .importa.nt
- jeorem, known 28 the Principle of Virtual Work.

For the sake of clarity and lucidity we separately prove
e principle a5 applicable in the case of a single particle, a
et of particles and a rigid body.
i) A single particle |

A particle subject to  workless constraints, is in equilibrium

if and only if zero wirtual work 1s done by the applied forces in any
abitrary infinitesimal displacement consistent with the constraints.
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¢ the total applied force on the D
traint Fe. The . 4l

of cons Particle ;. .

1

Fa+FC=O

y infinitesimal displacene, of ;lrh'e
ent with the constraints, the tota] Virtualthc Part;],
d only if Wor,
(Fa-+¥c).6r=0 %)
ints are workless equatio

Fga.§r=0 '
If equation (_6‘1) holds, then equation (69
fore, cquation (6°9) bolds. ~ Comversely, if
hold’s, then equation (6°2) holds, and since Sr
cquatiOn (6-1) also holds.
This completes the proof of the theorem,

If §r is 20

consist
be zero if an

Sip o t-hC constra n .(6.2) i’hpl'eS(ﬁQ)

1
there.
(5'3)

ra.ry,

) and,

(i) A set of particles
A set of particles, subject to workless constraints, is i .
if and only if zero virtual work s donf by t/ze.applz'ed Sorces i, B
arbitrary z'nﬁm'tesz'mal displacement consistent with the con straints
Proof. Let the particles of the set be m,, Mg o o |
the total applied force on m; be F;q and the total force of con.
straint on it be Fi. The set of particles will be in equilibriyy -
if and only if the total force on each particle varnishes, e, if |

Quilibyy,

and only if : . ‘
Fia+Fie=0, i=1,2,...,n. (64

Internal forces do not occur in this equation because
they occur as pairs of equal and opposite forces, so ther |
vector sum vanishes.

Let §r; be an arbitrary infinitesimal displacement of m;

.Thc total virtual work done by all the forces on the
particles of the set will vanish if and only if

D) (Fia+-Fic) . §r;=0% Lo (63)
;
Since the :
i constr workless; |
€quation (65) implics aints are assumed to be
2 Fia- dr;=0 (66)1
o !
*In WTitin down "

®Quation, we have omitted the intcm.c 15
Ttne: work has been assumed to be n




ch. 6 Virtual Work

;+4) holds, then equation (6:5) ; 129

6°6) holds. Conversely, if -c( -\’n('j, there.

on (6'5) hOIdS, and Sincc Sr_ 'llualmn (6'6)

pcndCﬂt, cquation (6°4) alsol};or]fl arbitrar
s.

‘cqu-“i“n

{f )
rqu‘-\““n .
: atl

for t]lfﬂc El

rgh’--" cually ind¢

f({ ﬂ]u

M the

y

thcorem-

gen
.+ pody or a set of rigid bodies

(ﬁ:l) rigiﬂ' body O7 a set erigid.badies, subject to workless constrai
£gu1.l"bﬂ.u i af'zd only if = ero virtual work is done b;mtt;’
g foes 14 2 . torues i any arbivay nfnitesimal die

stent with the constrainis. 5=

i
dﬁ'tmf”’ con’t .
d Byﬂn"pp lied torq4e ijs meant the moment of an applied
coﬂplc' o ; .
» sufficient O consider the case of a single rigid'

1t of the theorem can be extended to a
for the quantities involved for all of
f forccs acting on a rigid body is

of-
lt:gy ooly.  The Te
of podics by summing
sef neral system o

A g¢
cquiwa.lent o a force
r=2F: \
assing through any point 0, together with a cauple
=2 r; ¥Fi
where F; 15 the force acting at a point of the body whose
position vector relative to O is r;.

Suppose that in the present case

R=Ra +RC,

where Rg is the (vector) su
the sum of the reactive force

G=Ga +GG’

where G, is the sum of the applied
sum of torques of constraints.

The body will be in equilibrium i
R=RG+RG"'=0 (6'7)*
G=Gq+Gc=0.

m of the applied forces and Rgis

s and

torques and Ce is the

f and only if
‘/—-‘

——
s stated in. part (i)

tw !
€ 1gnore .
of thig article the internal forces for the reason
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An arbitrary virtual displaccment

consist of a translation §s ang a rotation o the I
. Y - he ;

vanishing of the total virtya] Work, thcrcforc : ab%t Qq’/,
’ 1

(Ra+Re).§ s+(G, +Ge). 50 <0, Mplig, O. b,

Since the constraints are Workles
J

th
implics ¢ Ia'st % (F"" :
Ra.§s+G,s. §Q =0, : Uaugn :
If CQuatiOIl'S (5‘7.) hold, then CQuatioy, (6'8) § (evg) ‘
therefore, equation (6°9) holds, Olg .
d, 1

Conversely, if equation (6°9) holds, thep - :
Ilolds, nnd sincc SS Zlnd SQ are mutuauy ?uatl()n(ﬁ'a A

ations (6°7). hold. Mepegg, !
cqudthI’lS (

Hence the theorem.

deflt,

The chief advantage of the Pl‘inciplc of Vi
lics in the fact that with its help we can fing ?.1' o |
position of a body without con'sidcz.l-ng Unknownq:
avoidance of which saves much laboy,.,

6.6 Examples
Use of the Principle is Ulustrateq by mear; of 4 s “ ;
of worked examples. Although the chief functiop of thz
Principle is to dctcrminc\ an cquilibriym Position of asyst'c,h: |
or a body, it may also be usced to find g force of constraint,:
For this purposc we Imagine the constraint to hay, beey B
removed and the reactive force replaced by an equal applef :
force. This Procedurc will be clear from the first vy
examples that follow. : -
Example 1. A particle of mass 20 |p, 1s supported on a smooth
Plane inclined at 600 ¢, the horizonta] by a force of magnitude
# poundals which mg ;e a1 angle of 30° with the plane. Find:
* and also the reaction of the Plane on the particle. '

Sol.  Firgt We consider 4 virtual displacement §s “Pm"i
Plane (Fig, 6:6). The €Quation of virtual work s
* cos 30°, ¢ —20 g sin 6o, 65=0,

Whence - Sin 600
=90 o
-~ \
S cos 3()0 Poundals

=201b, vy

TCaction R, we consider 3 virtyal disPlécc‘ﬂm
<1 for
On of p and consider R to be an aPPhcd fo

To fing the
07 in the direcg;
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on © of virtual work is 131
ccqm 0s 120° §7-+20 g cos 1200 ¢
57 __90 g cos 120°—20 > =0,
R/ £ g COS 1200
_ 40 g cos 120° poundals
;40 g-% poundals

_901b. wt.

1

of

le A hght thiggcs 12 ft. long, can turn 1

4 about ON€ of its points which is attach e
weights of 3 1b. and 4 lb. are suspended : Ay
rests in a horizontal position. rom its
d its rcactlon on the rod.

Find the position of

o 1t h e be the ends of the rod, C, the pivot (Fig. 67)

and Jet
- AC==x.

Let W0 consider @ small angular displacement § @ of the

o4 about the pivot G, as in Fig. 6°8.

00 <

The moments o

_3(12—%)-
equatlon of virtual WOrk is

4§ @—3 (12—%) § =0,
4x—36-+3x=0,
7x=36.

f the weights about the pivot are 4x and

6
and BC=12-——5—7—=677- ft.

we imagine the

action S of the pivot,
S applied at C. -

e force

vertical (upvyard)
£ virtual work

To find the re
to have been rcmovcd and an activ

er an mﬁmtesnnal
The equation 0

pivot
Now we con51d

displacement § » of the system.
In this case is

S§y—3§5y—465=0;
Which gives
S=3+4
=7 lb. wt.

A

IS
x C 12k

41b

Fig. 6.7

Fig. 6.8




