Framing Error Detection(CRC) Wireless Networks

Computer Networks: A system approach

Framing

- We are focusing on packet-switched networks, which means that blocks of data (called *frames* at this level), not bit streams, are exchanged between nodes.
- It is the network adaptor that enables the nodes to exchange frames.

Bits flow between adaptors, frames between hosts

Framing

- When node A wishes to transmit a frame to node B, it tells its adaptor to transmit a frame from the node's memory. This results in a sequence of bits being sent over the link.
- The adaptor on node B then collects together the sequence of bits arriving on the link and deposits the corresponding frame in B's memory.
- Recognizing exactly what set of bits constitute a frame—that is, determining where the frame begins and ends—is the central challenge faced by the adaptor

- Bit errors are introduced into frames
 - Because of electrical interference and thermal noises
- Detecting Error
- Correction Error
- Two approaches when the recipient detects an error
 - ▶ Notify the sender that the message was corrupted, so the sender can send again.
 - ▶ If the error is rare, then the retransmitted message will be error-free
 - Using some error correct detection and correction algorithm, the receiver reconstructs the message

Common technique for detecting transmission error

- CRC (Cyclic Redundancy Check)
 - ▶ Used in HDLC, DDCMP, CSMA/CD, Token Ring
- Other approaches
 - Two Dimensional Parity (BISYNC)
 - Checksum (IP)

Basic Idea of Error Detection

- To add redundant information to a frame that can be used to determine if errors have been introduced
- Imagine (Extreme Case)
 - Transmitting two complete copies of data
 - ▶ Identical \rightarrow No error
 - ▶ Differ \rightarrow Error
 - Poor Scheme ???
 - n bit message, n bit redundant information
 - Error can go undetected
 - In general, we can provide strong error detection technique
 - k redundant bits, n bits message, k << n</p>
 - ▶ In Ethernet, a frame carrying up to 12,000 bits of data requires only 32-bit CRC

Extra bits are redundant

- They add no new information to the message
- Derived from the original message using some algorithm

r

Both the sender and receiver know the algorithm m

Sender

Receiver

Receiver computes r using m

If they match, no error

- Reduce the number of extra bits and maximize protection
- Given a bit string 110001 we can associate a polynomial on a single variable x for it.
 - $1.x^{5}+1.x^{4}+0.x^{3}+0.x^{2}+0.x^{1}+1.x^{0} = x^{5}+x^{4}+1$ and the degree is 5.
 - A k-bit frame has a maximum degree of k-1
- Let M(x) be a message polynomial and C(x) be a generator polynomial.

- Let M(x)/C(x) leave a remainder of 0.
- When M(x) is sent and M'(x) is received we have M'(x) = M(x)+E(x)
- The receiver computes M'(x)/C(x) and if the remainder is nonzero, then an error has occurred.
- ▶ The only thing the sender and the receiver should know is C(x).

Polynomial Arithmetic Modulo 2

- Any polynomial B(x) can be divided by a divisor polynomial C(x) if B(x) is of higher degree than C(x).
- Any polynomial B(x) can be divided once by a divisor polynomial C(x) if B(x) is of the same degree as C(x).
- The remainder obtained when B(x) is divided by C(x) is obtained by subtracting C(x) from B(x).
- To subtract C(x) from B(x), we simply perform the exclusive-OR (XOR) operation on each pair of matching coefficients.

- Let M(x) be a frame with m bits and let the generator polynomial have less than m bits say equal to r.
- Let r be the degree of C(x). Append r zero bits to the low-order end of the frame, so it now contains m+r bits and corresponds to the polynomial $x^rM(x)$.

- Divide the bit string corresponding to x^rM(x) by the bit string corresponding to C(x) using modulo 2 division.
- Subtract the remainder (which is always r or fewer bits) from the string corresponding to x^rM(x) using modulo 2 subtraction (addition and subtraction are the same in modulo 2).
- The result is the checksummed frame to be transmitted. Call it polynomial M'(x).

CRC Calculation using Polynomial Long Division

- Six generator polynomials that have become international standards are:
 - ► CRC-8 = $x^8 + x^2 + x + 1$
 - $\blacktriangleright CRC-10 = x^{10} + x^9 + x^5 + x^4 + x + 1$
 - $\blacktriangleright CRC-12 = x^{12} + x^{11} + x^3 + x^2 + x + 1$
 - $\blacktriangleright CRC-16 = x^{16} + x^{15} + x^2 + 1$
 - CRC-CCITT = $x^{16}+x^{12}+x^{5}+1$
 - $\blacktriangleright CRC-32 = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

Reliable Transmission

- CRC is used to detect errors.
- Some error codes are strong enough to correct errors.
- The overhead is typically too high.
- Corrupt frames must be discarded.
- A link-level protocol that wants to deliver frames reliably must recover from these discarded frames.
- > This is accomplished using a combination of two fundamental mechanisms
 - Acknowledgements and Timeouts

Reliable Transmission

- An acknowledgement (ACK for short) is a small control frame that a protocol sends back to its peer saying that it has received the earlier frame.
 - A control frame is a frame with header only (no data).
- The receipt of an *acknowledgement* indicates to the sender of the original frame that its frame was successfully delivered.

Reliable Transmission

- If the sender does not receive an *acknowledgment* after a reasonable amount of time, then it retransmits the original frame.
- > The action of waiting a reasonable amount of time is called a *timeout*.
- The general strategy of using acknowledgements and timeouts to implement reliable delivery is sometimes called Automatic Repeat reQuest (ARQ).

Stop and Wait Protocol

- Idea of stop-and-wait protocol is straightforward
 - After transmitting one frame, the sender waits for an acknowledgement before transmitting the next frame.
 - If the acknowledgement does not arrive after a certain period of time, the sender times out and retransmits the original frame

Stop and Wait Protocol

Timeline showing four different scenarios for the stop-and-wait algorithm. (a) The ACK is received before the timer expires; (b) the original frame is lost; (c) the ACK is lost; (d) the timeout fires too soon

Stop and Wait Protocol

If the acknowledgment is lost or delayed in arriving

- The sender times out and retransmits the original frame, but the receiver will think that it is the next frame since it has correctly received and acknowledged the first frame
- ► As a result, duplicate copies of frames will be delivered

How to solve this

► Use 1 bit sequence number (0 or 1)

When the sender retransmits frame 0, the receiver can determine that it is seeing a second copy of frame 0 rather than the first copy of frame 1 and therefore can ignore it (the receiver still acknowledges it, in case the first acknowledgement was lost)

Wireless technologies differ in a variety of dimensions

- How much bandwidth they provide
- ► How far apart the communication nodes can be
- Four prominent wireless technologies
 - Bluetooth
 - ▶ Wi-Fi (more formally known as 802.11)
 - ▶ WiMAX (802.16)
 - 3G cellular wireless

	Bluetooth (802.15.1)	Wi-Fi (802.11)	3G Cellular
Typical link length	10 m	100 m	Tens of kilometers
Typical data rate	2 Mbps (shared)	54 Mbps (shared)	Hundreds of kbps (per connection)
Typical use	Link a peripheral to a computer	Link a computer to a wired base	Link a mobile phone to a wired tower
Wired technology analogy	USB	Ethernet	DSL

Overview of leading wireless technologies

- Mostly widely used wireless links today are usually asymmetric
 - Two end-points are usually different kinds of nodes
 - One end-point usually has no mobility, but has wired connection to the Internet (known as base station)
 - ► The node at the other end of the link is often mobile

A wireless network using a base station

- Wireless communication supports point-to-multipoint communication
- Communication between non-base (client) nodes is routed via the base station
- Three levels of mobility for clients
 - No mobility: the receiver must be in a fix location to receive a directional transmission from the base station (initial version of WiMAX)
 - Mobility is within the range of a base (Bluetooth)
 - Mobility between bases (Cell phones and Wi-Fi)

IEEE 802.11

- Also known as Wi-Fi
- Like its Ethernet and token ring siblings, 802.11 is designed for use in a limited geographical area (homes, office buildings, campuses)
 - Primary challenge is to mediate access to a shared communication medium - in this case, signals propagating through space
- 802.11 supports additional features
 - power management and
 - security mechanisms

IEEE 802.11

- Original 802.11 standard defined two radio-based physical layer standard
 - One using the frequency hopping
 - > Over 79 1-MHz-wide frequency bandwidths
 - Second using direct sequence
 - Using 11-bit chipping sequence
 - **b** Both standards run in the 2.4-GHz and provide up to 2 Mbps
- Then physical layer standard 802.11b was added
 - Using a variant of direct sequence 802.11b provides up to 11 Mbps
 - Uses license-exempt 2.4-GHz band
- Then came 802.11a which delivers up to 54 Mbps using OFDM
 - ▶ 802.11a runs on license-exempt 5-GHz band
- Most recent standard is 802.11g which is backward compatible with 802.11b
 - Uses 2.4 GHz band, OFDM and delivers up to 54 Mbps

- Consider the situation in the following figure where each of four nodes is able to send and receive signals that reach just the nodes to its immediate left and right
 - For example, B can exchange frames with A and C, but it cannot reach D

C can reach B and D but not A

Example of a wireless network

В

С

- Suppose both A and C want to communicate with B and so they each send it a frame.
 - A and C are unaware of each other since their signals do not carry that far
 - ► These two frames collide with each other at B
 - ▶ But unlike an Ethernet, neither A nor C is aware of this collision
 - ► A and C are said to *hidden nodes* with respect to each other

The "Hidden Node" Problem. Although A and C are hidden from each other, their signals can collide at B. (B's reach is not shown.)

- Another problem called exposed node problem occurs
 - Suppose B is sending to A. Node C is aware of this communication because it hears B's transmission.
 - It would be a mistake for C to conclude that it cannot transmit to anyone just because it can hear B's transmission.
 - Suppose C wants to transmit to node D.
 - This is not a problem since C's transmission to D will not interfere with A's ability to receive from B.

Exposed Node Problem. Although B and C are exposed to each other's signals, there is no interference if B transmits to A while C transmits to D. (A and D's reaches are not shown.)

802.11 addresses these two problems with an algorithm called Multiple Access with Collision Avoidance (MACA).

Key Idea

- Sender and receiver exchange control frames with each other before the sender actually transmits any data.
- This exchange informs all nearby nodes that a transmission is about to begin
- Sender transmits a *Request to Send* (RTS) frame to the receiver.
 - The RTS frame includes a field that indicates how long the sender wants to hold the medium
 - Length of the data frame to be transmitted
- Receiver replies with a Clear to Send (CTS) frame
 - > This frame echoes this length field back to the sender

Any node that sees the CTS frame knows that

- ▶ it is close to the receiver, therefore
- cannot transmit for the period of time it takes to send a frame of the specified length
- Any node that sees the RTS frame but not the CTS frame
 - ▶ is not close enough to the receiver to interfere with it, and
 - so is free to transmit

Using ACK in MACA

- Proposed in MACAW: MACA for Wireless LANs
- Receiver sends an ACK to the sender after successfully receiving a frame
- All nodes must wait for this ACK before trying to transmit
- If two or more nodes detect an idle link and try to transmit an RTS frame at the same time
 - ▶ Their RTS frame will collide with each other
- 802.11 does not support collision detection
 - So the senders realize the collision has happened when they do not receive the CTS frame after a period of time
 - In this case, they each wait a random amount of time before trying again.
 - The amount of time a given node delays is defined by the same exponential backoff algorithm used on the Ethernet.