

System Validation

Lecture 3

Zohaib

Osman Hasan

Formal Methods

Rules for eliminating implication

- Rule 1: Modus ponens (MP) (Latin name)
- Example:
 - It rained.
 - If it rained, then the street is wet.
 - Therefore
 - The street is wet.

$$\frac{\phi \quad \phi \to \psi}{\psi} \to e.$$

Rules for eliminating implication

- Rule 2: Modus tollens (MT) (Latin name)
- Example:
 - If it rained, then the street is wet.
 - The street is not wet
 - Therefore
 - It didn't rain.

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \text{ MT.}$$

Activity

$$p \to (q \to r), \, p, \, \neg r \vdash \neg q$$

1	$p \to (q \to r)$	premise
2	p	premise
3	$\neg r$	premise
4	$q \rightarrow r$	$\rightarrow e 1, 2$
5	$\neg q$	MT 4, 3

Rule of implies introduction

- To Add an implication to your proof
 - You suppose p
 - Verify q based on the given premise or any other already verified result
 - Obtain $p \rightarrow q$
 - This is done in a closed rectangle

Activity

$$p \to q \vdash p \land r \to q \land r$$

1	$p \rightarrow q$	premise
2	$p \wedge r$	assumption
3	p	$\wedge e_1 \ 2$
4	r	$\wedge e_2 2$
5	q	$\rightarrow e 1, 3$
6	$q \wedge r$	$\wedge \mathrm{i}\ 5,4$
7	$p \wedge r \to q \wedge r$	\rightarrow i 2-6

Activity 1

 $p \land q \to r \vdash p \to (q \to r)$

1	$p \wedge q \to r$	premise
2	p	assumption
3	q	assumption
4	$p \land q$	$\wedge i 2, 3$
5	r	$\rightarrow e 1, 4$
6	$q \rightarrow r$	\rightarrow i 3-5
7	$p \to (q \to r)$	\rightarrow i 2-6

Activity 2

$$p \to (q \to r) \vdash p \land q \to r$$

1	$p \to (q \to r)$	premise
2	$p \wedge q$	assumption
3	p	$\wedge e_1 2$
4	q	$\wedge e_2 2$
5	$q \rightarrow r$	$\rightarrow e 1, 3$
6	r	$\rightarrow e 5, 4$
7	$p \wedge q \to r$	\rightarrow i 2-6

Equivalent Formulas

$$p \wedge q \to r \vdash p \to (q \to r)$$
$$p \to (q \to r) \vdash p \wedge q \to r$$

• The two formulas are equivalent to one another

$$p \land q \to r \dashv \vdash p \to (q \to r)$$