Chapter 7

THE FOURIER
TRANSFORM AND ITS

APPLICATIONS

In this chapter we discuss another well-known integral transform which

goes by the name of Fourier transform. After discussing its theory we

will turn to its applications.

71 De4nition and Basic Properties

Given an integrable function f(x) for = o0 < & < <. We can associate
with It anottrer function F(k) of variable &k, (=00 < & < 400, by the

F(k) = 7%:/00 o'** f(2) da (7.1.1)

The function F(k) Is ealled the Fourder transform of f(x), and f(x) is
talled the Inverse Fourler transform of F'(k). It can bo shown that

l i
fle) = = [0 Bk ai (7.1.2)

relation

Notation and Conventlon
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(i) a = 5o

Also F(k) = FU(2))

where the operator F is called the Fourier transform operator.

It is also possible to define the Fourier transform and its inverse
such a way that the coefficients c;, ¢ in each are unity. In this definitjo
they are given by the relations

F(k) = /_m e’ ¥ f(z) dz

(o o]

and

+o00
f(z) = / eT2" k= Py dk
These relations can be obtained from (7.1.1) and (7.1.2) l;y making the

transformations z’ = /97 ; A
Ild k' = .
unprimed symbols, 27 k and then reverting to the

F{f(z), z = y '
{(2), z - iy, Ff(z), z o ELF{f(t), t —» w)
5 F(e), Fw) of f(z), f(z) and o

for the Fourier transforms F
respectively. (
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7.1.1 The Fourier transform and its inverse

ous over

f function T . i
If the 1 f( ) or F(k) 1s continuous or piecewise continu
Fourier

— + oo )
(s ) i and bounded then Fourier transform and Inverse
transform exist.

If the function f(x) is absolutely integrable z.e. the integral [y |f ()] dz

e;.cis'ts, then the F_ourier transform exists. This is a sufficient condition.
gimilarly for the inverse Fourier transform

Linearity of 7 and F~! Operators
The operators F and F —1 are linear i.e.

Flafi(z) + cfsz)) = aF{fi(z)} + c2F{f2(z)}

and

FHa Fik) +a Rk} = aF H{AK) + oF {FRE]}

7.1.2 Fourier series and Fourier transform

ation of a periodic piecewise smooth func-
eads to the integral representation of the

he index n in the Fourier series — 0O .
he condition of absolute in-

oo). This can be seen as

The Fourier series represent
tion over the interval (=1, I) 1
same function as | — oo and ¢
The condition of periodicity is replaced by t
tegrability for the function f(z) over (—oo,

follows.

We start with the complex from o
for the function f(z), as explained in chapter 1.

f the Fourier series representation

+o00 .
flz) = D ¢n emme/t  —t<z <l (7.1.3)
n=-—00

where the complex Fourier coefficients ¢, are given by

P _Lf+[f(:c)e‘""i/l dz (7.1.4)
" 20 J_¢ '

n which £ — oco. Let nw/€ = k then

Now we consider the situation 1
n n will be given by £ Ak/m 1e.

n = ¢k/x and the increment An i

An = (Ak[/mor Bk = /€
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where An = 1. In i Qcai

rewrite (7.1.3) as ,
0 wrelt = Y ci(k) = Aketts
f(z)= Z cn AT ; i

n=-00

k3 c(t k/ﬂ') = C[(k) to show the dependeMe .

(7‘1“5)

“h@

‘where we have put ¢
coefficients ¢, on £ and k.
Similarly (7.1.4) can be written as
TR f(:r)e""- f
c(tk/7) = ee(k) = 2 |,

-

or / | [
_ 4 -tkzx
;C'(” = 2 ] AQLEE (T1g

Equations (7.1.5) and (7.1.6) correspond to each other in the samq,,
as equations (7.1.3) and (7.1.4) do. Now we let £ — 0o so thay k n:)A
Incomes a continuous variable, and assuming that the sum goes over “
the Riemann integral, we have from (7.1.5) e

+00
)= [ elhyeteak (1)
where ¢(k) = limlqoo(l/ﬁ)c(lkfyr). Also from (7.1.6) |
1 r#¢
c(k) = ), f(z) e== gy (7.18)

-1.8) become
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.2 Fourier Transforms of Some Simple Fur
tions
I this section we make calculations to evaluate the Fourier transforms
-{ some simpie functions.
7.2.1 Illustrative examples
Example 1
( Fourier transform of the Gaussian Function)
Find the Fourier transform of the Gaussian function
g(z) = Ne™oF
where .V and a are constants, and a > 0..
Solution
From definition  JI{x)
t
\ .
F(k)
Large a t
] x /\k
Fk) :
4
Jx) b
Jr o
= \ —- k

, il o
Fla)} = G === [ e gz ds

vV >
1 +2
- 2
= ,.__/ e** Ne~ o= dsr
\,/22.‘ -0
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Now kzx
"’

: _a(a:?" =

o [47— thafa+ (/200" = (k/2ayy
ca(z- k/20)? + k* /407

thr—-al

T‘herefore
Gk = Tg";[;wexp [~ a(z — tk/2a)°] exp (= k?/4a) 4,
or
N 2 *ee | | e
G(k) = o exp(—k*/4a) /_ L [-a(z - k/2a)?] 4
Let

a(z - tk/2a)’ = p?, then vax (z - tk/2a)=p, and dz = dp/,; |

Therefore

| N oo e
G(k) \/—2—;exp(.-k2/4a) /_ i exp(—p?) dp/v/a

; N

Vara P K/4a) V7
. N :

V% exp(~k?/4q)

n

where we have yseqd the
’ result f+oo
Hence L°° *p(=p*)dp = V.
}'{JVexP(_QIZ)} - 1 N | 2
=N exp —k
i We note that the functiop = o
| sharply-peaked for larg

e val
| Example 2 2

P ———

= Nexn(_= . , ;
L XR(=az?), (g 5 (), will b |
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Figure 7.2:

Solution
The function g(z) as well as its derivative are continuous ove

val (- o0, +00), and the integral [ g(z)dz is absolutely integrable.
xist.

Therefore the Fourier transform of the given function must e

1 680 tkx a
Flo)) = G = o= [ e

+ o0 ctkz

r the inter-

a
ox J_on 224 a?

dz

etkz

a
V27 Je 22 4 a?
where Cis a closed contour consisting of the X-axis and a semicircle (of
infinite radius) in the upper or lower half-plane. Now

thkz = tk(Rez +¢Imz) = vk(z+ty)

dz

Il

=1kzx—ky

Therefore o' k2 = e**—*%¥ — 0 when y — o for k > 0.

< 0if y — —oo. We want to choose the
integral [, g(z)dz is zero. In one case
alf plane whereas in the other case it
a, b). Therefore

The same will also — 0 for k
contour Cin such a way that the
th.e contour will lie in the upper-h
will lie in the Jower-half plane, (sce figs. 7.2

cl‘.‘l a

a
G(I::):\/5_7_1'.%6:2_‘"02 dz—m

x 2r .1 x S

”cll‘
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(i). When k> N, we ta !
“me Therefore, the resi

1t0 :
he function a

1 E . (k>0

—
7
kz =

. ‘ /
GAg i e 1a
residue = }Lf{’d T+ 2

ke the €OT
due of t

Hence i ek _ VT -k (k50
G(k)“—'—\/-z-—;x(?m)" 7ra .2 T
(ii) When k <0, we take the semicircle 1n the ::fr a eiaane'
Residue of the function at — 1@ = xli’nal‘ P =
Therefore o :
Gk = ——(~2m) = = \/g

| Combining the two results, we have
G(k) = \/g_ e~k for all k

Example 3
Find the Fourier transform of the box function

— I, |z] € a,a >0
fa) = {0’ g

Solution
1 + 00
i) = —=f () de

] a
7 | 0% e o

+a
+ / 1 x ¢thz s
a

1 0 atkz\ ] +a ! o .
vor \UF ""‘)} L
ke e ame ik

1 Gmk - o-tak '
""‘“‘* -‘"\ 2 C‘ﬂk iz e__lak
e gy -1
' $ -
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1 ecak _ e_mk 9 e‘nk _ e—-tak
v2r Lk \,72"-‘: ik
. 2 sin ka
T k

7.3 Properties of Fourier Transformation
;. Linearity property

[t is a linear transformation; both £ and F~! are linear.

5, Conjugation property

If f(z)1s real, then F(—k) = F(k), (where the b
complex conjugate).

ar symbol denotes the

Proof
- 1 +oc " .
F(k) = _5:/ ok* f(z) dz

4
T O

and therefore

T 1

e~k f(z) dr

F(k) = —F/=—=
vV 27 J—oo
Also
1 L
F(-k) = \—/_:2_—: e™ " f(z) dz
which proves that F(—k) = F (k).
e F.T.

3. Real and Complex Values of th
(a) If f(z) is real and even, F(k) is real
(b) If f(z) is real and c;c—i—d, F(k) is pure imaginary.
(¢) If f(x) is complex, then ]-—{7_(:}7} = F(k).
Proof of (3) a

We have to prove that if f(z

FlE ,L/_'xe"*f f(z) dz

Var

) is even, then F(k) is real.
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] _ f{(—z), then |
. : ) — j( T
hen f(x) is even. 1.€. f(z
When {( I 400 ezkx f(—-q;) "

F(k) = \/—2—71: o
Let —xr=1z1"or dr = — d:!:', thcrefore

F(k) = o=
_ L / e
= =/
Hence F(k) = F(k), which shows that F(k) is real.
Proof of (3 b)

L [ fia) (- do)

"k f(a') (~da') = F(=k)

/‘m’e""‘r f(z)dz

(e o]

1
)
When f(z) is odd ie. f(z) = —f(—z), we have

F(k) = #[;me"kr [- f(~2)] dz

Let ' = —z_ then dz' = —~dz, and -
| -1 [
F(k) = -—\/__2=7r +;\)\e—4:ck f(.'z') (__ dI’)
—1 G — thky! ! /
o L e " f(2') dx

i

or F(k) = —F(-k) = —F(k), which shows that F(k) is pure imaginary.

Proof of 3(c)
= 1 +oo0 |
F{f(- N e
Lty Lo
1 +oco
= — —tky! =z
\/é?/_m © ) ae, (z' = —z)
= compley onjugate of 1 +oo

— tk [ /
V2r e G f(2') dzx

complex Conjugate of F(k) = F(k)
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4. Attenuation property
F{e™ f(2)}) = F(k - at)

[t can be proved directly from the definition.

F{e® f(z)} = \/‘2_/"' hrgr [(z)dz
T

\ﬁ‘br)
-+ 00
ot(k=ta)r f(z)dx

1
B V27T [—oo
Pk — at)

e(‘k+")x J(z)dz

I

5. Shifting properties

() -F{f(z - a)} = e** F(k)
(i) F{e's f(z)} = F(k+a)

Proof of (1)

400
Fifte-a)} = o= [ e fla=a)da

Put z — a = ', which implies dz = dz’. Then

F{f(z —a)} = 1 /+°o etk(='+e) f(z") dz’
V21 J-co

oo [
etka elk.’r f(IB’) diL"

I

75 L.

s Lkz /;
ek \/ﬂ/ f(z") dz’
— ekaF(k_)

e ——

Proof of (ii)
;ax tkx
e'?* '’ f(z)dx

Il

1 =
F {e** f(2)} 72—;/_00
- ;715—;/_: et+e)= f(z) dz
I(k +a)

cations
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6. Scaling propt -
e
If ¢ \ non-zere \-nn.ﬂ.mt. t )
- 11"—-'-'1(.’\/(‘
H‘ Id ( 3
= )
£ 0
Proof
Let ¢ > 0. then }
1_/ Otk.rf((‘.)‘)([?, = e
.F‘:j'{(-.?)} = \'/2__:‘ | .
+ , :
— __,__l._—— (\IA.‘I‘ /L f(,]‘ ) dT /c
) \_:'(‘,3'_‘_) -0
+o00
T oo V21 )
P
= - F(kf¢c), ¢>0
c

If ¢ < 0, then we can show that
.
F{f(ex)} = =~ F(k/c)
Combining the two results, we have

fUMN=ﬁHWd

7. Modulation property of Fourier transform

taz + e=1ax

F(—55—) f(2)}
=F{etaz‘f($)} + =F{§m£f(.'1})}
W*+)+Fmam]

F{cosaz f(z))}

il

[}

]

Similarly
(8L _ g=iaz

'W“Tf“HwJ

-.F{O‘t!l‘f(z)} = EF{QE‘Q'T/(-L')} ;

i

Fisinaz f(z))

it

4]

U’(’s+a) = F(k - a)]
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8. Boundedness and Continuity of the F.T.

I j'(f) is picce-wise smooth and absolutely mtegrable
~. +). then its Fourier transform F(k) is bounded 2

on the interval

oo nd continuous:

proof
F(k) = %/_-i-oo el.kl‘ f(.’l‘) dz
Therefore
o= [ i@z

Since by assumption the integral on RHS exists, we denoté it by J, and
obtain
|F(k)] < (2m)71/2 T

which proves that F(k) is bounded. To prove continuity of F(k);

have _
F(k+h) — F(k‘) = \/_2_ e(k+h _ ecka f(x) dzr
. s
+°° Lk:r: hz | 4
o A C R
= I(k, h) -
Therefore >
lim (F(k + h) = F(k)] = Logim [ ke (e"" - 1) f(z) dz
h==0 27 h=0J oo -~ ; %

=/ AJI’T}L{E/‘?, h)

The interchange between the operations of limit and integration will be
justified if the mtegr%l is uniformly coxwergent

el s o [ F()ee = 1 dx

= \/ﬁ/ | /()] (GOEhtL ) + Sin?@]‘/g e
< =\/-—f===_/ Ve ;;:ﬂw sk
s ‘/‘“/ z)| dzr Cr

\»k] , /(Cyshx’(bg"’\ak )Z
l = — (CoshAD 5 }""’

- mwm we w

Npw
fCO)Z.L(VL(J//]l\[I\//
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formly convergent. Hence &

is un
which implies that I(k, h)1s 1
; 1 /+°° f(x)e‘kr Iim (ethz - l) ]
}'im [F(k B h) % F(k)] » \/i; -0 h—0 Z x4
—0

Therefore F(k) is continuous.
9. Riemann- Lebesque T

If f(z) is piece-wise smooth a

Proof
By definition

heorem/Lemma

+0o0
F(k) = %/_w e** f(z)dz

Integrating on RHS by parts, we have

Fik) = le_w[{ézkii(z)}f: _ [;w?;f’(r)dz]

or
1 &)L f(2)]
BRI —— ] jm L —
|F( )N < Vor I::—oToo |k| z-l.Too Ikl
toc 1 ]
= f(z -—-dz:J 7.3.1)
[ e &N
Since f(z) is absolutely integrable,
dp @ =0

Therefore from (7.3.1) we have

|F (k)] <

Now since f(z) is piecewise s
m ? - . - . "l
therefore the RHS of (7.3.2) 1o gos %% I8 Piecewise continuous, 224

s finite. Hence

Lim |Fk)] < Lm L 1 .
{k|—o0 = |k|-£n°o |k| 727?’ a finite Positive number
or
mm IF(k)| < o

Hence the theorem.

nd absolutely integrable funCtir,,-‘ ;

1= +oo ‘
v [ el
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7.4 Fourier Transforms of Derivative
Functions

».4.1 Fourier transforms of derivatives

i ‘ ourier
The Fourier transforms of derivatives of a function f(z) whose F
transform exists are given by

4.1
F{f(z)} = (—tk)F(k) (7.4.1)
where f(z) is supposed to tend to zero as = — F00.
F{f"'(z)} = (—uk)*F(k) (7.4.2)
where f(zx), f’(l‘) are supposed to tend to 0 as z — £0°. and
(7.4.3)

F{f"(z)} = (—k)"F(k)
where f(z), f'(z). --- f*~(z) — 0 as z — +oo.
Proof

For (7.4.1) we have

Fre) = o= " ek (z) do
% [e"‘”f(z)’t: - [: f(z)(tk)é""’ dx]

A [o + (k) [~ sz e dz]

= (—tk) \/15; /_ : f(z)e**dz = (—ik) F(k)
For (7.4.2)
+o<
}-{f"(.l‘)} — ’./; ecktfll(x) d.l‘]
' +

[ +oc0 oo _
eck:: f’(z), — ok e;kz:fl(x) d.’t]
- +o0 R

0 + (—tk)

8- 80- 8-

etz f!(z) dz]

- 00



