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Capacitors and
Inductors
But in science the credit goes to the man who convinces the world, not
to the man to whom the idea first occurs.

—Francis Darwin

c h a p t e r

6

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.c), “an ability to design a system,
component, or process to meet desired needs.”
The “ability to design a system, component, or process to meet
desired needs” is why engineers are hired. That is why this is the
most important technical skill that an engineer has. Interestingly, your
success as an engineer is directly proportional to your ability to com-
municate but your being able to design is why you will be hired in
the first place.

Design takes place when you have what is termed an open-ended
problem that eventually is defined by the solution. Within the context
of this course or textbook, we can only explore some of the elements
of design. Pursuing all of the steps of our problem-solving technique
teaches you several of the most important elements of the design
process.

Probably the most important part of design is clearly defining what
the system, component, process, or, in our case, problem is. Rarely is
an engineer given a perfectly clear assignment. Therefore, as a student,
you can develop and enhance this skill by asking yourself, your col-
leagues, or your professors questions designed to clarify the problem
statement.

Exploring alternative solutions is another important part of the
design process. Again, as a student, you can practice this part of the
design process on almost every problem you work.

Evaluating your solutions is critical to any engineering assignment.
Again, this is a skill that you as a student can practice on every prob-
lem you work.

Photo by Charles Alexander
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Introduction
So far we have limited our study to resistive circuits. In this chapter,
we shall introduce two new and important passive linear circuit ele-
ments: the capacitor and the inductor. Unlike resistors, which dissipate
energy, capacitors and inductors do not dissipate but store energy,
which can be retrieved at a later time. For this reason, capacitors and
inductors are called storage elements.

The application of resistive circuits is quite limited. With the intro-
duction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the cir-
cuit analysis techniques covered in Chapters 3 and 4 are equally appli-
cable to circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to com-
bine them in series or in parallel. Later, we do the same for inductors.
As typical applications, we explore how capacitors are combined with
op amps to form integrators, differentiators, and analog computers.

Capacitors
A capacitor is a passive element designed to store energy in its elec-
tric field. Besides resistors, capacitors are the most common electrical
components. Capacitors are used extensively in electronics, communi-
cations, computers, and power systems. For example, they are used in
the tuning circuits of radio receivers and as dynamic memory elements
in computer systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

6.2

6.1
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In contrast to a resistor, which spends
or dissipates energy irreversibly, an
inductor or capacitor stores or releases
energy (i.e., has a memory).

Metal plates,
each with area A

d

Dielectric with permittivity �

Figure 6.1
A typical capacitor.
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Figure 6.2
A capacitor with applied voltage v.

Alternatively, capacitance is the amount
of charge stored per plate for a unit
voltage difference in a capacitor.

A capacitor consists of two conducting plates separated by an insu-
lator (or dielectric).

In many practical applications, the plates may be aluminum foil while
the dielectric may be air, ceramic, paper, or mica.

When a voltage source is connected to the capacitor, as in
Fig. 6.2, the source deposits a positive charge q on one plate and a neg-
ative charge on the other. The capacitor is said to store the electric
charge. The amount of charge stored, represented by q, is directly pro-
portional to the applied voltage so that

(6.1)

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791–1867). From Eq. (6.1),
we may derive the following definition.

q � Cv

v

�q

v

Capacitance is the ratio of the charge on one plate of a capacitor to
the voltage difference between the two plates, measured in farads (F).

Note from Eq. (6.1) that 1 farad � 1 coulomb/volt.
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Although the capacitance C of a capacitor is the ratio of the charge
q per plate to the applied voltage it does not depend on q or It
depends on the physical dimensions of the capacitor. For example, for
the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by

(6.2)

where A is the surface area of each plate, d is the distance between
the plates, and is the permittivity of the dielectric material between
the plates. Although Eq. (6.2) applies to only parallel-plate capacitors,
we may infer from it that, in general, three factors determine the value
of the capacitance:

1. The surface area of the plates—the larger the area, the greater the
capacitance.

2. The spacing between the plates—the smaller the spacing, the greater
the capacitance.

3. The permittivity of the material—the higher the permittivity, the
greater the capacitance.

Capacitors are commercially available in different values and types.
Typically, capacitors have values in the picofarad (pF) to microfarad 
range. They are described by the dielectric material they are made of and
by whether they are of fixed or variable type. Figure 6.3 shows the cir-
cuit symbols for fixed and variable capacitors. Note that according to the
passive sign convention, if and or if and the
capacitor is being charged, and if the capacitor is discharging.

Figure 6.4 shows common types of fixed-value capacitors. Poly-
ester capacitors are light in weight, stable, and their change with tem-
perature is predictable. Instead of polyester, other dielectric materials
such as mica and polystyrene may be used. Film capacitors are rolled
and housed in metal or plastic films. Electrolytic capacitors produce
very high capacitance. Figure 6.5 shows the most common types of
variable capacitors. The capacitance of a trimmer (or padder) capacitor

v � i 6 0,
i 6 0,v 6 0i 7 0v 7 0

(mF)

�

C �
� A

d

v.v,
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Michael Faraday (1791–1867), an English chemist and physicist,
was probably the greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by work-
ing with the great chemist Sir Humphry Davy at the Royal Institu-
tion, where he worked for 54 years. He made several contributions
in all areas of physical science and coined such words as electroly-
sis, anode, and cathode. His discovery of electromagnetic induction
in 1831 was a major breakthrough in engineering because it provided
a way of generating electricity. The electric motor and generator oper-
ate on this principle. The unit of capacitance, the farad, was named
in his honor.

Historical

Capacitor voltage rating and capaci-
tance are typically inversely rated due
to the relationships in Eqs. (6.1) and
(6.2). Arcing occurs if d is small and V
is high.

Figure 6.3
Circuit symbols for capacitors: (a) fixed
capacitor, (b) variable capacitor.

i iC

v+ −

C

v+ −
(a) (b)

The Burndy Library Collection
at The Huntington Library, 
San Marino, California.
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is often placed in parallel with another capacitor so that the equivalent
capacitance can be varied slightly. The capacitance of the variable air
capacitor (meshed plates) is varied by turning the shaft. Variable capac-
itors are used in radio receivers allowing one to tune to various sta-
tions. In addition, capacitors are used to block dc, pass ac, shift phase,
store energy, start motors, and suppress noise.

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

(6.3)

differentiating both sides of Eq. (6.1) gives

(6.4)

This is the current-voltage relationship for a capacitor, assuming the
passive sign convention. The relationship is illustrated in Fig. 6.6 for
a capacitor whose capacitance is independent of voltage. Capacitors
that satisfy Eq. (6.4) are said to be linear. For a nonlinear capacitor,
the plot of the current-voltage relationship is not a straight line.
Although some capacitors are nonlinear, most are linear. We will
assume linear capacitors in this book.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

(6.5)

or

(6.6)

where is the voltage across the capacitor at time 
Equation (6.6) shows that capacitor voltage depends on the past history

t0.v(t0) � q(t0)�C

v(t) �
1

C
 �

t

t0

 i (t)dt � v(t0)

v(t) �
1

C
 �

t

��

 i (t)dt

i � C 

dv
dt

i �
dq

dt
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(a) (b) (c)

Figure 6.4
Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.
Courtesy of Tech America.

Figure 6.5
Variable capacitors: (a) trimmer capacitor,
(b) filmtrim capacitor.
Courtesy of Johanson.

According to Eq. (6.4), for a capacitor
to carry current, its voltage must vary
with time. Hence, for constant voltage,
i 0.�

Slope = C

dv/dt0

i

Figure 6.6
Current-voltage relationship of a capacitor.

(a)

(b)
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of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.

The instantaneous power delivered to the capacitor is

(6.7)

The energy stored in the capacitor is therefore

(6.8)

We note that because the capacitor was uncharged at
Thus,

(6.9)

Using Eq. (6.1), we may rewrite Eq. (6.9) as

(6.10)

Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be
retrieved, since an ideal capacitor cannot dissipate energy. In fact, the
word capacitor is derived from this element’s capacity to store energy
in an electric field.

We should note the following important properties of a capacitor:

1. Note from Eq. (6.4) that when the voltage across a capacitor is not
changing with time (i.e., dc voltage), the current through the capac-
itor is zero. Thus,

w �
q2

2C

w �
1

2
 Cv2

t � ��.
v(��) � 0,

w ��
t

��
 
p(t) dt � C �

t

��
 
v 

dv
dt

 dt � C �
v(t)

v(��)
 
v dv �

1

2
 Cv2 ` v(t)

v(��)

p � vi � C v 

dv
dt

6.2 Capacitors 219

A capacitor is an open circuit to dc.

However, if a battery (dc voltage) is connected across a capacitor,
the capacitor charges.

2. The voltage on the capacitor must be continuous.

The voltage on a capacitor cannot change abruptly.

The capacitor resists an abrupt change in the voltage across it.
According to Eq. (6.4), a discontinuous change in voltage requires
an infinite current, which is physically impossible. For example,
the voltage across a capacitor may take the form shown in
Fig. 6.7(a), whereas it is not physically possible for the capacitor
voltage to take the form shown in Fig. 6.7(b) because of the abrupt
changes. Conversely, the current through a capacitor can change
instantaneously.

3. The ideal capacitor does not dissipate energy. It takes power from
the circuit when storing energy in its field and returns previously
stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model leakage resistance,
as shown in Fig. 6.8. The leakage resistance may be as high as

v

t

(a)

v

t

(b)

Figure 6.7
Voltage across a capacitor: (a) allowed,
(b) not allowable; an abrupt change is not
possible.

An alternative way of looking at this is
using Eq. (6.9), which indicates that
energy is proportional to voltage
squared. Since injecting or extracting
energy can only be done over some
finite time, voltage cannot change
instantaneously across a capacitor.

Leakage resistance

Capacitance

Figure 6.8
Circuit model of a nonideal capacitor.
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and can be neglected for most practical applications. For
this reason, we will assume ideal capacitors in this book.
100 M�
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Example 6.1 (a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
(b) Find the energy stored in the capacitor.

Solution:

(a) Since 

(b) The energy stored is

w �
1

2
 Cv2 �

1

2
� 3 � 10�12 � 400 � 600 pJ

q � 3 � 10�12 � 20 � 60 pC

q � Cv,

What is the voltage across a capacitor if the charge on one plate
is 0.12 mC? How much energy is stored?

Answer: 26.67 A, 1.6 mJ.

4.5-mFPractice Problem 6.1

The voltage across a capacitor is

Calculate the current through it.

Solution:
By definition, the current is

 � �5 � 10�6 � 6000 � 10 sin 6000t � �0.3 sin 6000t A

 i(t) � C 
dv
dt

� 5 � 10�6 
d

dt
 (10 cos 6000t)

v(t) � 10 cos 6000t V

5-mFExample 6.2

If a capacitor is connected to a voltage source with

determine the current through the capacitor.

Answer: 1.5 cos 2000t A.

v(t) � 75 sin 2000t V

10-mFPractice Problem 6.2

Determine the voltage across a capacitor if the current through it is

Assume that the initial capacitor voltage is zero.

i(t) � 6e�3000t mA

2-mFExample 6.3
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Solution:

Since and ,

 �
3 � 103

�3000
 e�3000t `

0

t

� (1 � e�3000t) V

 v �
1

2 � 10�6 �
t

0

 6e�3000t dt � 10�3

v(0) � 0v �
1

C
 �

t

0

 i dt � v(0)
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Practice Problem 6.3

Determine the current through a capacitor whose voltage is
shown in Fig. 6.9.

Solution:
The voltage waveform can be described mathematically as

Since and , we take the derivative of to obtain

Thus the current waveform is as shown in Fig. 6.10.

� d 10 mA  0 6 t 6 1

�10 mA  1 6 t 6 3

10 mA  3 6 t 6 4

0  otherwise

i(t) � 200 � 10�6 � d 50  0 6 t 6 1

�50  1 6 t 6 3

50  3 6 t 6 4

0  otherwise

vC � 200 mFi � C dv�dt

v(t) � d 50t V  0 6 t 6 1

100 � 50t V  1 6 t 6 3

�200 � 50t V  3 6 t 6 4

0  otherwise

200-mF Example 6.4
v (t)

0
4321

50

−50

t

Figure 6.9
For Example 6.4.

i (mA)

0
4321

10

−10

t

Figure 6.10
For Example 6.4.

An initially uncharged 1-mF capacitor has the current shown in
Fig. 6.11 across it. Calculate the voltage across it at and

Answer: 100 mV, 400 mV.

t � 5 ms.
t � 2 ms

Practice Problem 6.4
i (mA)

0
642

100

t (ms)

Figure 6.11
For Practice Prob. 6.4.

The current through a capacitor is 
Calculate the voltage across it at and Take 

Answer: 1.736 V.93.14 mV,

v(0) � 0.t � 5 ms.t � 1 ms
i(t) � 50 sin 120 p t mA.100-mF
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Solution:
Under dc conditions, we replace each capacitor with an open circuit,
as shown in Fig. 6.12(b). The current through the series combination
of the and resistors is obtained by current division as

Hence, the voltages and across the capacitors are

and the energies stored in them are

 w2 �
1

2
 C2v2

2 �
1

2
 (4 � 10�3)(8)2 � 128 mJ

 w1 �
1

2
 C1v1

2 �
1

2
 (2 � 10�3)(4)2 � 16 mJ

v1 � 2000i � 4 V  v2 � 4000i � 8 V

v2v1

i �
3

3 � 2 � 4
 (6 mA) � 2 mA

4-k�2-k�
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Example 6.5 Obtain the energy stored in each capacitor in Fig. 6.12(a) under dc
conditions.

Figure 6.12
For Example 6.5.

Under dc conditions, find the energy stored in the capacitors in Fig. 6.13.

Answer: , 3.375 mJ.20.25 mJ

Practice Problem 6.5

50 V +
− 6 kΩ

1 kΩ

30 �F

20 �F

3 kΩ

Figure 6.13
For Practice Prob. 6.5.

Series and Parallel Capacitors
We know from resistive circuits that the series-parallel combination is a
powerful tool for reducing circuits. This technique can be extended to
series-parallel connections of capacitors, which are sometimes encoun-
tered. We desire to replace these capacitors by a single equivalent
capacitor 

In order to obtain the equivalent capacitor of N capacitors in
parallel, consider the circuit in Fig. 6.14(a). The equivalent circuit is

Ceq

Ceq.

6.3

v1+ −

v2

+

−
6 mA 3 kΩ

5 kΩ
4 kΩ

2 kΩ

2 mF

4 mF

(a)

6 mA 3 kΩ

5 kΩ

4 kΩ

2 kΩ

(b)

i
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in Fig. 6.14(b). Note that the capacitors have the same voltage across
them. Applying KCL to Fig. 6.14(a),

(6.11)

But Hence,

(6.12)

where

(6.13)Ceq � C1 � C2 � C3 � p � CN

 � aa
N

k�1
Ckb dv

dt
� Ceq 

dv
dt

 i � C1 

dv
dt

� C2 

dv
dt

� C3 

dv
dt

� p � CN 

dv
dt

ik � Ck dv�dt.

i � i1 � i2 � i3 � p � iN

v
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i C1

(a)

i1

C2 C3 CN

iN

v
+

−

i

(b)

Ceq v
+

−

i2 i3

Figure 6.14
(a) Parallel-connected N capacitors, 
(b) equivalent circuit for the parallel
capacitors.

The equivalent capacitance of N parallel-connected capacitors is the
sum of the individual capacitances.

We observe that capacitors in parallel combine in the same manner as
resistors in series.

We now obtain of N capacitors connected in series by com-
paring the circuit in Fig. 6.15(a) with the equivalent circuit in
Fig. 6.15(b). Note that the same current i flows (and consequently
the same charge) through the capacitors. Applying KVL to the loop
in Fig. 6.15(a),

(6.14)

But Therefore,

(6.15)

where

(6.16)
1

Ceq
�

1

C1
�

1

C2
�

1

C3
� p �

1

CN

 �
1

Ceq
 �

t

t0

 i (t) dt � v(t0)

 � p � vN 

(t0)

 � a 1

C1
�

1

C2
� p �

1

CN
b �

t

t0

 i (t) dt � v1(t0) � v2 

(t0)

� p �
1

CN
 �

t

t0

 i (t) dt � vN (t0)

 v �
1

C1
 �

t

t0

 i (t) dt � v1(t0) �
1

C2
 �

t

t0

 i (t) dt � v2 (t0)

vk �
1

Ck
 �

t

t0

 i (t) dt � vk 

(t0).

v � v1 � v2 � v3 � p � vN

Ceq

v

C1

(a)

C2 C3 CN

v1 v2 v3 vN
+
−

i

+ −+ −+ − + −

v

(b)

Ceq v+
−

i

+

−

Figure 6.15
(a) Series-connected N capacitors, 
(b) equivalent circuit for the series 
capacitor.
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The initial voltage across is required by KVL to be the sum
of the capacitor voltages at Or according to Eq. (6.15),

Thus, according to Eq. (6.16),

v(t0) � v1(t0) � v2(t0) � p � vN (t0)

t0.
Ceqv(t0)
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The equivalent capacitance of series-connected capacitors is the
reciprocal of the sum of the reciprocals of the individual capacitances.

Note that capacitors in series combine in the same manner as resistors
in parallel. For (i.e., two capacitors in series), Eq. (6.16)
becomes

or

(6.17)Ceq �
C1C2

C1 � C2

1

Ceq
�

1

C1
�

1

C2

N � 2

Example 6.6 Find the equivalent capacitance seen between terminals a and b of the
circuit in Fig. 6.16.

a

b

Ceq

5 �F

20 �F 20 �F6 �F

60 �F

Figure 6.16
For Example 6.6.

Solution:
The and capacitors are in series; their equivalent capaci-
tance is

This capacitor is in parallel with the and capacitors;
their combined capacitance is 

This capacitor is in series with the capacitor. Hence, the
equivalent capacitance for the entire circuit is

Ceq �
30 � 60

30 � 60
� 20 mF

60-mF30-mF

4 � 6 � 20 � 30 mF

20-mF6-mF4-mF

20 � 5

20 � 5
� 4 mF

5-mF20-mF
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Find the equivalent capacitance seen at the terminals of the circuit in
Fig. 6.17.

Answer: 40 mF.

Practice Problem 6.6

Ceq
120 �F20 �F70 �F

60 �F

50 �F

Figure 6.17
For Practice Prob. 6.6.

Example 6.7

20 mF40 mF

30 mF20 mF

30 V +
−

v1 v2

v3

+

−

+ − + −

Figure 6.18
For Example 6.7.

Ceq30 V +
−

Figure 6.19
Equivalent circuit for Fig. 6.18.

Practice Problem 6.7

30 �F20 �F

60 �F40 �F

90 V +
−

v1 v3

v2 v4

+ − + −
+

−

+

−

Figure 6.20
For Practice Prob. 6.7.

For the circuit in Fig. 6.18, find the voltage across each capacitor.

Solution:
We first find the equivalent capacitance , shown in Fig. 6.19. The two
parallel capacitors in Fig. 6.18 can be combined to get 
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors.
Thus,

The total charge is

This is the charge on the 20-mF and 30-mF capacitors, because they are
in series with the 30-V source. (A crude way to see this is to imagine
that charge acts like current, since ) Therefore,

Having determined and , we now use KVL to determine by

Alternatively, since the 40-mF and 20-mF capacitors are in parallel,
they have the same voltage and their combined capacitance is 

This combined capacitance is in series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

v3 �
q

60 mF
�

0.3

60 � 10�3 � 5 V

20 � 60 mF.
40 �v3

v3 � 30 � v1 � v2 � 5 V

v3v2v1

v1 �
q

C1
�

0.3

20 � 10�3 � 15 V  v2 �
q

C2
�

0.3

30 � 10�3 � 10 V

i � dq�dt.

q � Ceq 
v � 10 � 10�3 � 30 � 0.3 C

Ceq �
1

1
60 � 1

30 � 1
20

 mF � 10 mF

60 mF.40 � 20 �
Ceq

Find the voltage across each of the capacitors in Fig. 6.20.

Answer: v4 � 30 V.v3 � 15 V,v2 � 45 V,v1 � 45 V,
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Inductors
An inductor is a passive element designed to store energy in its mag-
netic field. Inductors find numerous applications in electronic and
power systems. They are used in power supplies, transformers, radios,
TVs, radars, and electric motors.

Any conductor of electric current has inductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
a practical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.

6.4
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An inductor consists of a coil of conducting wire.

If current is allowed to pass through an inductor, it is found that the
voltage across the inductor is directly proportional to the time rate of
change of the current. Using the passive sign convention,

(6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of
the American inventor Joseph Henry (1797–1878). It is clear from
Eq. (6.18) that 1 henry equals 1 volt-second per ampere.

v � L 

di

dt

Length, �
Cross-sectional area, A

Core material

Number of turns, N

Figure 6.21
Typical form of an inductor.

In view of Eq. (6.18), for an inductor
to have voltage across its terminals, its
current must vary with time. Hence,
v � 0 for constant current through
the inductor.

Inductance is the property whereby an inductor exhibits opposition
to the change of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for
the inductor, (solenoid) shown in Fig. 6.21,

(6.19)

where N is the number of turns, is the length, A is the cross-sectional
area, and is the permeability of the core. We can see from Eq. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using material with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Like capacitors, commercially available inductors come in differ-
ent values and types. Typical practical inductors have inductance values
ranging from a few microhenrys ( ), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are
shown in Fig. 6.22. The circuit symbols for inductors are shown in
Fig. 6.23, following the passive sign convention.

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphically for an inductor whose

mH

m

/

L �
N 

2mA

/

(a)

(b)

(c)

Figure 6.22
Various types of inductors: (a) solenoidal
wound inductor, (b) toroidal inductor,
(c) chip inductor.
Courtesy of Tech America.
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inductance is independent of current. Such an inductor is known as a
linear inductor. For a nonlinear inductor, the plot of Eq. (6.18) will
not be a straight line because its inductance varies with current. We
will assume linear inductors in this textbook unless stated otherwise.

The current-voltage relationship is obtained from Eq. (6.18) as

Integrating gives

(6.20)

or

(6.21)

where is the total current for and The
idea of making is practical and reasonable, because there
must be a time in the past when there was no current in the inductor.

The inductor is designed to store energy in its magnetic field. The
energy stored can be obtained from Eq. (6.18). The power delivered to
the inductor is

(6.22)

The energy stored is

(6.23)

 � L �
t

��

 i di �
1

2
 Li2(t) �

1

2
 Li2(��)

 w � �
t

��

 p(t) dt � L�
t

�� 

 

di

dt
 idt

p � vi � aL 

di

dt
bi

i(��) � 0
i(��) � 0.�� 6 t 6 t0i(t0)

i �
1

L
 �

t

t0

 v
 

(t) dt � i (t0)

i �
1

L
 �

t

��

 v
 

(t) dt

di �
1

L
 v dt

6.4 Inductors 227

Joseph Henry (1797–1878), an American physicist, discovered induc-
tance and constructed an electric motor.

Born in Albany, New York, Henry graduated from Albany Acad-
emy and taught philosophy at Princeton University from 1832 to 1846.
He was the first secretary of the Smithsonian Institution. He conducted
several experiments on electromagnetism and developed powerful elec-
tromagnets that could lift objects weighing thousands of pounds. Inter-
estingly, Joseph Henry discovered electromagnetic induction before
Faraday but failed to publish his findings. The unit of inductance, the
henry, was named after him.

Historical

Slope = L

di /dt0

v

i i i

(a)

v L

+

−

(b)

v L

+

−

(c)

v L

+

−

Figure 6.23
Circuit symbols for inductors: (a) air-core,
(b) iron-core, (c) variable iron-core.

Figure 6.24
Voltage-current relationship of an inductor.
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Since 

(6.24)

We should note the following important properties of an inductor.

1. Note from Eq. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

w �
1

2
 Li2

i (��) � 0,

228 Chapter 6 Capacitors and Inductors

An inductor acts like a short circuit to dc.

2. An important property of the inductor is its opposition to the
change in current flowing through it.

The current through an inductor cannot change instantaneously.

According to Eq. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not phys-
ically possible. Thus, an inductor opposes an abrupt change in the
current through it. For example, the current through an inductor
may take the form shown in Fig. 6.25(a), whereas the inductor cur-
rent cannot take the form shown in Fig. 6.25(b) in real-life situa-
tions due to the discontinuities. However, the voltage across an
inductor can change abruptly.

3. Like the ideal capacitor, the ideal inductor does not dissipate
energy. The energy stored in it can be retrieved at a later time. The
inductor takes power from the circuit when storing energy and
delivers power to the circuit when returning previously stored
energy.

4. A practical, nonideal inductor has a significant resistive component,
as shown in Fig. 6.26. This is due to the fact that the inductor is
made of a conducting material such as copper, which has some
resistance. This resistance is called the winding resistance , and
it appears in series with the inductance of the inductor. The pres-
ence of makes it both an energy storage device and an energy
dissipation device. Since is usually very small, it is ignored in
most cases. The nonideal inductor also has a winding capacitance

due to the capacitive coupling between the conducting coils. 
is very small and can be ignored in most cases, except at high fre-
quencies. We will assume ideal inductors in this book.

CwCw

Rw

Rw

Rw

i

t

(a)

i

t

(b)

L Rw

Cw

Figure 6.25
Current through an inductor: (a) allowed,
(b) not allowable; an abrupt change is not
possible.

Figure 6.26
Circuit model for a practical inductor.

Since an inductor is often made of a
highly conducting wire, it has a very
small resistance.

Example 6.8 The current through a 0.1-H inductor is Find the volt-
age across the inductor and the energy stored in it.

Solution:
Since and 

v � 0.1
d

dt
 (10te�5t) � e�5t � t(�5)e�5t � e�5t(1 � 5t) V

L � 0.1 H,v � L di�dt

i(t) � 10te�5t A.
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The energy stored is

w �
1

2
 Li2 �

1

2
 (0.1)100t 

2e�10t � 5t 
2e�10t J

6.4 Inductors 229

Practice Problem 6.8

Find the current through a 5-H inductor if the voltage across it is

Also, find the energy stored at Assume 

Solution:

Since and 

The power and the energy stored is then

Alternatively, we can obtain the energy stored using Eq. (6.24), by
writing

as obtained before.

w 0 5
0

�
1

2
 Li2(5) �

1

2
 Li(0) �

1

2
 (5)(2 � 53)2 � 0 � 156.25 kJ

w � �  p dt � �
5

0
 
60t 

5 dt � 60 

t 
6

6
 25

0

� 156.25 kJ

p � vi � 60t 
5,

i �
1

5
 �

t

0

 30t 
2 dt � 0 � 6 �

t 
3

3
� 2t 

3 A

L � 5 H,i �
1

L
 �

t

t0

 v(t) dt � i (t0)

i(v) 7 0.t � 5 s.

v(t) � b30t2,  t 7 0

0,   t 6 0

Example 6.9

The terminal voltage of a 2-H inductor is Find the
current flowing through it at and the energy stored in it at 
Assume 

Answer: �18 A, 320 J.

i(0) � 2 A.
t � 4 s.t � 4 s

v � 10(1 � t) V. Practice Problem 6.9

If the current through a 1-mH inductor is find
the terminal voltage and the energy stored.

Answer: �6 sin 100t mV, 1.8 cos2 (100t) mJ.

i(t) � 60 cos 100t mA,
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Series and Parallel Inductors
Now that the inductor has been added to our list of passive elements, it is
necessary to extend the powerful tool of series-parallel combination. We
need to know how to find the equivalent inductance of a series-connected
or parallel-connected set of inductors found in practical circuits.

Consider a series connection of N inductors, as shown in Fig. 6.29(a),
with the equivalent circuit shown in Fig. 6.29(b). The inductors have
the same current through them. Applying KVL to the loop,

(6.25)

Substituting results in

(6.26)

where

(6.27)Leq � L1 � L2 � L3 � p � LN

 � aa
N

k�1
Lkb 

di

dt
� Leq 

di

dt

 � (L1 � L2 � L3 � p � LN)
di

dt

 v � L1
di

dt
� L2 

di

dt
� L3 

di

dt
� p � LN 

di

dt

vk � Lk di�dt

v � v1 � v2 � v3 � p � vN

6.5
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Example 6.10 Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, 
and (b) the energy stored in the capacitor and inductor.

Solution:

(a) Under dc conditions, we replace the capacitor with an open circuit
and the inductor with a short circuit, as in Fig. 6.27(b). It is evident
from Fig. 6.27(b) that

The voltage is the same as the voltage across the resistor. Hence,

(b) The energy in the capacitor is

and that in the inductor is

wL �
1

2
 LiL

2 �
1

2
 (2)(22) � 4 J

wC �
1

2
CvC

2 �
1

2
 (1)(102) � 50 J

vC � 5i � 10 V

5-�vC

i � iL �
12

1 � 5
� 2 A

iL,
vC,

12 V

1 F

+
−

4 Ω

5 Ω1 Ω

2 H

i

iL

vC

+

−

(a)

vC

+

−

12 V +
−

4 Ω

5 Ω1 Ωi

iL

(b)

Figure 6.27
For Example 6.10.

Determine and the energy stored in the capacitor and inductor
in the circuit of Fig. 6.28 under dc conditions.

Answer: 15 V, 7.5 A, 450 J, 168.75 J.

vC, iL,Practice Problem 6.10

10 A 4 F6 Ω 2 Ω

6 HiL

vC

+

−

Figure 6.28
For Practice Prob. 6.10.

L1

(a)

L2 L3 LNi

v

+

−

(b)

Leq

i

v

+

−

+ −v1
+ −v2

+ −v3
+ −vN

. . .

Figure 6.29
(a) A series connection of N inductors, 
(b) equivalent circuit for the series 
inductors.

ale80571_ch06_215-252.qxd  11/30/11  1:00 PM  Page 230



Thus,

6.5 Series and Parallel Inductors 231

The equivalent inductance of series-connected inductors is the sum
of the individual inductances.

Inductors in series are combined in exactly the same way as resistors
in series.

We now consider a parallel connection of N inductors, as shown
in Fig. 6.30(a), with the equivalent circuit in Fig. 6.30(b). The induc-
tors have the same voltage across them. Using KCL,

(6.28)

But hence,

(6.29)

where

(6.30)

The initial current through at is expected by KCL to be
the sum of the inductor currents at Thus, according to Eq. (6.29),

According to Eq. (6.30),

i(t0) � i1(t0) � i2(t0) � p � iN 
(t0)

t0.
t � t0Leqi(t0)

1

Leq
�

1

L1
�

1

L2
�

1

L3
� p �

1

LN

 � aa  
N

k�1

1

Lk
b �

t

t0

 v dt � a
N

k�1
ik(t0) �

1

Leq
 �

t

t0

 v dt � i(t0)

   � p � iN  
(t0)

 � a 1

L1
�

1

L2
 � p �

1

LN
b �

t

t0

 v dt � i1(t0) � i2(t0)

  � p �
1

LN
 �

t

t0

 v dt � iN  
(t0)

 i �
1

L1
 �

t

t0
 
v dt � i1(t0) �

1

L2
 �

t

t0
 
v dt � i2(t0)

ik �
1

Lk
 �

t

t0

 v dt � ik 

(t0);

i � i1 � i2 � i3 � p � iN

The equivalent inductance of parallel inductors is the reciprocal of the
sum of the reciprocals of the individual inductances.

Note that the inductors in parallel are combined in the same way as
resistors in parallel.

For two inductors in parallel , Eq. (6.30) becomes

(6.31)

As long as all the elements are of the same type, the transforma-
tions for resistors discussed in Section 2.7 can be extended to capacitors
and inductors.

¢-Y

1

Leq
�

1

L1
�

1

L2
  or  Leq �

L1L2

L1 � L2

(N � 2)

(a)

v

+

−

(b)

Leq

i

v

+

−

L1 L2 L3 LN

i

i1 i2 i3 iN

Figure 6.30
(a) A parallel connection of N inductors,
(b) equivalent circuit for the parallel
inductors.
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It is appropriate at this point to summarize the most important
characteristics of the three basic circuit elements we have studied. The
summary is given in Table 6.1.

The wye-delta transformation discussed in Section 2.7 for resistors
can be extended to capacitors and inductors.

232 Chapter 6 Capacitors and Inductors

TABLE 6.1

Important characteristics of the basic elements.†

Relation Resistor (R) Capacitor (C) Inductor (L)

p or w:

Series:

Parallel:

At dc: Same Open circuit Short circuit

Circuit variable
that cannot
change abruptly: Not applicable v i

† Passive sign convention is assumed.

Leq �
L1L2

L1 � L2
Ceq � C1 � C2Req �

R1R2

R1 � R2

Leq � L1 � L2Ceq �
C1C2

C1 � C2
Req � R1 � R2

w �
1

2
 Li2w �

1

2
 Cv2p � i2R �

v2

R

i �
1

L
 �

t

t0

 v(t) dt� i(t0)i � C 

dv
dt

i � v�Ri-v:

v � L 

di

dt
v �

1

C
 �

t

t0

 i(t) dt� v(t0)v � i Rv-i:

Find the equivalent inductance of the circuit shown in Fig. 6.31.

Solution:
The 10-H, 12-H, and 20-H inductors are in series; thus, combining
them gives a 42-H inductance. This 42-H inductor is in parallel with
the 7-H inductor so that they are combined, to give

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,

Leq � 4 � 6 � 8 � 18 H

7 � 42

7 � 42
� 6 H

Example 6.11

4 H 20 H

8 H 10 H

12 H7 H
Leq

Figure 6.31
For Example 6.11.

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

Practice Problem 6.11

20 mH 100 mH 40 mH

30 mH 20 mH40 mH50 mH
Leq

Answer: 25 mH.

Figure 6.32
For Practice Prob. 6.11.
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6.6 Applications 233

Example 6.12For the circuit in Fig. 6.33, If 
find: (a) ; (b) , , and ; (c) and 

Solution:

(a) From Since 

(b) The equivalent inductance is

Thus,

and

Since 

(c) The current is obtained as

Similarly,

Note that i1(t) � i2(t) � i(t).

 � �e�10t 0 t
0

� 1 mA � �e�10t � 1 � 1 � �e�10t mA

 i2(t) �
1

12
 �

t

0
 
v2 dt � i2(0) �

120

12
 �

t

0
 
e�10t dt � 1 mA

 � �3e�10t 0 t
0

� 5 mA � �3e�10t � 3 � 5 � 8 � 3e�10t mA

 i1(t) �
1

4
 �

t

0

 v2 dt � i1(0) �
120

4
 �

t

0

 e�10t dt � 5 mA

i1

v2(t) � v(t) � v1(t) � 120e�10t mV

v � v1 � v2,

v1(t) � 2 

di

dt
� 2(�4)(�10)e�10t mV � 80e�10t mV

v(t) � Leq 

di

dt
� 5(4)(�1)(�10)e�10t mV � 200e�10t mV

Leq � 2 � 4 � 12 � 2 � 3 � 5 H

i1(0) � i(0) � i2(0) � 4 � (�1) � 5 mA

i1 � i2,
i �i(0) � 4(2 � 1) � 4 mA.i(t) � 4(2 � e�10t) mA,

i2(t).i1(t)v2(t)v1(t)v(t)i1(0)
i2(0) � �1 mA,i(t) � 4(2 � e�10t) mA.

2 H

12 H4 Hv

+

−

v2

v1
+

+ −

−

i

i1 i2

Figure 6.33
For Example 6.12.

Practice Problem 6.12

3 H

6 H
8 Hv

+

−

v2

+

−

i

i1

i2

+ −v1

Figure 6.34
For Practice Prob. 6.12.

Applications
Circuit elements such as resistors and capacitors are commercially
available in either discrete form or integrated-circuit (IC) form. Unlike
capacitors and resistors, inductors with appreciable inductance are dif-
ficult to produce on IC substrates. Therefore, inductors (coils) usually

6.6

In the circuit of Fig. 6.34, If find:
(a) (b) and (c) and 

Answer: (a) 0.8 A, (b) 
(c) �28.8e�2t V.�7.2e�2t V,�36e�2t V,

(�0.4 � 1.8e�2t) A,(�0.4 � 1.2e�2t) A,

v(t).v2(t),v1(t),i(t);i2(t)i2(0);
i(0) � 1.4 A,i1(t) � 0.6e�2t A.
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