Chapter 6

LAPLACE TRANSFORM
AND ITS |
APPLICATIONS

6.1 Integral Transforms

The concept of integral transformation is related to that of a linear trans-
To understand this particular linear

formation defined by an integral.
transformation, we consider the set of functions of z over an interval
[:a <z < b which may be finite or infinite. Next we choose a fixed

function K (z. y) of variables (z, y). Then the integral transformation

is defined by

:
T f)) = F@) = / f(z) K(3, v) d

kernel of the transformation T'. This
¢ to opening up new vis-
ysis certain special types

The function K (z, ¥) 18 called the :
concept has been very seminal and conduciVv

tas ‘n Modern Mathematics. In classical anal :
of integral transformations such as Laplace, Fourier, Chebyshev have

 been extensively studied and used in sdlvin_g various types of problems.
' Different transformations correspond Lo d:ﬂerer}t f‘orms fo-r ?hg hkernel ;
K(z, y). The limits of the integ:al [a, b] are also aifferent 1;1 eac ; cas?.

The function T {/f(Z )} obtained by means of such 2 transiorma jon- is

called intagral transform of the giveD function f(2).
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6.2 Some Definitions and Basic Results

Let f () be a continuous or sectionally continuous function of ¢ defineq

over the interva] [0, o0), then the Laplace transform of f(t) is a function
F(s) of another variable s defined by

o T ,s o
F(s) = fo e~ f(1)dt = lim /0 e~ f(1) dt

"Y}13 0be noted that, the existence of Laplace transformy of a function

depends on the existence of the déiﬁning inf:é’gral; It is clear that every
function Mmay not possess its Laplace transform.

6.2.1 Notation

The Laplace transform of a function f(t) is denoted by any one of the .
notations F(s), f(s), L{f(2)}, L(f(2)], L{f(t); s}. The functions f(t)

and F(s) are referred to as it Laplace transform pair.
Theorem I

The Laplace transform
Proof |

, . Let

ation operator L is a linear operator.

f(t) = lel(t): t e2fo(t), 0<t< oo
Then i ’

LUOY = [Te e 4 e2fa(0)}d

£ c1/ Rt 4 cz/ e~ fo(t)dt
0 0
= al{fi} + caL{f3)
which shows that the operator J ig linear,

6.2.2 Existence of Laplace Transform

=
Seme Definitions

A function’ f(2) {s sald to be of €zponential ordep if

OIS Mo, tor 45
— .

.
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ere M and o are posit;
i positive constants and c is also a constant

A function which is piecewise continy
0

to be 2 function of class 4. UG and of exponential order is ‘said
Theorem | |

Gufficient conditi : . - " :
1on for the existence of Laplace transform of a func-

tion is that it should be a funct;
o lon o .4, - . .
continuous and of exponential ord :_:' claﬁs A ie. it s.h()llll(:i be p}ece-wlse

Proof

Let f.(tl) be piecewise Fon’cinuoug in the interval [0, T] and be of |
exponential order c. Then it will be integrable over [0, T} and moreover

|f()] < Me, fort>to

Therefore - -
: |e st f(1) | < Me~(79" fort > to
Hence : N .
i [o.0]
F(s) = ILAF} < / M et di
e 0 - B '
< M| / e~ (=90t g
0
M

< | ' provided s > ¢

s—¢C . .
iﬁuity and exponential order are suf-'
have a Laplace transform. But these
m the fact that the .

Thus it is clear that piecewise cont
ficient conditions for a function to
are not necessary conditions. This can be seen fro
z has Laplace transform;

function 1~
where T > 0.

in any interval [0, 7]
Corollary | |
From the above it follows that

lim F(s) =0

§—00 . .
This result is quite general and can be proved for. the Laplace trans-
form of any function, whether satisfying the andl-t.lons of thg a,bov_e _
theorem or not. Hence it follows from this result ( corollary) that if

F(s) is any function of such that its limit as:s = co does not exist -

yet-it is not piecewise continuous _ :
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ce transfom; of any function
+a13+ azs” + “'+.ansn o
sorms of any functions, On
transform of some functjqgy,
at of the denominator,
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or is not zero,'then it canno

= ao
- f(t).- Hence functions such as. F(-‘-;) " e
Ins, e®, sin s, coss cannot be Lapla

DL lace
the other hand a rational func“.on . Ltilpan th
if the degree of the numerator 13 tess

6.3 Laplace Transforms of Some .ElnCt.mnS and

Basic Results

6.3.1 Lap]ace. Transform of a constant
I f(t) = k, then
| L{f(1)) = / ekt

' | Jo -

T
= k lim e dt

T—oc0 Jp
_ e-—-st T
= k lim —
T—'OO -8 0
k . o
= = lim (1-¢7)
S T—x
= k/s

where it lias been assumed that s or Res > 0; otherwise the limit. will
not exist. Hence we can write

k
L{k} = ;’ S>> 0

6.3.2 Laplace transform of a positive integral power of t

First we will calculate Laplace transf
g orms of ¢ and ¢2
results to obtain L{"}. . _t and then use these

r
(i) Let f(¢) =t, then using Kronecker’s rule for integration b t
‘ tion by par S

L{t} = / e-—sttdt
0

le—st p—st1 o
SR e (P
: 0
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0 (0 - 32) =5

= A}, a,st—:»ooandfOI'

where We have used the result-lim (t"e=*')

Res > 0.
(ii) Let f(t) = {2, then again using Kronecker’s rule
AL
L{t?} = / S
0 .
3 12— st e st —st' o
= [ = —1(2t) ( 5)3]
1 1
R P 33
(iii) Let f(t) =1", then from definition -
: ; oo W
L{t"} = ] e P di-
Jo - i ”
—st]>® fos}
= t“f—-—] 3 L / estn Tl dt
e e =S o 5 S
= 0+ — L{s"“l} = —L{s“ 1
Again using the same result |
2
' n 'n wx | =had)
ny = - L
L e, e {s }
Ao =2 2Ly
= 5 . E
n! 1 n!
= ;{{' :; - Sn-{-l

ms of exponential and trigonomet-

6.3.3 Laplace transfor
ric functions

(i) Let f(t) = ek*. then by definition

kt - —st okt dt
ey = S

= et
0
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! - 8 — k
/oo e—s'! dt where 3
0

11
= ':97 = g = k
. . Re 3 > k- .
where it is assumed that constant. In calculating Laplace

(ii) Let f(t) = sin kt, where k is 2 llowing formulas

transforms for sin k£t and cos kt, we W1

/e“’cosbtdt = ag_l_b?

d a
= e [a sin bt — b cos bt]

/e“‘sinbt dt = m

i1l use the fo

_ & [acosbt+ bsin bt]

By definition 0
L{sinkt} = / e~ sin kt di
0 %

Using the above formula with @ = -5, b = k, we have

' —st
L{sinkt} = [e ( ssin kt — kcoskt)]

o0

32+ (0]
k

32+k2

(iii) Let f(2) = cos kt, then performing calculation similar to the above,

with a = —s, b = k, we have

” .
L{cosk t} = / e cos ktdt
0

e St | o
= [m (-scoskt + ksin kt)

) - Jdo
T g2 + k2

6.3.4 Laplace transforms of hyperbolic functions

These can be calculated using the definitiong |

sinht_.gt_.__e.: el 4 o—t
2 and COSht-___f__

2

g e e
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We obtain

. +4 Sy k '
. L{sinh t} = E and L{cosh t} = 'S_zé_]ﬁ

8.3.5 The first shifting theorem :and the rule of scales

In this subsection we discuss two important results which are useful ad-
ditions to our toolkit of elementary rules for computing Laplace trans-
forms. . ' '

The first shifting theorem, (also called the first translation theorem)
enables us to calculate Laplace transforms of products of functions of
the form ¥ £(2), in terms of Laplace transform of f(t). It will also be
used in calculating inverse Laplace transforms. It can be stated as

L{e* f(2)} = F(s — k) = L{f(t)} sk

:Proof

L) = [ e
- /”e-—ts—kﬁ £(t) dt

0

= / e~ %t f(1) dt wheres' =s—k
0

= F(S’) = F(S - k) = L{f(t)}]s—vs—k' ‘

Rule of scales ‘
It enables us to calculate Laplace transform. of a function of the form

f(“t) where a > 0 is a constant. It states
—‘__._'__.,__—/

L{f(a) = 2 LI}, a>0

Proof

L{f(at)} = /we-sf f(at)dt, a0

0

_ /ooe—(S/“)‘f(t’) dt'/a, at=1
0
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_ 1 /OO g2t f(t")dt', where =,
0

_ ! / T pyat
a Jo
= é[,{f(r.)}, >0

6.4 Laplace Transforms of Derlvatlves and In-
tegrals

6.4.1 Laplace transforms of derivatives of a function

The following theorem provides states the necessary conditions ***??{op
“the existence of Laplare transforms of derivatives of a function. Theo-
rem

(i} If f(2) is continueus and ]’(t) is piecewise continuous on the intervalt
[0, 00), and both are of exponential order, i.e. both of order e®* then

L{F(®)) = sL{f(®)} - f(0)
= sF(s) - J(0)

-~

(ii) If f(¢) and f'(¢) are continuous and f"(t) 1s piecewise continuous on
the interval [0, o), and all are of exponential order, i.e. both of order
e’ then

LU} = s"F(s) - s5(0) - f'(0)
(iii) I f(2), (1), S*(2), - f*7(1) are continuous and f7(¢) is piecewise

continuous on the interval [0, c0), and all are of exponential order, i.e.
hoth of order e®*, then

L{_[(zz)(/)} — S ,sn—lf(()) s s”‘gj’(o) L f(n-1)(0)

Proof

Using definition and integrating by parts

L{f (1)} = /o e™ ['(1) dt
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— -—-st 9
SOy = (- q)/ et f(1)dl
= —=f(0) + sL{f(1)}

= sh(s) - f(0)
where.F(S) is the Laplace transform of f(1)

(i) Again using definition and the result (i) above, we have

L{f"(t)}

Il

L{g'()} whereg(z) = f'(z)
. = sG(s) - g(0)
where we have used result (i) above and G(s) = L{g(t)}. Now
G(s) = L{g(t)} =L{f'(t)} = s F(s) — f(0)
Therefore on substitution, we obtain
L{FR)) = SlsF(s) - f(0)] ~ f1(0)
= s’F(s) — sf(0)] - f(O)‘

(iii) By repeated application of the results (i) or (1) we can derive thls
result. (

6.4.2 Laplace transform of the integral of a function
Let g(t) = [y f(7)dr, then

Y Lg(} = 5 L@}

To prove this theorem. we note that by fundarmental theorem of calculus,
viz. ¢'(t1) = f(t). Therefore |

L{g'(t)} = sL{g(1)} — 9(0).

But o
g(0) = / f(r)d—-=0 and ¢'(t) = f(1)
Jo
Hence 1
L{g'()} = sL{g(t)} == L{g)}=+ L{f(1)}
or finally

{/ f(-r)dr)} =§—L{f(t )} == ‘S)_




