## 2.3 REGULA-FALSI METHOD

This method is also known as the method of false position. In this method, we choose two points  $x_n$  and  $x_{n-1}$  such that  $f(x_n)$  and  $f(x_{n-1})$  are of opposite signs. Intermediate value property suggests that the graph of y = f(x) crosses the x-axis between these two points, and therefore, a root say  $x = \xi$  lies between these two points. Thus, to find a real root of f(x) = 0 using Regula-Falsi method, we replace the part of the curve between the points  $A[x_n, f(x_n)]$  and  $B[x_{n-1}, f(x_{n-1})]$  by a chord in that interval and we take the point of intersection of this chord with the x-axis as a first approximation to the root (see Fig. 2.3).



Fig. 2.3 Geometrical illustration of Regula-Falsi method.

Now, the equation of the chord joining the points A and B is

$$\frac{y - f(x_n)}{f(x_{n-1}) - f(x_n)} = \frac{x - x_n}{x_{n-1} - x_n}$$
 (2.1)

Setting y = 0 in Eq. (2.1), we get

$$x = x_n - \frac{x_{n-1} - x_n}{f(x_{n-1}) - f(x_n)} f(x_n)$$

Hence, the first approximation to the root of f(x) = 0 is given by

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$
 (2.2)

From Fig. 2.3, we observe that  $f(x_{n-1})$  and  $f(x_{n+1})$  are of opposite sign. Thus, it is possible to apply the above procedure, to determine the line through B and  $A_1$  and so on. Hence, the successive approximations to the root of f(x) = 0 is

given by Eq. (2.2). This method can best be understood through the following examples.

Example 2.2 Use the Regula-Falsi method to compute a real root of the equation  $x^3 - 9x + 1 = 0$ ,

- (i) if the root lies between 2 and 4
- (ii) if the root lies between 2 and 3.

Comment on the results.

Solution Let  $f(x) = x^3 - 9x + 1$ .

(i) f(2) = -9 and f(4) = 29. Since f(2) and f(4) are of opposite signs, the root of f(x) = 0 lies between 2 and 4. Taking  $x_1 = 2$ ,  $x_2 = 4$  and using Regula. Falsi method, the first approximation is given by

$$x_3 = x_2 - \frac{x_2 - x_1}{f(x_2) - f(x_1)} f(x_2) = 4 - \frac{2 \times 29}{38} = 2.47368$$

and  $f(x_3) = -6.12644$ . Since  $f(x_2)$  and  $f(x_3)$  are of opposite signs, the root lies between  $x_2$  and  $x_3$ . The second approximation to the root is given as

$$x_4 = x_3 - \frac{x_3 - x_2}{f(x_3) - f(x_2)} f(x_3) = 2.73989$$

and  $f(x_4) = -3.090707$ . Now, since  $f(x_2)$  and  $f(x_4)$  are of opposite signs, the third approximation is obtained from

$$x_5 = x_4 - \frac{x_4 - x_2}{f(x_4) - f(x_2)} f(x_4) = 286125$$

and  $f(x_5) = -1.32686$ . This procedure can be continued till we get the desired result. The first three iterations are shown as in the table.

| n | $x_{n+1}$ | $f(x_{n+1})$ |
|---|-----------|--------------|
| 2 | 2.47368   | -6.12644     |
| 3 | 2.73989   |              |
| 4 | 2.86125   | -3.090707    |
|   | 2.00125   | -1.32686     |

(ii) f(2) = -9 and f(3) = 1. Since f(2) and f(3) are of opposite signs, the root of f(x) = 0 lies between 2 and 3. Taking  $x_1 = 2$ ,  $x_2 = 3$  and using Regula-Falsi method, the first approximation is given by

$$x_3 = x_2 - \frac{x_2 - x_1}{f(x_2) - f(x_1)} f(x_2) = 3 - \frac{1}{10} = 2.9$$

and  $f(x_3) = -0.711$ . Since  $f(x_2)$  and  $f(x_3)$  are of opposite signs, the root lies between  $x_2$  and  $x_3$ . The second approximation to the root is given as

$$x_4 = x_3 - \frac{x_3 - x_2}{f(x_3) - f(x_2)} f(x_3) = 2.94156$$

and  $f(x_4) = -0.0207$ . Now, we observe that  $f(x_2)$  and  $f(x_4)$  are of opposite signs, the third approximation is obtained from

$$x_5 = x_4 - \frac{x_4 - x_2}{f(x_4) - f(x_2)} f(x_4) = 2.94275$$

and  $f(x_5) = -0.0011896$ . This procedure can be continued till we get the desired result. The first three iterations are shown as in the table.

| _ n |           | $x_{n+1}$ |     | $f(x_{n+1})$ |
|-----|-----------|-----------|-----|--------------|
| 2   | Angle - I | 2.9       | 1   | -0.711       |
| 3   |           | 2.94156   | 1   | -0.0207      |
| 4 - |           | 2.94275   | • • | -0.0011896   |

From the above computations, we observe that the value of the root as a third approximation is evidently different in both the cases, while the value of  $x_5$ , when the interval considered is (2, 3), is closer to the root. Hence, an important observation in this method is that the interval  $(x_1, x_2)$  chosen initially in which the root of the equation lies must be sufficiently small.

Example 2.3 Use Regula-Falsi method to find a real root of the equation

$$\log x - \cos x = 0$$

accurate to four decimal places after three successive approximations.

Solution Given  $f(x) = \log x - \cos x$ . We observe that

$$f(1) = 0 - 0.5403 = -0.5403$$

and

$$f(2) = 0.69315 + 0.41615 = 1.1093$$

Since f(1) and f(2) are of opposite signs, the root lies between  $x_1 = 1$ ,  $x_2 = 2$ . The first approximation is obtained from

$$x_3 = x_2 - \frac{x_2 - x_1}{f(x_2) - f(x_1)} f(x_2) = 2 - \frac{11093}{1.6496} = 1.3275$$

and

$$f(x_3) = 0.2833 - 0.2409 = 0.0424$$

Now, since  $f(x_1)$  and  $f(x_3)$  are of opposite signs, the second approximation is

$$x_4 = 1.3275 - \frac{(.3275)(.0424)}{0.0424 + 0.5403} = 1.3037$$

and

$$f(x_4) = 1.24816 \times 10^{-3}$$

Similarly, we observe that  $f(x_1)$  and  $f(x_4)$  are of opposite signs, so, the third

$$x_5 = 1.3037 - \frac{(0.3037)(0.001248)}{0.001248 + 0.5403} = 1.3030$$

and

$$f(x_5) = 0.62045 \times 10^{-4}$$

Hence, the required real root is 1.3030.

Example 2.4 Using Regula-Falsi method, find the real root of the following equation correct to three decimal places:

$$x \log_{10} x = 1.2$$

**Solution** Let  $f(x) = x \log_{10} x - 1.2$ . We observe that  $f(2) \Rightarrow 0.5979$  f(3) = 0.2314. Since f(2) and f(3) are of opposite signs, the real root lies between  $x_1 = 2$ ,  $x_2 = 3$ . The first approximation is obtained from

$$x_3 = x_2 - \frac{x_2 - x_1}{f(x_2) - f(x_1)} f(x_2) = 3 - \frac{0.2314}{0.8293} = 2.72097$$

and  $f(x_3) = -0.01713$ . Since  $f(x_2)$  and  $f(x_3)$  are of opposite signs, the root of f(x) = 0 lies between  $x_2$  and  $x_3$ . Now, the second approximation is given by

$$x_4 = x_3 - \frac{x_3 - x_2}{f(x_3) - f(x_2)} f(x_3) = 2.7402$$

and  $f(x_4) = -3.8905 \times 10^{-4}$ . Thus, the root of the given equation correct to three decimal places is 2.740.