
Computational methods-Lecture 7

Direct methods: LU decomposition, Cholesky
decomposition

1 Finding the inverse of an invertible matrix

If A is a matrix of size n× n such that there is a matrix B of size n× n
satisfying

AB = I,

then A is invertible and B = A−1.
In fact, the above condition says that Ax = ei for any i = 1, · · · , n has

a solution. Since {ei} forms a basis, then Ax = y has a solution for any y.
Hence, A must be of full rank, and thus invertible. Multiplying both sides
on left with A−1 one gets B = A−1.

According to this observation, to find the inverse, we only need to solve
the linear equation

Ax = ei

using Gauss elimination. The solution will be the ith column of B. We can
do this in a compact form as follows. We set up a large augmented matrix

[A
... I].

The we apply Gauss elimination with partial pivoting to make A into up-
per triangular form. To solve the solutions, we use backward substitution.
However, this is also equivalent to using the pivoting elements to kill the
nonzeros above them as well (this is called the Gauss-Jordan elimination)
and use row scalings to make A into I:

[I
... B].

Clearly, the columns in B will be the solutions for Ax = ei since these row
operations will not change solutions.

Hence, we must have B to be the inverse matrix. Note that Gauss-
Jordan elimination for the upper triangular part again costs O(n3), while
backward substition costs O(n2). Hence, in solving linear systems, one does
not use Gauss-Jordan. However, to find the inverse, there are n vectors, if
you do backward substitution, the total cost is also O(n3). Thus, for finding
inverse, the Gauss-Jordan is preferred.
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Example Find the inverse matrix of 1 2 −1
2 1 0
−1 1 2


Then, we form the augmented matrix 1 2 −1 1 0 0

2 1 0 0 1 0
−1 1 2 0 0 1


Next, we get  1 2 −1 1 0 0

0 −3 2 −2 1 0
0 0 3 −1 1 1


Next,  1 2 −1 1 0 0

0 −3 2 −2 1 0
0 0 1 −1/3 1/3 1/3


 1 2 0 2/3 1/3 1/3

0 −3 0 −4/3 1/3 −2/3
0 0 1 −1/3 1/3 1/3


Doing scaling  1 2 0 2/3 1/3 1/3

0 1 0 4/9 −1/9 2/9
0 0 1 −1/3 1/3 1/3


Eventually,  1 0 0 −2/9 5/9 −1/9

0 1 0 4/9 −1/9 2/9
0 0 1 −1/3 1/3 1/3


In other viewpoint as we shall see, doing row operations are equivalent

to multiplying suitable matrices on the left. Hence, we in fact have

[I
... B] = P [A

... I]

In other words,
PA = I, B = PI = P.

Hence, BA = I and we must have B = A−1 (note that if A is not square,
there can also be B to make BA = I. In this case, B is not the inverse).
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Remark 1. During this process, if you ever did column operations to make
A into I (apply similar column operations to the second matrix as well),
then you in fact did P1AQ1 = I and have B = P1Q1. In this case, B is in
general not A−1. However, if P1 = I, Q1 is the inverse. In other words, if
you do pure column operations to make A into I, you can still obtain the
inverse matrix, but mixture of both row and column operations will not work.

2 The LU decomposition

In the Gauss elimination (without pivoting), we have applied row oper-
ations to reduced A into an upper triangular form U .

Recall how we performed Gauss elimination: we use the pivot elements

a
(i)
ii to kill the nonzero entries below it. There is one important observa-

tion in linear algebra: doing row operations is equivalent to multiplying
certain fundamental matrices on the left. For operations of this type, we are
multiplying matrices of the following form on the left:

Li =



1
· · ·

1
−mi+1,i 1

...
...

−mmi 1


.

For example, you can check what happens if you multiply L1 on the left.
Hence, the Gauss elimination tells us that if all the pivot elements are

nonzero a
(i)
ii 6= 0, then

LnLn−1 · · ·L1A = U,

where U is given as follows:

U =


a
(1)
11 a

(1)
12 · · · a

(1)
n1

a
(2)
22 · · · a

(2)
n2

· · · · · ·
a
(n)
nn

 .

Hence, we get
A = L−1

1 · · ·L
−1
n−1L

−1
n U.
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Note that the inverse of Li is just

L−1
i =



1
· · ·

1
mi+1,i 1

...
...

mmi 1


.

This is easily understood because we can multiply the constants mki and
add to the corresponding rows to recover the original rows.

Due to the meaning of multplying L−1
i on the left, we can easily seen

that

L−1
1 · · ·L

−1
n−1L

−1
n =


1
m21 1
m31 m32 1

...
...

...
...

mn1 mm2 mn3 · · · 1

 .

Hence, we conclude the following

Theorem 1. If A is of size n × n and its leading principal minors Di

(i ≤ n− 1) are nonzero, then A can be decomposed as

A = LU,

where L is a lower triangular matrix with diagonal elements being 1 and U
is an upper triangular matrix. Moreover, such decomposition is unique.

The proof of the uniqueness is left as an exercise.
Since the elements in L are just the multipliers generated during Gauss

elimination. As we recall, we store these elements already in place at aki.
Hence, after the Gauss elimination is done. The LU decomposition is already
completed: we just read out the elements in the lower triangular part!

These observations can be summarized into the following code for LU
decomposition:

f o r k=1:n−1
A( k+1:n , k)=A( k+1: n , k )/A(k , k ) ;
f o r j=k+1:n

f o r i=k+1:n
A( i , j )=A( i , j )−A( i , k )∗A(k , j ) ;
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end
end

end

This can be written into a more compact form in MATLAB:

f o r k=1:n−1
A( k+1:n , k)=A( k+1: n , k )/A(k , k ) ;
j=k+1:n
i=k+1:n ;
A( i , j )=A( i , j )−A( i , k )∗A(k , j ) ;

end

There are other versions, which are essentially doing the same thing, but the
orders of the operations are changed. Two typical examples are as following
(the following two are not required for exam):

f o r j =1:n
f o r k=1: j−1

i=k+1:n ;
A( i , j )=A( i , j )−A( i , k )∗A(k , j ) ;

end
i=j +1:n ;
A( i , j )=A( i , j )/A( j , j ) ;

end

f o r i =2:n
f o r j =2: i

A( i , j−1)=A( i , j −1)/A( j −1, j −1);
k=1: j −1;
A( i , j )=A( i , j )−A( i , k )∗A(k , j ) ;

end
k=1: i −1;
j=i +1:n ;
A( i , j )=A( i , j )−A( i , k )∗A(k , j ) ;

end

Why do we care about LU decomposition?
Once decomposed, we can use this decomposition to solve the linear

system for any b, instead of doing GEM once for every b.
One first solve:

Lz = b,
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and solve
Ux = z.

The total cost is O(n2).
Example Find the LU decomposition of the following matrix. 1 1 1

0 4 −1
2 −2 1

⇒
 1 1 1

0 4 −1
2 −4 −1


Then,

⇒

 1 1 1
0 4 −1
2 −1 −2

 .
3 With partial pivoting*(Not required)

The LU decomposition requires the pivot elements to be nonzero. For
general invertible matrices, these elements can be zero. Hence, the rwo in-
terchanges are necessary. In fact interchanging ith and jth rows corresponds
to multiplying the matrix Iij on the left.

Iij =



1
· · ·

0 · · · · · · 1 · · ·

1
...

· · · 1 · · ·
1 · · · 0
· · · · · ·
...

... 1


.

This matrix has the property that

I−1
ij = ITij = Iij .

If we multiply this matrix on the right, we are switching the column i and
column j.

If i = j, there is no exchange. Hence, the GEM with partial pivoting
can be written as

Ln−1In−1,in−1 · · ·L2I2,i2L1Ii,i1A = U,
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where ik ≥ k.
We now define the permutation matrix

P = In−1,in−1 · · · I2,i2Ii,i1 .

Note that this permutation matrix is not symmetic. Its inverse is its trans-
pose, but not itself. This is like doing the row interchanges all at once. One
question is like this: if we do row exchanges all at once, we can then apply
the GEM to obtain some LU decomposition

L−1PA = U.⇒ PA = LU.

Hence, we conclude

Theorem 2. For an invertible matrix, there is a permutation matrix P such
that

PA = LU,

where L is a lower triangular matrix with diagonal elements to be 1 and U
is upper triangular.

One natural question: We can do

• if we do Gauss Elimination Method with partial pivoting, we also store
the mik elements in the lower half of the matrix and do row exchanges
when we do pivoting.

• We do all row exhanges at the very beginning, and then apply GEM
to obtain the LU decomposition.

Will the final lower triangular half in the first way be the same as in the
second way, or as in the theorem? The answer is yes.

To see this, let us take n = 4 as the example.

L3I3,i3L2I2,i2L1I1,i1 = L3(I3,i3L2I3,i3)(I3,i3I2,i2L1I2,i2I3,i3)P =: L3L̃2L̃1P.

By the uniqueness of LU decomposition, we have

L3L̃2L̃1 = L.

In fact, this can also be understood using the following observation:
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Lemma 1. Let Pk be permuation that only operates on indicies bigger than
k, and Pk generates permutation σ(·): σ(i) means the new ith row is the
original σ(i)th row. Then,

PkLkP
T
k =



1
· · ·

1
−mσ(i+1),i 1

...
...

−mσ(m),i 1


.

It is then clear that the new L̃k matrix is exactly that acting on the
permuted rows.

Hence, we need to very that L3L̃2L̃1 corresponds to the lower trian-
gular half matrices generated by the GEM with partial pivoting. Let us
think about what happens if we do GEM with partial pivoting. At the kth
iteration, you do

Lk =



1
· · ·

1
−mi+1,i 1

...
...

−mm,i 1


.

and this generates the part
· · ·

mi+1,i
...

...
mm,i


.

In the lower triangular half. Later, this column will only be changed by the
row exchanges after the kth step, which is exactly what Pk is doing, which
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will make this to be 
· · ·

mσ(i+1),i
...

...
mσ(m),i


,

agreeing with the above. Hence, the conclusion follows.

4 Compact form of decomposition: Doolittle and
Crout

As we have seen, as soon as we have LU decomposition, we can solve the
linear systems in O(n2) time. Hence, one question is whether we can obtain
the LU decomposition directly without doing the Gauss Elimination step by
step. Here we consider A which can be decomposed into LU directly. For
the ones with P , you may read the book.

With A = LU , one has

aij =

min(i,j)∑
r=1

lirurj .

There are n2 equations with n2 + n unknowns.
There are often two choices to determine these unknowns. We can fix

lii = 1, which leads to the same LU as in the Gauss Elimination, the resulted
method will be called the Doolittle’s method. If we impose uii = 1, one will
have the Crout’s method.

Let us consider the Doolittle’s method first. Assume that the first k− 1
(k = 1, · · · , n) rows of U and the first k−1 columns of L are known already.
Then, we determine the kth row of U and kth column of L:

akj =

k−1∑
r=1

lkrurj + ukj , j ≥ k.

Hence, the kth row of U can be determined by

ukj = akj −
k−1∑
r=1

lkrurj , j ≥ k.
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Then, using these computed values, we can determined lik:

aik =

k−1∑
r=1

lirurk + likukk, i ≥ k + 1,

we have

lik =
1

ukk
(aik −

k−1∑
r=1

lirurk), i ≥ k + 1.

This method is called the Doolittle’s method, and it costs also like n3/3
multiplications/divisions, comparable to Gauss elimination.

The Crount’s method is similar, where we impose urr = 1:

lik = aik −
k−1∑
r=1

lirurk, i = k, · · · , n,

ukj =
1

lkk
(akj −

k−1∑
r=1

lkrurj), j = k + 1, · · · , n.
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