
Avoid Ambiguity
Suppose you use both a one-argument constructor and a conversion operator to perform the
same conversion (time24 to time12, for example). How will the compiler know which conversion
to use? It won’t. The compiler does not like to be placed in a situation where it doesn’t know
what to do, and it will signal an error. So avoid doing the same conversion in more than one way.

Not All Operators Can Be Overloaded
The following operators cannot be overloaded: the member access or dot operator (.), the
scope resolution operator (::), and the conditional operator (?:). Also, the pointer-to-member
operator (->), which we have not yet encountered, cannot be overloaded. In case you wondered,
no, you can’t create new operators (like *&) and try to overload them; only existing operators
can be overloaded.

Keywords explicit and mutable
Let’s look at two unusual keywords: explicit and mutable. They have quite different effects,
but are grouped together here because they both modify class members. The explicit keyword
relates to data conversion, but mutable has a more subtle purpose.

Preventing Conversions with explicit
There may be some specific conversions you have decided are a good thing, and you’ve taken
steps to make them possible by installing appropriate conversion operators and one-argument
constructors, as shown in the TIME1 and TIME2 examples. However, there may be other conversions
that you don’t want to happen. You should actively discourage any conversion that you don’t
want. This prevents unpleasant surprises.

It’s easy to prevent a conversion performed by a conversion operator: just don’t define the
operator. However, things aren’t so easy with constructors. You may want to construct objects
using a single value of another type, but you may not want the implicit conversions a one-
argument constructor makes possible in other situations. What to do?

Standard C++ includes a keyword, explicit, to solve this problem. It’s placed just before the
declaration of a one-argument constructor. The EXPLICIT example program (based on the
ENGLCON program) shows how this looks.

//explicit.cpp
#include <iostream>
using namespace std;
//
class Distance //English Distance class

Chapter 8
360

09 3087 CH08 11/29/01 2:18 PM Page 360

{
private:

const float MTF; //meters to feet
int feet;
float inches;

public: //no-args constructor
Distance() : feet(0), inches(0.0), MTF(3.280833F)

{ }
//EXPLICIT one-arg constructor

explicit Distance(float meters) : MTF(3.280833F)
{
float fltfeet = MTF * meters;
feet = int(fltfeet);
inches = 12*(fltfeet-feet);
}

void showdist() //display distance
{ cout << feet << “\’-” << inches << ‘\”’; }

};
//
int main()

{
void fancyDist(Distance); //declaration
Distance dist1(2.35F); //uses 1-arg constructor to

//convert meters to Distance

// Distance dist1 = 2.35F; //ERROR if ctor is explicit
cout << “\ndist1 = “; dist1.showdist();

float mtrs = 3.0F;
cout << “\ndist1 “;

// fancyDist(mtrs); //ERROR if ctor is explicit

return 0;
}

//--
void fancyDist(Distance d)

{
cout << “(in feet and inches) = “;
d.showdist();
cout << endl;
}

This program includes a function (fancyDist()) that embellishes the output of a Distance
object by printing the phrase “(in feet and inches)” before the feet and inches figures. The
argument to this function is a Distance variable, and you can call fancyDist() with such a
variable with no problem.

Operator Overloading

8

O
PER

A
TO

R
O

V
ER

LO
A

D
IN

G
361

09 3087 CH08 11/29/01 2:18 PM Page 361

The tricky part is that, unless you take some action to prevent it, you can also call
fancyDist() with a variable of type float as the argument:

fancyDist(mtrs);

The compiler will realize it’s the wrong type and look for a conversion operator. Finding a
Distance constructor that takes type float as an argument, it will arrange for this constructor
to convert float to Distance and pass the Distance value to the function. This is an implicit
conversion, one which you may not have intended to make possible.

However, if we make the constructor explicit, we prevent implicit conversions. You can check
this by removing the comment symbol from the call to fancyDist() in the program: the compiler
will tell you it can’t perform the conversion. Without the explicit keyword, this call is perfectly
legal.

As a side effect of the explicit constructor, note that you can’t use the form of object initialization
that uses an equal sign

Distance dist1 = 2.35F;

whereas the form with parentheses

Distance dist1(2.35F);

works as it always has.

Changing const Object Data Using mutable
Ordinarily, when you create a const object (as described in Chapter 6), you want a guarantee
that none of its member data can be changed. However, a situation occasionally arises where
you want to create const objects that have some specific member data item that needs to be
modified despite the object’s constness.

As an example, let’s imagine a window (the kind that Windows programs commonly draw on
the screen). It may be that some of the features of the window, such as its scrollbars and
menus, are owned by the window. Ownership is common in various programming situations,
and indicates a greater degree of independence than when one object is an attribute of another.
In such a situation an object may remain unchanged, except that its owner may change. A
scrollbar retains the same size, color, and orientation, but its ownership may be transferred
from one window to another. It’s like what happens when your bank sells your mortgage to
another bank; all the terms of the mortgage are the same, but the owner is different.

Chapter 8
362

09 3087 CH08 11/29/01 2:18 PM Page 362

Let’s say we want to be able to create const scrollbars in which attributes remain unchanged,
except for their ownership. That’s where the mutable keyword comes in. The MUTABLE program
shows how this looks.

//mutable.cpp
#include <iostream>
#include <string>
using namespace std;
//
class scrollbar

{
private:

int size; //related to constness
mutable string owner; //not relevant to constness

public:
scrollbar(int sz, string own) : size(sz), owner(own)

{ }
void setSize(int sz) //changes size

{ size = sz; }
void setOwner(string own) const //changes owner

{ owner = own; }
int getSize() const //returns size

{ return size; }
string getOwner() const //returns owner

{ return owner; }
};

//
int main()

{
const scrollbar sbar(60, “Window1”);

// sbar.setSize(100); //can’t do this to const obj
sbar.setOwner(“Window2”); //this is OK

//these are OK too
cout << sbar.getSize() << “, “ << sbar.getOwner() << endl;
return 0;
}

The size attribute represents the scrollbar data that cannot be modified in const objects. The
owner attribute, however, can change, even if the object is const. To permit this, it’s made
mutable. In main() we create a const object sbar. Its size cannot be modified, but its owner
can, using the setOwner() function. (In a non-const object, of course, both attributes could be
modified.) In this situation, sbar is said to have logical constness. That means that in theory it
can’t be modified, but in practice it can, in a limited way.

Operator Overloading

8

O
PER

A
TO

R
O

V
ER

LO
A

D
IN

G
363

09 3087 CH08 11/29/01 2:18 PM Page 363

Summary
In this chapter we’ve seen how the normal C++ operators can be given new meanings when
applied to user-defined data types. The keyword operator is used to overload an operator, and
the resulting operator will adopt the meaning supplied by the programmer.

Closely related to operator overloading is the issue of type conversion. Some conversions take
place between user-defined types and basic types. Two approaches are used in such conversions:
A one-argument constructor changes a basic type to a user-defined type, and a conversion
operator converts a user-defined type to a basic type. When one user-defined type is converted
to another, either approach can be used.

Table 8.2 summarizes these conversions.

TABLE 8.2 Type Conversions

Routine in Destination Routine in Source

Basic to basic (Built-In Conversion Operators)

Basic to class Constructor N/A

Class to basic N/A Conversion operator

Class to class Constructor Conversion operator

A constructor given the keyword explicit cannot be used in implicit data conversion situations.
A data member given the keyword mutable can be changed, even if its object is const.

UML class diagrams show classes and relationships between classes. An association represents
a conceptual relationship between the real-world objects that the program’s classes represent.
Associations can have a direction from one class to another; this is called navigability.

Questions
Answers to these questions can be found in Appendix G.

1. Operator overloading is

a. making C++ operators work with objects.

b. giving C++ operators more than they can handle.

c. giving new meanings to existing C++ operators.

d. making new C++ operators.

2. Assuming that class X does not use any overloaded operators, write a statement that subtracts
an object of class X, x1, from another such object, x2, and places the result in x3.

Chapter 8
364

09 3087 CH08 11/29/01 2:18 PM Page 364

