Chapter 30

What is Nutrition?

Nutrition: the study of food, including

- How food nourishes our bodies
- How food influences our health

Nutrition is a relatively new discipline of science.

Why is Nutrition Important?

Nutrition contributes to wellness.

Wellness: the absence of disease

Physical, emotional, and spiritual health

Critical components of wellness:

Nutrition

Physical activity

Why is Nutrition Important?

Nutrition can prevent disease.

- Untrient deficiency diseases: scurvy, goiter, rickets
- iseases influenced by nutrition: chronic diseases such as heart disease
- iseases in which nutrition plays a role: osteoarthritis, osteoporosis

Nutrition is the science that studies food and how food nourishes our body and influences health.

True

False

Nutrition is the science that studies food and how food nourishes our body and influences health.

True

False

What Are Nutrients?

Nutrients: the chemicals in foods that are critical to human growth and function.

carbohydrates vitamins

fats and oils minerals

proteins water

What Are Nutrients?

Macronutrients: nutrients required in relatively large amounts.

- Provide energy to our bodies
- Carbohydrates, fats and oils, proteins

Micronutrients: nutrients required in smaller amounts.

Vitamins and minerals

Energy From Nutrients

We measure energy in kilocalories (kcal).

Kilocalorie: amount of energy required to raise the temperature of 1g of water by 1°C.

On food labels, "calorie" actually refers to kilocalories.

Primary source of fuel for the body, especially for the brain.

Provide 4 kcal per gram.

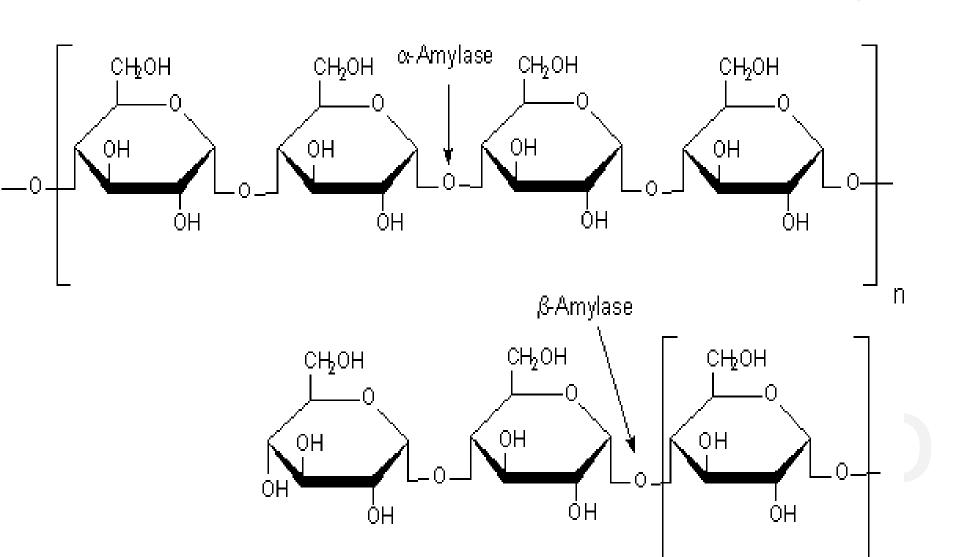
Carbohydrates are found in grains (wheat, rice), vegetables, fruits, and legumes.

How does the body process dietary carbohydrates?

Carbohydrates must be breakdown from di-, oligo-, and polysaccharides into monosaccharide.

Only monosaccharide can pass into the blood stream.

Hydrolysis is aided by a number of enzymes:


HAmylase – attacks all three storage polysaccharide at random, hydrolyzing the r-1,4-glycosidic bonds.

--Amylase – hydrolyzes the —1,4-glycosidic bonds but in an orderly fashion cutting disaccharides maltose units one by one from the none reducing end of a chain.

Debranching enzyme – hydrolyzes the – 1,6-glycosidic bonds.

Amylase Specificity

Fats and Oils

Fats and oils are composed of lipids, molecules that are insoluble in water.

Provide 7 kcal per gram.

An important energy source during rest or low intensity exercise.

Found in butter, margarine, vegetable oils.

Fats and Oils

How does the body process dietary fats?

Lipids in foods must be hydrolyze into smaller components before they can be absorb into the blood or lymph system.

Lipase - enzymes that promote hydrolysis.

Proteins are chains of amino acids.

Proteins can supply 4 kcal of energy per gram, but are not a primary energy source.

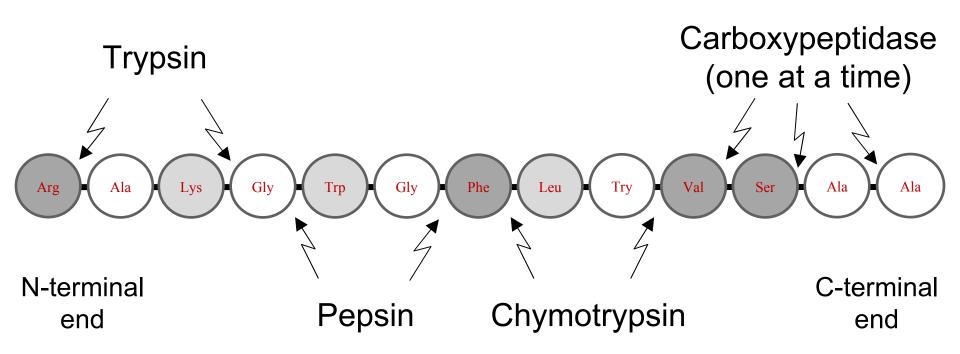
Proteins are an important source of nitrogen

Proteins are important for

- Building cells and tissues
- Maintaining bones
- Repairing damage
- Regulating metabolism

Protein sources include meats, dairy products, seeds, nuts, and legumes.

Digestion of dietary proteins begins with cooking which denatures proteins.


Denatured proteins are hydrolyze by hydrochloric acid and digestive enzymes in the stomach.

HCL denatures protein and hydrolyzes peptide bonds.

- Pepsin hydrolyzes peptide bonds of amino side of the aromatic amino acids (tryptophan, phenylalanine, and tyrosine).
- Chymotrypsin hydrolyzes internal peptide bonds at the same amino acids as does pepsin.
- Trypsin hydrolyzes the carboxyl side of arginine and lysine.
- Carboxypeptidase hydrolyzes amino acids one by one from the c-terminal end of the protein.

Enzymes Hydrolyze Peptide Chains In Specific Ways

Proteins are a primary energy source for our bodies

True

False

Proteins are a primary energy source for our bodies

True

False

Vitamins

Vitamins: organic molecules that assist in regulating body processes.

Vitamins are micronutrients that do not supply energy to our bodies.

Fat-soluble vitamins

Water-soluble vitamins

Vitamins

Fat-soluble vitamins:

Vitamins A, D, E and K

Dissolve easily in fats and oils

Fat-soluble vitamins can be stored in the body.

Vitamins

Water-soluble vitamins:

Vitamin C and the B vitamins

Remain dissolved in water

Excess water-soluble vitamins are eliminated by the kidneys and cannot be stored in our bodies.

All vitamins must be consumed daily to support optimal health.

True

False

All vitamins must be consumed daily to support optimal health.

True

False

Minerals

Minerals: inorganic substances required for body processes.

Minerals include sodium, calcium, iron, potassium, and magnesium.

Minerals have many different functions such as fluid regulation, bone structure, muscle movement, and nerve functioning.

Minerals

Our bodies require at least 100 mg per day of the major minerals such as calcium, phosphorus, magnesium, sodium, potassium, and chloride.

We require less than 100 mg per day of the trace minerals such as iron, zinc, copper, iodine, and fluoride.

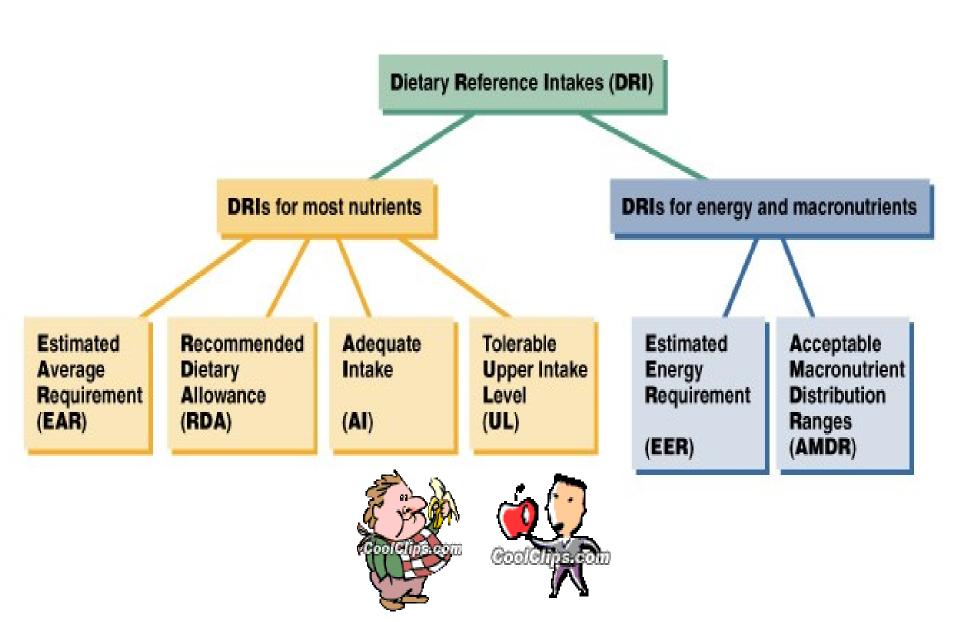
Water

Water is a critical nutrient for health and survival.

Water is involved in many body processes:

fluid balance nutrient transport

nerve impulses removal of wastes

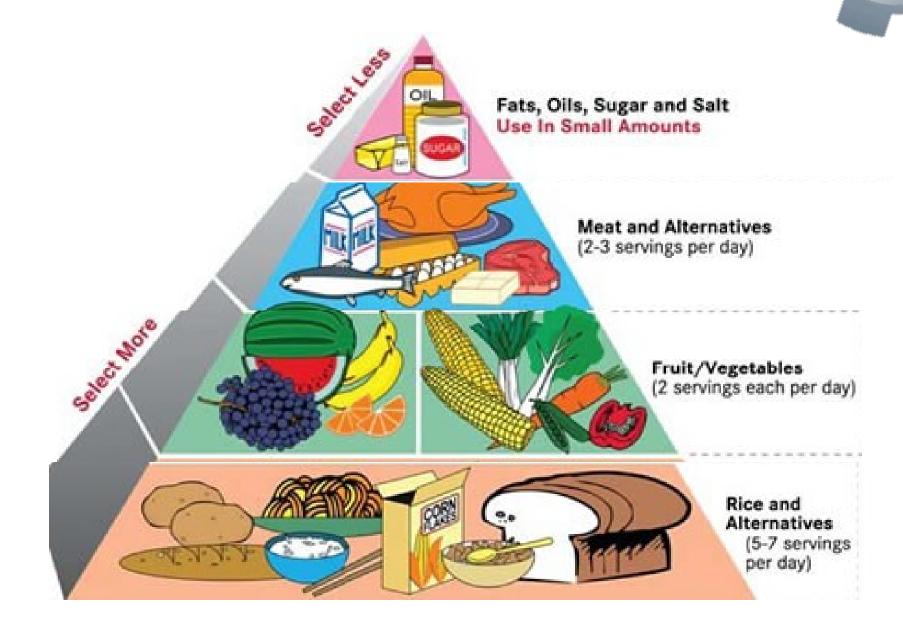

muscle contractions chemical reactions

many, many more...

Dietary Reference Intakes (DRIs): updated nutritional standards.

Expand on the traditional RDA values

Set standards for nutrients that do not have RDA values



DRIs consist of 4 values:

- 1. Estimated Average Requirement (EAR)
- 2. Recommended Dietary Allowances (RDA)
- 3. Adequate Intake (AI)
- 4. Tolerable Upper-Intake Level (UL)

Food Guide Pyramid

Estimated Average Requirement (EAR)

• The average daily intake level of a nutrient that will meet the needs of half of the people in a particular category

• Used to determine the Recommended Dietary Allowance (RDA) of a nutrient

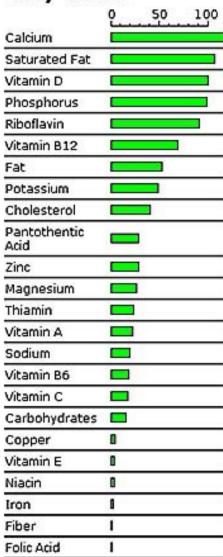
Recommended Dietary Allowances (RDA)

The average daily intake level required to meet the needs of 97 – 98% of people in a particular category

Adequate Intake (AI)

- Recommended average daily intake level for a nutrient
- Based on observations and estimates from experiments
- Used when the RDA is not yet established: calcium, vitamin D, vitamin K, fluoride

Tolerable Upper Intake Level (UL)


- Highest average daily intake level that is not likely to have adverse effects on the health of most people
- Consumption of a nutrient at levels above the UL is not considered safe

	2004.0000	
Amount Per Se		Calarias from fat 200
Calories 634.9		Calories from fat 308
		% Daily Value*
Total Fat	34.2g	53%
Saturated Fat	21.4g	107%
Cholesterol	124.2mg	41%
Sodium	474.9mg	20%
Potassium	1702.4mg	49%
Total Carbohydrate	49.2g	16%
Dietary Fiber	Og	0%
Sugars	49.2g	65 VQ
Protein	33.7 g	
Vitamin A	23% Vita	amin C 18%
Thiamin	24% Rib	oflavin 91%
Niacin	4% Cal	cium 117%
Iron	3% Vita	min D 100%
Vitamin E	4% Vita	amin B6 19%
Folic Acid	0% Vita	amin B12 69%
Phosphorus	99% Mag	gnesium 27%
Zinc	29% Cop	oper 5%
Pantothentic Acid	29%	

^{*} Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs.

Source of nutrient information: USDA SR20

Daily Values

Milk, dry, whole (1 cup)

image generated using wootus.com

^{**} Due to rounding, percentages may not total to 100%.

Amount Per Se	erving	
Calories 634.9		Calories from fat 308
		% Daily Value*
Total Fat	34.2g	53%
Saturated Fat	21.4g	107%
Cholesterol	124.2mg	41%
Sodium	474.9mg	20%
Potassium	1702.4mg	49%
Total Carbohydrate	49.2g	16%
Dietary Fiber	0g	0%
Sugars	49.2g	
Protein	33.7g	

Vitamin A	23% Vitamin C	18%
Thiamin	24% Riboflavin	91%
Niacin	4% Calcium	117%
Iron	3% Vitamin D	100%
Vitamin E	4% Vitamin B6	19%
Folic Acid	0% Vitamin B12	69%
Phosphorus	99% Magnesium	27%
Zinc	29% Copper	5%
Pantothentic Acid	29%	5.

Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs.

Source of nutrient information: USDA SR20

^{**} Due to rounding, percentages may not total to 100%.

Daily Values

	0 50 100	9
Calcium		
Saturated Fat		ı
Vitamin D		
Phosphorus		
Riboflavin		
Vitamin B12		
Fat		
Potassium		
Cholesterol		
Pantothentic Acid		
Zinc		
Magnesium		

Thiamin	
Vitamin A	
Sodium	
Vitamin B6	
Vitamin C	
Carbohydrates	
Copper	0
Vitamin E	0
Niacin	
Iron	1
Fiber	1
Folic Acid	

Milk, dry, whole (1 cup)

The Recommended Daily Allowance is the maximum amount of nutrient that people should consume to support normal body functions.

True

False

The Recommended Daily Allowance is the maximum amount of nutrient that people should consume to support normal body functions.

True

False

Estimated Energy Requirement (EER)

Average dietary energy intake (kcal) to maintain energy balance

Based on age, gender, weight, height, level of physical activity

Acceptable Macronutrient Distribution Ranges (AMDR)

Describes the portion of the energy intake that should come from each macronutrient

Determining Nutrient Needs: AMDR

Nutrient	AMDR*
Carbohydrate	45-65%
Fat	20-35%
Protein	10-35%

^{*} AMDR values expressed as percent of total energy or as percent of total calories.

Source: Institute of Medicine, Food and Nutrition Board, Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Protein and Amino Acids (Macronutrients) (Washington, DC: National Academies Press, 2002).

PREPARED BY:

GEMIMA GALVEZ
BSED 3C
ERRALYN RUBITE
BSED 3C
VALERIE TOROY
BSED 3C